JP2664674B2 - Driving force control device for hybrid drive vehicle - Google Patents

Driving force control device for hybrid drive vehicle

Info

Publication number
JP2664674B2
JP2664674B2 JP62035114A JP3511487A JP2664674B2 JP 2664674 B2 JP2664674 B2 JP 2664674B2 JP 62035114 A JP62035114 A JP 62035114A JP 3511487 A JP3511487 A JP 3511487A JP 2664674 B2 JP2664674 B2 JP 2664674B2
Authority
JP
Japan
Prior art keywords
driving force
shift
control device
hybrid drive
drive vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62035114A
Other languages
Japanese (ja)
Other versions
JPS63203430A (en
Inventor
正夫 川合
睦 川本
英光 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP62035114A priority Critical patent/JP2664674B2/en
Publication of JPS63203430A publication Critical patent/JPS63203430A/en
Application granted granted Critical
Publication of JP2664674B2 publication Critical patent/JP2664674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前輪又は後輪の一方をエンジン(内燃機関
又は外燃機関)により駆動し、他方を電動機により駆動
するハイブリッド駆動車において、自動変速機の変速シ
ョックを低減するために電動機の出力を変化させるハイ
ブリッド駆動車の駆動力制御装置に関する。 〔従来の技術〕 自動変速機は、一般に周知の遊星歯車機構群、この遊
星歯車機構群の各要素を固定、或いは開放させるための
摩擦係合装置、摩擦係合装置を選択作動させる油圧制御
装置、油圧制御装置を制御する電子制御装置からなって
いる。そして、電子制御装置が各種の走行状態に応じて
変速段を判断して油圧制御装置を制御することによっ
て、摩擦係合装置を選択作動させる遊星歯車機構群の各
要素を固定、或いは開放させて自動的に変速制御を行っ
ている。 また、エンジンと自動変速機との間にはトルクコンバ
ータが連結され、この中にロックアップクラッチが配設
されている。エンジンの動力は、このロックアップクラ
ッチが係合すると直接変速機に伝達され、開放するとト
ルクコンバータを介して変速機に伝達される。通常、こ
の係合と開放は、ギヤ位置の区分毎に前提された変速パ
ターンに基づいて制御されるが、自動変速走行におい
て、ロックアップ状態のまま変速制御が行われると、大
きな変速ショックが生じる場合がある。このような変速
ショックをなくすために、これまでにも様々な提案がな
されている。 本件出願人も変速期間を判断してロックアップクラッ
チを制御することによって、変速ショックをなくす方式
を別途提案(特願昭61−154332号)している。この方式
は、変速機の入力回転数と出力回転数を検出してその比
を求め、これと変速前後のギヤ比とを判断することによ
って変速開始及び変速終了を判断し、変速中にはロック
アップクラッチを開放状態、待機状態、スィープ状態、
或いはスリップ状態等に制御するものである。 上記のように、従来は、自動変速機の変速ショック低
減のため自動変速機等の構成要素であるクラッチやブレ
ーキ等の摩擦係合要素の係合油圧を緩やかに上昇させた
り、油圧の供給又は排出速度のタイミングを適切に調整
するこめにより行なわれていた。 〔発明が解決しようとする問題点〕 ところで、自動変速装置は、各種の走行条件に応じた
変速制御を行うため、制御や構造が複雑化している。さ
らにその上に上記のような自動変速機の摩擦係合装置や
ロックアップクラッチの制御による変速ショックの低減
制御を行おうとすると、油圧制御装置はますます複雑、
精密化し、コスト高となり、信頼性も低下する。 本発明は、自動変速機の変速期間中に発生するトルク
変動(変速ショック)を低減することが可能なハイブリ
ッド駆動車の駆動力制御装置を提供することを目的とす
る。 〔問題点を解決するための手段〕 そのために本発明は、走行条件に応じ変速制御を行う
自動変速機を備えたエンジンと電動機とを駆動源とする
ハイブリッド駆動車において、エンジンの駆動力を検出
する駆動力検出手段、電動機の駆動力を検出する駆動力
検出手段、及び自動変速機の変速期間を判断し変速期間
中の前記各駆動力検出手段の駆動力から求められる車両
駆動力が一定となるように電動機の出力トルクを制御す
る制御手段を備えたことを特徴とするものである。 〔作用および効果〕 本発明のハイブリッド駆動車の駆動力制御装置では、
エンジンと電動機の駆動力を検出して変速期間中の前記
各駆動力検出手段から求められる車両駆動力が一定とな
るように電動機にフィードバックして、電動機の出力を
変化させ、車両全体の駆動力を変化しないように制御す
るので、変速ショックを低減することができる。 〔実施例〕 以下、図面を参照しつつ実施例を説明する。 第1図は本発明に係るハイブリッド駆動車の駆動力制
御装置の1実施例構成を示す図、第2図は本発明に係る
ハイブリッド駆動車の駆動力制御装置の他の実施例構成
を示す図、第3図は制御装置の構成例を示す図、第4図
は制御装置による処理の流れを説明するための図であ
る。図中、1と13は自動変速機、2と8は変速機構、3
と12は変速ソレノイド、4、10と15〜18はトルクセン
サ、5と11は差動機構、6と14は制御装置、7、20と21
はモーター、9、19と22は変速機を示す。 第1図において、前輪はエンジンにより自動変速機1
を介して駆動され、後輪はモーター7により変速機9
(又は減速機)を介して駆動される。トルクセンサ4
は、前輪駆動側の自動変速機1の変速機構2と差動機構
5との間に取り付けられて前輪側のトルクを検出するも
のであり、トルクセンサ10は、後輪駆動側の変速機9の
変速機構8と差動機構11との間に取り付けられて後輪側
のトルクを検出するものである。制御装置6は、走行条
件に応じて変速段を判断して自動変速機1の変速ソレノ
イド3を制御すると共に、トルクセンサ4、10より前後
輪の検出トルクを入力してモーター7の出力を制御する
ものであり、変速ソレノイド3の制御信号から変速開始
を判断すると共に変速期間中を判断し、変速期間中は、
前後輪の検出トルクの合計値が変速前と同じになるよう
にモーター7の出力を制御する。 すなわち、制御装置6からの信号によって変速ソレノ
イド3が制御され、自動変速機1において変速が開始す
ると、摩擦係合装置の係合、開放に伴って前輪側ではト
ルクが変動し、車両全体の駆動力が変化するために変速
ショックが生じるが、この前輪側のトルク変動分を後輪
