JPS63203430A - Driving force controller for hybrid driving car - Google Patents
Driving force controller for hybrid driving carInfo
- Publication number
- JPS63203430A JPS63203430A JP62035114A JP3511487A JPS63203430A JP S63203430 A JPS63203430 A JP S63203430A JP 62035114 A JP62035114 A JP 62035114A JP 3511487 A JP3511487 A JP 3511487A JP S63203430 A JPS63203430 A JP S63203430A
- Authority
- JP
- Japan
- Prior art keywords
- shift
- torque
- control device
- engine
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 35
- 230000008859 change Effects 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 abstract description 15
- 230000035939 shock Effects 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/52—Driving a plurality of drive axles, e.g. four-wheel drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/19—Improvement of gear change, e.g. by synchronisation or smoothing gear shift
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、前輪又は後輪の一方をエンジン(内燃機関又
は外燃機関)により駆動し、他方を電動機により駆動す
るハイブリッド駆動車において、自動変速機の変速ショ
ックを低減するために電動機の出力を変化させるハイブ
リッド駆動車の駆動力制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is an automatic hybrid drive vehicle in which one of the front wheels or the rear wheels is driven by an engine (internal combustion engine or external combustion engine) and the other is driven by an electric motor. The present invention relates to a driving force control device for a hybrid drive vehicle that changes the output of an electric motor to reduce shift shock of a transmission.
自動変速機は、一般に周知の遊星歯車機構群、この遊星
歯車機構群の各要素を固定、或いは開放させるための摩
擦係合装置、摩擦係合装置を選択作動させる油圧制御装
置、油圧制御装置を制御する電子制御装置からなってい
る。そして、電子制御装置が各種の走行状態に応じて変
速段を判断して油圧制御装置を制御することによって、
摩擦係合装置を選択作動させ遊星歯車機構群の各要素を
固定、或いは開放させて自動的に変速制御を行っている
。An automatic transmission generally includes a well-known planetary gear mechanism group, a friction engagement device for fixing or releasing each element of this planetary gear mechanism group, a hydraulic control device for selectively operating the friction engagement device, and a hydraulic control device. It consists of an electronic control device. Then, the electronic control device determines the gear position according to various driving conditions and controls the hydraulic control device.
The frictional engagement device is selectively operated to fix or release each element of the planetary gear mechanism group, thereby automatically controlling the speed change.
また、エンジンと自動変速機との間にはトルクコンバー
タが連結され、この中にロックアツプクラッチが配設さ
れている。エンジンの動力は、このロックアツプクラッ
チが係合すると直接変速機に伝達され、開放するとトル
クコンバータを介して変速機に伝達される0通常、この
保合と開放は、ギヤ位置の区分毎に設定された変速パタ
ーンに基づいて制御されるが、自動変速走行において、
ロックアツプ状態のまま変速制御が行われると、大きな
変速ショックが生じる場合がある。このような変速ショ
ックをなくすために、これまでにも様々な提案がなされ
ている。Further, a torque converter is connected between the engine and the automatic transmission, and a lock-up clutch is disposed within the torque converter. Engine power is transmitted directly to the transmission when this lock-up clutch is engaged, and transmitted to the transmission via the torque converter when it is disengaged.Normally, this engagement and disengagement are set for each gear position category. However, in automatic transmission driving,
If shift control is performed while the gear is locked up, a large shift shock may occur. Various proposals have been made to eliminate such shift shock.
本件出願人も変速期間を判断してロックアツプクラッチ
を制御することによって、変速ショックをなくす方式を
別途提案(特願昭61−154332号)している。こ
の方式は、変速機の入力回転数と出力回転数を検出して
その比を求め、これと変速前後のギヤ比とを比較するこ
とによって変速開始及び変速終了を判断し、変速中には
ロックアツプクラッチを開放状態、待機状態、スィーブ
状態、或いはスリップ状態等に制御するものである。The applicant of the present invention has also separately proposed a system (Japanese Patent Application No. 154332/1982) in which the shift shock is eliminated by determining the shift period and controlling the lock-up clutch. This method detects the input rotation speed and output rotation speed of the transmission, calculates the ratio, and compares this with the gear ratio before and after the shift to determine the start and end of the shift, and locks the gear during the shift. This is to control the up clutch into an open state, a standby state, a sweep state, a slip state, etc.