側で吸収するように制御装置6によりモーター7の出力
を制御すると、車両全体の駆動力が一定になり、変速シ
ョックを低減することができる。 本発明に係るハイブリッド駆動車の駆動力制御装置の
他の実施例構成を示したのが第2図である。第2図に示
す例は、トルクセンサ15〜18を前後輪の各車軸に取り付
け、さらに、後輪を2つのモーター20、21により変速機
(又は減速機)19、21を介して左右それぞれ独立に駆動
するように構成したものである。 また、上記の実施例に対応する制御装置を複数のブロ
ックにより構成する例を示したのが第3図であり、同図
(a)は第1図の制御装置6に対応するものであり、同
図(b)は第2図の制御装置14に対応するものである。
後者のように後輪(右)制御装置34と後輪(左)制御装
置35に分けて構成すると、走行条件に応じて別々に左右
のトルクを設定し、2台のモーターにより左右の後輪を
それぞれ独立して制御することができる。このようにす
ると、エンジンにより駆動される前輪のトルクだけでな
く後輪の他方のトルクの変動をも吸収するように制御で
き、例えば旋回時における内輪のスリップを防止するこ
とができる。すなわち、旋回時は遠心力によって内輪側
の接地荷重が軽くなり、スリップしやすくなるが、この
ときのトルク変化を検出することによって外輪側のトル
クの肩代わりをさせると、スリップを防止しコーナリン
グ時の加速力を向上させることもできる。 次に、第4図を参照して制御装置による処理の流れを
説明する。 まず、前輪トルクと後輪トルクを読み込み、アクセル
開度により駆動力を設定してモーターの出力を制御す
る。このときの前輪トルクと後輪トルクの合計値を変速
前トルクとし、変速信号(変速ソレノイドの信号)をチ
ェックして変速開始か否かを調べる。NOの場合には上記
の処理を繰り返し行う。 しかし、YESの場合には、前輪トルクを読み込み、変
速前トルクと前輪トルクとの差を後輪トルクの目標値と
して設定してモーターの出力を制御する。この処理を変
速終了まで行う。この場合、変速終了は、変速開始から
所定の時間経過したか否かによって判断する。 なお、本発明は、上記の実施例に限定されるものでは
なく、種々の変形が可能である。例えば上記の実施例で
は、変速開始を変速信号によって、変速終了を変速開始
後の時間経過によって判断したが、エンジン駆動側のト
ルク、或いはその変化量(微分量)が一定値内にあるか
否かによって判断してもよい。また、前輪をエンジンに
より駆動する構成を示したが、逆にモーターにより駆動
するように構成してもよいし、2輪駆動車の駆動輪とな
る前輪又は後輪をエンジンと電動機によりハイブリッド
駆動するように構成してもよい。さらに、モーターの駆
動力検出手段としては、駆動電流等のモーター駆動指令
値を検出することによって代用してもよいし、エンジン
回転数の変化からエンジン駆動力の変化を検出し、モー
ターの駆動力の補正値を計算するように構成してもよ
い。 以上の説明から明らかなように、本発明によれば、前
輪又は後輪の一方をエンジンにより駆動し、他方を電動
機によりそれぞれ独立に駆動するハイブリッド構成と
し、変速期間中のエンジン駆動側トルクの変動を電動機
駆動側で補償するので、エンジン駆動側の自動変速機で
変速ショックの低減を配慮しなくても、電動機の出力制
御により変速ショックを低減できる。しかも、電動機駆
動側のトルクを制御するので、油圧回路や摩擦係合装置
を制御することなく制御装置の構成を簡単にすることが
でき、自動変速機側の負担の軽減を図り、自動変速機の
コストの低減、信頼性の向上を図ることができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hybrid drive vehicle in which one of a front wheel and a rear wheel is driven by an engine (an internal combustion engine or an external combustion engine) and the other is driven by an electric motor. The present invention relates to a driving force control device for a hybrid drive vehicle that changes the output of an electric motor to reduce a shift shock of a transmission. 2. Description of the Related Art An automatic transmission generally includes a well-known planetary gear mechanism group, a friction engagement device for fixing or releasing each element of the planetary gear mechanism group, and a hydraulic control device for selectively operating the friction engagement device. And an electronic control unit for controlling the hydraulic control unit. Then, the electronic control unit determines the shift speed according to various running states and controls the hydraulic control device, thereby fixing or releasing each element of the planetary gear mechanism group for selectively operating the friction engagement device. Shift control is performed automatically. Further, a torque converter is connected between the engine and the automatic transmission, and a lock-up clutch is provided therein. The power of the engine is transmitted directly to the transmission when the lock-up clutch is engaged, and is transmitted to the transmission via the torque converter when the lock-up clutch is released. Normally, the engagement and disengagement are controlled based on a shift pattern assumed for each section of the gear position. However, if the shift control is performed in a locked-up state during automatic shift traveling, a large shift shock occurs. There are cases. Various proposals have been made to eliminate such shift shocks. The present applicant has also separately proposed a method of eliminating a shift shock by determining a shift period and controlling a lock-up clutch (Japanese Patent Application No. 61-154332). This method detects the input rotation speed and the output rotation speed of the transmission, finds the ratio, and determines the shift start and shift end by judging this and the gear ratio before and after the shift. Disengage the up clutch, standby, sweep,
Alternatively, it is controlled to a slip state or the like. As described above, conventionally, in order to reduce shift shock of an automatic transmission, the engagement hydraulic pressure of a friction engagement element such as a clutch or a brake, which is a component of the automatic transmission or the like, is gradually increased or supplied or supplied with hydraulic pressure. This was done by properly adjusting the timing of the discharge speed. [Problems to be Solved by the Invention] By the way, the automatic transmission has a complicated control and structure because it performs shift control according to various traveling conditions. Furthermore, if it is attempted to reduce the shift shock by controlling the friction engagement device of the automatic transmission and the lock-up clutch as described above, the hydraulic control device becomes more and more complicated.
Refinement, higher cost, and lower reliability. An object of the present invention is to provide a driving force control device for a hybrid drive vehicle capable of reducing a torque fluctuation (shift shock) generated during a shift period of an automatic transmission. [Means for Solving the Problems] For this purpose, the present invention detects the driving force of an engine in a hybrid drive vehicle that uses an engine and an electric motor as drive sources equipped with an automatic transmission that performs shift control according to running conditions. Driving force detecting means, a driving force detecting means for detecting the driving force of the electric motor, and a vehicle driving force obtained from the driving force of each of the driving force detecting means during the gear shifting period by determining a shift period of the automatic transmission is constant. And a control means for controlling the output torque of the electric motor. [Operation and Effect] In the driving force control device for a hybrid drive vehicle of the present invention,
The driving force of the engine and the electric motor is detected and fed back to the electric motor such that the vehicle driving force obtained from each of the driving force detecting means during the shift period is constant, and the output of the electric motor is changed to change the driving force of the entire vehicle. Is controlled so as not to change, so that the shift shock can be reduced. Embodiment An embodiment will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a driving force control device for a hybrid drive vehicle according to an embodiment of the present invention, and FIG. 2 is a diagram showing another configuration of a drive force control device for a hybrid drive vehicle according to the present invention. FIG. 3 is a diagram showing a configuration example of a control device, and FIG. 4 is a diagram for explaining a flow of processing by the control device. In the figure, 1 and 13 are automatic transmissions, 2 and 8 are transmission mechanisms, 3