上記のように、従来は、自動変速機の変速ショック低減
のため自動変速機等の構成要素であるクラッチやブレー
キ等の摩擦係合要素の係合油圧を緩やかに上昇させたり
、油圧の供給又は排出速度のタイミングを適切に調整す
ることにより行なわれていた。As mentioned above, in the past, in order to reduce the shift shock of automatic transmissions, the engagement hydraulic pressure of frictional engagement elements such as clutches and brakes, which are components of automatic transmissions, was gradually increased, or the hydraulic pressure was supplied or This was done by appropriately adjusting the timing of the discharge speed.
ところで、自動変速装置は、各種の走行条件に応じた変
速制御を行うため、制御や構造が複雑化している。さら
にその上に上記のような自動変速機の摩擦係合装置やロ
ックアツプクラッチの制御による変速ショックの低減制
御を行おうとすると、油圧制御装置はますます複雑、精
密化し、コスト高となり、信頼性も低下する。Incidentally, since automatic transmission devices perform speed change control according to various driving conditions, their control and structure are complicated. Furthermore, when attempting to reduce shift shock by controlling the frictional engagement device and lock-up clutch of automatic transmissions as described above, the hydraulic control device becomes increasingly complex and precise, resulting in high cost and reliability. also decreases.
本発明は、上記の問題点を解決するものであって、自動
変速機の摩擦係合装置やロックアンプクラッチを制御す
ることなく、変速ショックを低減することが可能なハイ
ブリッド駆動車の駆動力制御装置を提供することを目的
とする。The present invention solves the above-mentioned problems, and provides driving force control for a hybrid drive vehicle that can reduce shift shock without controlling the friction engagement device or lock amplifier clutch of an automatic transmission. The purpose is to provide equipment.
そのために本発明のハイブリッド駆動車の駆動力制御装
置は、前輪又は後輪の一方をエンジンにより変速機を介
して駆動し、他方を電動機により駆動するハイブリッド
駆動車において、エンジン駆動側の出力トルクを検出す
るトルクセンサ、電動JR駆動側の出力トルクを検出す
るトルクセンサ、及び変速期間を判断し変速期間中のエ
ンジン駆動側の出力トルクと電動機駆動側の出力トルク
との合計値が変速開始前と差がないように電動機駆動側
の出力トルクを制御する制御手段を備えたことを特徴と
するものである。To this end, the driving force control device for a hybrid drive vehicle of the present invention controls the output torque of the engine drive side in a hybrid drive vehicle in which one of the front wheels or the rear wheels is driven by the engine via a transmission, and the other is driven by an electric motor. A torque sensor detects, a torque sensor detects the output torque of the electric JR drive side, and a torque sensor detects the output torque of the electric JR drive side, and determines the shift period and determines whether the total value of the output torque of the engine drive side and the output torque of the electric motor drive side during the shift period is the same as before the shift start. The present invention is characterized in that it includes a control means for controlling the output torque on the motor drive side so that there is no difference.
本発明のハイブリッド駆動車の駆動力制御装置では、前
輪及び後輪のトルクを検出して変速期間中に検出したト
ルクを電動機の出力にフィードバックして、電動機の出
力を変化させ、車両全体の駆動力を変化しないように制
御するので、変速ショックを低減することができる。The driving force control device for a hybrid drive vehicle of the present invention detects the torque of the front wheels and the rear wheels, and feeds back the torque detected during the shift period to the output of the electric motor to change the output of the electric motor, thereby driving the entire vehicle. Since the force is controlled so as not to change, shift shock can be reduced.
以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.
第1図は本発明に係るハイブリッド駆動車の駆動力制御
装置の1実施例構成を示す図、第2図は本発明に係るハ
イブリッド駆動車の駆動力制御装置の他の実施例構成を
示す図、第3図は制御装置の構成例を示す図、第4図は
制御装置による処理の流れを説明するための図である。FIG. 1 is a diagram showing the configuration of one embodiment of the driving force control device for a hybrid drive vehicle according to the present invention, and FIG. 2 is a diagram showing the configuration of another embodiment of the driving force control device for a hybrid drive vehicle according to the present invention. , FIG. 3 is a diagram showing an example of the configuration of the control device, and FIG. 4 is a diagram for explaining the flow of processing by the control device.
図中、1と13は自動変速機、2と8は変速機構、3と
12は変速ソレノイド、4.10と15〜18はトルク
センサ、5と11は差動機構、6と14は制御装置、7
.20と21はモーター、9.19と22は変速機を示
す。In the figure, 1 and 13 are automatic transmissions, 2 and 8 are transmission mechanisms, 3 and 12 are transmission solenoids, 4.10 and 15 to 18 are torque sensors, 5 and 11 are differential mechanisms, and 6 and 14 are control devices. ,7
.. 20 and 21 are motors, and 9.19 and 22 are transmissions.