And 12 are transmission solenoids, 4, 10 and 15 to 18 are torque sensors, 5 and 11 are differential mechanisms, 6 and 14 are control devices, 7, 20 and 21
Denotes a motor, and 9, 19 and 22 denote transmissions. In FIG. 1, a front wheel is an automatic transmission 1
, And the rear wheels are driven by a motor 7 by a transmission 9.
(Or a speed reducer). Torque sensor 4
Is mounted between the transmission mechanism 2 and the differential mechanism 5 of the automatic transmission 1 on the front wheel drive side and detects torque on the front wheel side. The torque sensor 10 is provided with a transmission 9 on the rear wheel drive side. Is mounted between the speed change mechanism 8 and the differential mechanism 11 to detect the torque on the rear wheel side. The control device 6 controls the shift solenoid 3 of the automatic transmission 1 by judging the shift speed according to the running conditions, and controls the output of the motor 7 by inputting the detected torque of the front and rear wheels from the torque sensors 4 and 10. The shift start is determined from the control signal of the shift solenoid 3 and the shift period is determined. During the shift period,
The output of the motor 7 is controlled so that the total value of the detected torques of the front and rear wheels becomes the same as before the shift. That is, when the shift solenoid 3 is controlled by a signal from the control device 6 and the automatic transmission 1 starts shifting, the torque changes on the front wheels with the engagement and disengagement of the friction engagement device, thereby driving the entire vehicle. When the output of the motor 7 is controlled by the control device 6 so that the front wheel side torque fluctuation is absorbed by the rear wheel side, the driving force of the entire vehicle becomes constant. Shift shock can be reduced. FIG. 2 shows another embodiment of the driving force control apparatus for a hybrid vehicle according to the present invention. In the example shown in FIG. 2, the torque sensors 15 to 18 are attached to the axles of the front and rear wheels, and the rear wheels are independently driven by two motors 20 and 21 via transmissions (or reduction gears) 19 and 21 respectively. It is configured to be driven. FIG. 3 shows an example in which a control device corresponding to the above embodiment is configured by a plurality of blocks, and FIG. 3A corresponds to the control device 6 in FIG. FIG. 2B corresponds to the control device 14 shown in FIG.
If the rear wheel (right) control device 34 and the rear wheel (left) control device 35 are configured separately as in the latter case, the left and right torques are set separately according to the driving conditions, and the left and right rear wheels are controlled by two motors. Can be independently controlled. By doing so, it is possible to control so as to absorb not only the torque of the front wheel driven by the engine but also the fluctuation of the other torque of the rear wheel, and for example, the slip of the inner wheel during turning can be prevented. In other words, when turning, the centrifugal force reduces the ground contact load on the inner wheel side, making it easier to slip.However, by detecting the change in torque at this time, the torque on the outer wheel side can be used as a shoulder to prevent slip and prevent cornering during cornering. Acceleration can also be improved. Next, the flow of processing by the control device will be described with reference to FIG. First, the front wheel torque and the rear wheel torque are read, and the driving force is set based on the accelerator opening to control the output of the motor. The sum of the front wheel torque and the rear wheel torque at this time is defined as the pre-shift torque, and the shift signal (signal of the shift solenoid) is checked to determine whether or not the shift has started. If NO, the above processing is repeated. However, in the case of YES, the front wheel torque is read, and the difference between the pre-shift torque and the front wheel torque is set as the target value of the rear wheel torque to control the output of the motor. This process is performed until the shift is completed. In this case, the end of the shift is determined based on whether a predetermined time has elapsed from the start of the shift. It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the start of the shift is determined by the shift signal, and the end of the shift is determined by the lapse of time after the start of the shift, but whether the torque on the engine drive side or the change amount (differential amount) is within a certain value. The determination may be made based on the above. Further, although the configuration in which the front wheels are driven by the engine is shown, the configuration may be such that the front wheels are driven by a motor, or the front wheels or the rear wheels that are the driving wheels of the two-wheel drive vehicle are hybrid-driven by the engine and the electric motor. It may be configured as follows. Further, the motor driving force detecting means may be substituted by detecting a motor driving command value such as a driving current, or detecting a change in the engine driving force from a change in the engine speed, and detecting the driving force of the motor. May be configured to calculate the correction value. As is clear from the above description, according to the present invention, a hybrid configuration in which one of the front wheels or the rear wheels is driven by the engine and the other is independently driven by the electric motor, and the fluctuation of the engine drive side torque during the gear shift period. Is compensated for on the motor drive side, so that the shift shock can be reduced by controlling the output of the motor without considering reduction of the shift shock in the automatic transmission on the engine drive side. Moreover, since the torque on the motor drive side is controlled, the configuration of the control device can be simplified without controlling the hydraulic circuit and the friction engagement device, and the burden on the automatic transmission can be reduced, and the automatic transmission can be reduced. Cost and reliability can be improved.