第1図において、前輪はエンジンにより自動変速機1を
介して駆動され、後輪はモーター7により変速段9 (
又は減速機)を介して駆動される。In FIG. 1, the front wheels are driven by an engine through an automatic transmission 1, and the rear wheels are driven by a motor 7 at a gear stage 9 (
or speed reducer).
トルクセンサ4は、前輪駆動側の自動変速機1の変速機
構2と差動機構5との間に取り付けられて前輪側のトル
クを検出するものであり、トルクセンサ10は、後輪駆
動側の変速機9の変速機構8と差動機構11との間に取
り付けられて後輪側のトルクを検出するものである。制
御装置6は、走行条件に応じて変速段を判断して自動変
速m1の変速ソレノイド3を制御すると共に、トルクセ
ンサ4.10より前後輪の検出トルクを入力してモータ
ー7の出力を制御するものであり、変速ソレノイド3の
制御信号から変速開始を判断すると共に変速期間中を判
断し、変速期間中は、前後輪の検出トルクの合計値が変
速前と同じになるようにモーター7の出力を制御する。The torque sensor 4 is installed between the transmission mechanism 2 and the differential mechanism 5 of the automatic transmission 1 on the front wheel drive side to detect the torque on the front wheel side, and the torque sensor 10 is installed on the front wheel drive side. It is installed between the transmission mechanism 8 and the differential mechanism 11 of the transmission 9 to detect the torque on the rear wheel side. The control device 6 determines the gear position according to the driving conditions and controls the shift solenoid 3 of the automatic shift m1, and also controls the output of the motor 7 by inputting the detected torque of the front and rear wheels from the torque sensor 4.10. The control signal of the shift solenoid 3 is used to determine the start of shifting and also determines whether the shifting period is in progress. During the shifting period, the output of the motor 7 is adjusted so that the total value of detected torque of the front and rear wheels is the same as before the shifting. control.
すなわち、制御装置6からの信号によって変速ソレノイ
ド3が制御され、自動変速ifにおいて変速が開始する
と、Y擦係合装置の係合、開放に伴って前輪側ではトル
クが変動し、車両全体の駆動力が変化するために変速シ
ョックが生じるが、この前輪側のトルク変動分を後輪側
で吸収するように制御装置6によりモーター7の出力を
制御すると、車両全体の駆動力が一定になり、変速ショ
ックを低減することができる。That is, when the shift solenoid 3 is controlled by a signal from the control device 6 and the shift starts in automatic shift if, the torque changes on the front wheel side as the Y friction engagement device engages and disengages, and the drive of the entire vehicle is affected. A shift shock occurs due to the change in force, but if the output of the motor 7 is controlled by the control device 6 so that the torque fluctuation on the front wheel side is absorbed by the rear wheel side, the driving force of the entire vehicle becomes constant. Shift shock can be reduced.
本発明に係るハイブリッド駆動車の駆動力制御装置の他
の実施例構成を示したのが第2図である。FIG. 2 shows another embodiment of the configuration of the driving force control device for a hybrid drive vehicle according to the present invention.
第2図に示す例は、トルクセンサ15〜18を前後輪の
各車軸に取り付け、さらに、後輪を2つのモーター20
.21により変速機(又は減速機)19.21を介して
左右それぞれ独立に駆動するように構成したものである
。In the example shown in FIG. 2, torque sensors 15 to 18 are attached to each axle of the front and rear wheels, and two motors 20
.. 21, the left and right sides are independently driven via transmissions (or reduction gears) 19 and 21.
また、上記の実施例に対応する制御装置を複数のブロツ
クにより構成する例を示したのが第3図であり、同図(
a)は第1図の制御装置6に対応するものであり、同図
(blは第2図の制御装置14に対応するものである。Further, FIG. 3 shows an example in which the control device corresponding to the above embodiment is configured by a plurality of blocks.