【図面の簡単な説明】 第1図は本発明に係るハイブリッド駆動車の駆動力制御
装置の1実施例構成を示す図、第2図は本発明に係るハ
イブリッド駆動車の駆動力制御装置の他の実施例構成を
示す図、第3図は制御装置の構成例を示す図、第4図は
制御装置による処理の流れを説明するための図である。 1と13…自動変速機、2と8…変速機構、3と12…変速
ソレノイド、4、10と15〜18…トルクセンサ、5と11…
差動機構、6と14…制御装置、7、20と21…モーター、
9、19と22…変速機。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the configuration of a driving force control device for a hybrid driving vehicle according to an embodiment of the present invention, and FIG. FIG. 3 is a diagram showing a configuration example of a control device, and FIG. 4 is a diagram for explaining a flow of processing by the control device. 1 and 13: automatic transmission, 2 and 8: transmission mechanism, 3 and 12: transmission solenoid, 4, 10, and 15 to 18: torque sensor, 5 and 11:
Differential mechanism, 6 and 14 ... control device, 7, 20 and 21 ... motor,
9, 19 and 22 ... transmission.

Claims (1)

(57)【特許請求の範囲】 1.走行条件に応じ変速制御を行う自動変速機を備えた
エンジンと電動機とを駆動源とするハイブリッド駆動車
において、 エンジンの駆動力を検出する駆動力検出手段、 電動機の駆動力を検出する駆動力検出手段、 及び自動変速機の変速期間を判断し変速期間中の前記各
駆動力検出手段の駆動力から求められる車両駆動力が一
定となるように電動機の出力トルクを制御する制御手段 を備えたことを特徴とするハイブリッド駆動車の駆動力
制御装置。 2.制御手段は、変速ソレノイドの信号により変速開始
を検出し、変速開始後の所定時間を変速期間中と判断す
ることを特徴とする特許請求の範囲第1項記載のハイブ
リッド駆動車の駆動力制御装置。 3.制御手段は、エンジンの駆動力の変化量が一定値以
内にあるか否かにより変速開始及び変速期間中を判断す
ることを特徴とする特許請求の範囲第1項記載のハイブ
リッド駆動車の駆動力制御装置。 4.制御手段は、エンジンの駆動力が所定値以内にある
か否かにより変速開始及び変速期間中を判断することを
特徴とする特許請求の範囲第1項記載のハイブリッド駆
動車の駆動力制御装置。
(57) [Claims] In a hybrid drive vehicle that uses an engine and an electric motor as drive sources equipped with an automatic transmission that performs shift control according to driving conditions, driving force detection means for detecting the driving force of the engine, and driving force detection for detecting the driving force of the electric motor And control means for judging the shift period of the automatic transmission and controlling the output torque of the electric motor such that the vehicle driving force obtained from the driving force of each of the driving force detecting means during the shifting period is constant. A driving force control device for a hybrid drive vehicle characterized by the above-mentioned. 2. 2. The driving force control apparatus for a hybrid drive vehicle according to claim 1, wherein the control means detects a shift start based on a signal of a shift solenoid, and determines that a predetermined time after the start of the shift is during a shift period. . 3. 2. The driving force of a hybrid drive vehicle according to claim 1, wherein the control means determines whether the shift is started or during the shift period based on whether or not the amount of change in the driving force of the engine is within a predetermined value. Control device. 4. The driving force control apparatus for a hybrid drive vehicle according to claim 1, wherein the control means determines whether the shift is started or during the shift period based on whether the driving force of the engine is within a predetermined value.
JP62035114A 1987-02-18 1987-02-18 Driving force control device for hybrid drive vehicle Expired - Lifetime JP2664674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035114A JP2664674B2 (en) 1987-02-18 1987-02-18 Driving force control device for hybrid drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035114A JP2664674B2 (en) 1987-02-18 1987-02-18 Driving force control device for hybrid drive vehicle

Publications (2)

Publication Number Publication Date
JPS63203430A JPS63203430A (en) 1988-08-23
JP2664674B2 true JP2664674B2 (en) 1997-10-15

Family

ID=12432904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035114A Expired - Lifetime JP2664674B2 (en) 1987-02-18 1987-02-18 Driving force control device for hybrid drive vehicle

Country Status (1)

Country Link
JP (1) JP2664674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877184B2 (en) 2006-06-28 2011-01-25 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for hybrid vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670626B2 (en) * 1988-12-28 1997-10-29 株式会社豊田中央研究所 Vehicle attitude control device
DE19758782B4 (en) * 1996-05-02 2006-06-14 Toyota Jidosha K.K., Toyota Hybrid vehicle with IC engine and battery-operated electric motor-generator - detects braking of vehicle in freewheeling mode of IC engine to prevent increase in velocity by regenerative braking of electric motor-generator
JP3861321B2 (en) * 1996-05-02 2006-12-20 トヨタ自動車株式会社 Hybrid car
JP3255012B2 (en) * 1996-05-02 2002-02-12 トヨタ自動車株式会社 Hybrid car
ES2135318B1 (en) * 1997-01-16 2000-05-01 Larraya Rufino Lumbier HYBRID AUTOMOBILE VEHICLE OF ELECTRIC SUPPLY AND COMBUSTION.
JP3644207B2 (en) * 1997-08-19 2005-04-27 日産自動車株式会社 Shift control device for hybrid vehicle
JP3683405B2 (en) * 1998-02-24 2005-08-17 本田技研工業株式会社 Vehicle start assist device
JP3991538B2 (en) * 1999-12-02 2007-10-17 トヨタ自動車株式会社 Vehicle control device
JP3638876B2 (en) * 2001-03-01 2005-04-13 株式会社日立製作所 Vehicle drive device and vehicle
JP4293275B2 (en) * 2006-09-12 2009-07-08 トヨタ自動車株式会社 Vehicle driving force control device
KR20110005931A (en) * 2009-07-13 2011-01-20 현대자동차주식회사 Method for reducing gear shifting shock of hybrid electric vehicle
JP5738734B2 (en) * 2011-10-11 2015-06-24 トヨタ自動車株式会社 Vehicle driving force control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145702A (en) * 1980-03-12 1981-11-12 Daihatsu Motor Co Ltd Controller for hybrid vehicle
JPS61258936A (en) * 1985-05-13 1986-11-17 Nissan Motor Co Ltd Engine rotation controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877184B2 (en) 2006-06-28 2011-01-25 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for hybrid vehicle

Also Published As

Publication number Publication date
JPS63203430A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
KR100214361B1 (en) Touch point identification for automatic clutch controller
US6692402B2 (en) Drive control apparatus for oil pump
US7469758B2 (en) Electric vehicle drive control device and control method therefor
US5117931A (en) Vehicle power transmission apparatus having an engine starting function
JP2664674B2 (en) Driving force control device for hybrid drive vehicle
JP3227905B2 (en) Electric motor driven vehicle
US5588515A (en) Method of and apparatus for speed change control
EP0237147B1 (en) Four wheel drive vehicle slippage control device and method limiting center differential action during transmission shifting
JPH0761779B2 (en) Front and rear wheel drive system
US5759131A (en) Control of an automatic clutch
JP2699417B2 (en) Abnormality determination device for rotational speed sensor in four-wheel drive vehicle
JPH02279431A (en) Power train controller and method thereof
JP2577902B2 (en) Fail-safe device for four-wheel drive vehicle
JP3642668B2 (en) Downshift control device for automatic transmission
JP2844463B2 (en) Control device for braking of continuously variable transmission for vehicles
JPS62255247A (en) Automatic clutch control device for vehicle
JPH01297327A (en) Speed change gear for vehicle
JPH06261417A (en) Driving power controller for electric automobile
EP1500547A1 (en) Device and method for controlling distribution of drive force of four-wheel drive car
JP3622355B2 (en) Control device for automatic transmission
JPH069877Y2 (en) Traction control device for automobile
JP3523375B2 (en) Control device for automatic transmission for vehicles
JPH0556426B2 (en)
KR20060010974A (en) Transmission controlling method of four wheel drive type hybrid electric vehicle
JPH02200539A (en) Control device for vehicle with automatic transmission

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term