A) corresponds to the control device 6 in FIG. 1, and bl corresponds to the control device 14 in FIG. 2.
tlt者のように後輪(右)制御装置34と後輪(左
)制御装置35に分けて構成すると、走行条件に応じて
別々に左右のトルクを設定し、2台のモーターにより左
右の後輪をそれぞれ独立して制御することができる。こ
のようにすると、エンジンにより駆動される前輪のトル
クだけでなく後輪の他方のトルクの変動をも吸収するよ
うに制御でき、例えば旋回時における内輪のスリップを
防止することができる。すなわち、旋回時は遠心力によ
って内輪側の接地荷重が軽くなり、スリップしやすくな
るが、このときのトルク変化を検出することによって外
輪側のトルクの肩代わりをさせると、スリップを防止し
コーナリング時の加速力を向上させることもできる。If the configuration is divided into a rear wheel (right) control device 34 and a rear wheel (left) control device 35 like a TLT person, the left and right torques can be set separately according to the driving conditions, and the two motors will control the left and right rear wheels. Each wheel can be controlled independently. In this way, it is possible to control the vehicle so as to absorb not only the torque of the front wheels driven by the engine but also the fluctuations in the torque of the other rear wheel, and for example, it is possible to prevent the inner wheels from slipping when turning. In other words, when cornering, the ground load on the inner wheel becomes lighter due to centrifugal force, making it more likely to slip. However, by detecting the torque change at this time and taking over the torque on the outer wheel, slips can be prevented and the impact during cornering can be reduced. It can also improve acceleration.
次に、第4図を参照して制御装置による処理の流れを説
明する。Next, the flow of processing by the control device will be explained with reference to FIG.
まず、前輪トルクと後輪トルクを読み込み、アクセル開
度により駆動力を設定してモーターの出力を制御する。First, the front wheel torque and rear wheel torque are read, and the driving force is set by accelerator opening to control the motor output.
このときの前輪トルクと後輪トルクの合計値を変速前ト
ルクとし、変速信号(変速ソレノイドの信号)をチェッ
クして変速開始か否かを調べる。Noの場合には上記の
処理を操り返し行う。The total value of the front wheel torque and rear wheel torque at this time is taken as the pre-shift torque, and the shift signal (signal of the shift solenoid) is checked to determine whether or not the shift is to be started. If No, the above process is repeated.
しかし、YESの場合には、前輪トルクを読み込み、変
速前トルクと前輪トルクとの差を後輪トルクの目標値と
して設定してモーターの出力を制御する。この処理を変
速終了まで行う。この場合、変速終了は、変速開始から
所定の時間経過したか否かによって判断する。However, in the case of YES, the front wheel torque is read, and the difference between the pre-shift torque and the front wheel torque is set as the target value of the rear wheel torque, and the output of the motor is controlled. This process is continued until the shift is completed. In this case, the end of the shift is determined based on whether a predetermined period of time has elapsed since the start of the shift.
なお、本発明は、上記の実施例に限定されるものではな
く、種々の変形が可能である。例えば上記の実施例では
、変速開始を変速信号によって、変速終了を変速開始後
の時間経過によって判断したが、エンジン駆動側のトル
ク、或いはその変化量(微分■)が一定値内にあるか否
かによって判断してもよい。また、前輪をエンジンによ
り駆動する構成を示したが、逆にモーターにより駆動す
るように構成してもよい、さらに、モーター駆動側のト
ルクセンサとしては、モーター駆動電流を検出すること
によって代用してもよい。Note that the present invention is not limited to the above embodiments, and various modifications are possible. For example, in the above embodiment, the start of a shift was determined by the shift signal, and the end of a shift was determined by the elapsed time after the start of the shift. You can make a judgment based on the In addition, although the configuration in which the front wheels are driven by the engine is shown, it may be configured to be driven by the motor conversely.Furthermore, the torque sensor on the motor drive side may be substituted by detecting the motor drive current. Good too.
以上の説明から明らかなように、本発明によれば、前輪
又は後輪の一方をエンジンにより駆動し、他方を電動機
によりそれぞれ独立に駆動するハイブリッド構成とし、
変速期間中のエンジン駆動側トルクの変動を電動機駆動
側で補償するので、エンジン駆動側の自動変速機で変速
ショックの低減を配慮しなくても、電動機の出力制御に
より変速ショックを低減できる。しかも、電動i駆動側
のトルクを制御するので、油圧回路や摩擦係合装置を制
御することなく制御装置の構成を簡単にすることができ
、自動変速機側の負担の軽減を図り、自動変速機のコス
トの低減、信頼性の向上を図ることができる。As is clear from the above description, according to the present invention, a hybrid configuration is adopted in which one of the front wheels or the rear wheels is driven by an engine, and the other is independently driven by an electric motor,
Since fluctuations in torque on the engine drive side during the shift period are compensated for on the motor drive side, shift shock can be reduced by controlling the output of the electric motor, without having to consider reducing shift shock in the automatic transmission on the engine drive side. Furthermore, since the torque on the electric i-drive side is controlled, the configuration of the control device can be simplified without controlling the hydraulic circuit or frictional engagement device, reducing the burden on the automatic transmission side and reducing the burden on the automatic transmission side. It is possible to reduce machine costs and improve reliability.
第1図は本発明に係るハイブリッド駆動車の駆動力制御
装置の1実施例構成を示す図、第2図は本発明に係るハ
イブリッド駆動車の駆動力制御装置の他の実施例構成を
示す図、第3図は制御装置の構成例を示す図、第4図は
制御装置による処理の流れを説明するための図である。
■と13・・・自動変速機、2と8・・・変速機構、3
と12・・・変速ソレノイド、4.10と15〜18・
・・トルクセンサ、5と11・・・差動機構、6と14
・・・制御装置、7.20と21・・・モーター、9.
19と22・・・変速機。
出 願 人 アイシンワーナー株式会社代理人弁理士
阿 部 龍 吉(外2名)第3図FIG. 1 is a diagram showing the configuration of one embodiment of the driving force control device for a hybrid drive vehicle according to the present invention, and FIG. 2 is a diagram showing the configuration of another embodiment of the driving force control device for a hybrid drive vehicle according to the present invention. , FIG. 3 is a diagram showing an example of the configuration of the control device, and FIG. 4 is a diagram for explaining the flow of processing by the control device. ■ and 13... automatic transmission, 2 and 8... transmission mechanism, 3
and 12...speed change solenoid, 4.10 and 15-18.
...Torque sensor, 5 and 11...Differential mechanism, 6 and 14
...Control device, 7.20 and 21...Motor, 9.
19 and 22...transmission. Applicant: Patent attorney representing Aisin Warner Co., Ltd.
Ryukichi Abe (2 others) Figure 3
Claims (4)
して駆動し、他方を電動機により駆動するハイブリッド
駆動車において、エンジン駆動側の出力トルクを検出す
るトルクセンサ、電動機駆動側の出力トルクを検出する
トルクセンサ、及び変速期間を判断し変速期間中のエン
ジン駆動側の出力トルクと電動機駆動側の出力トルクと
の合計値が変速開始前と差がないように電動機駆動側の
出力トルクを制御する制御手段を備えたことを特徴とす
るハイブリッド駆動車の駆動力制御装置。(1) In a hybrid drive vehicle in which one of the front wheels or rear wheels is driven by the engine via a transmission and the other by an electric motor, a torque sensor detects the output torque of the engine drive side, and a torque sensor detects the output torque of the electric motor drive side. It determines the torque sensor to detect and the shift period, and controls the output torque of the motor drive side so that the total value of the output torque of the engine drive side and the output torque of the motor drive side during the shift period is the same as before the start of the shift. What is claimed is: 1. A driving force control device for a hybrid drive vehicle, comprising a control means for controlling the driving force of a hybrid drive vehicle.
始を検出し、変速開始後の所定時間を変速期間中と判断
することを特徴とする特許請求の範囲第1項記載のハイ
ブリッド駆動車の駆動力制御装置。(2) Driving the hybrid drive vehicle according to claim 1, wherein the control means detects the start of the shift based on a signal from the shift solenoid, and determines a predetermined time after the start of the shift to be during the shift period. Force control device.
量が一定値内にあるか否かにより変速開始及び変速期間
中を判断することを特徴とする特許請求の範囲第1項記
載のハイブリッド駆動車の駆動力制御装置。(3) The hybrid according to claim 1, wherein the control means determines the start of the shift and the duration of the shift depending on whether the amount of change in the output torque on the engine drive side is within a certain value. Driving force control device for driving vehicles.
値以内にあるか否かにより変速開始及び変速期間中を判
断することを特徴とする特許請求の範囲第1項記載のハ
イブリッド駆動車の駆動力制御装置。(4) The hybrid drive vehicle according to claim 1, wherein the control means determines the start of the shift and the duration of the shift depending on whether the output torque on the engine drive side is within a predetermined value. Driving force control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62035114A JP2664674B2 (en) | 1987-02-18 | 1987-02-18 | Driving force control device for hybrid drive vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62035114A JP2664674B2 (en) | 1987-02-18 | 1987-02-18 | Driving force control device for hybrid drive vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63203430A true JPS63203430A (en) | 1988-08-23 |
JP2664674B2 JP2664674B2 (en) | 1997-10-15 |
Family
ID=12432904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62035114A Expired - Lifetime JP2664674B2 (en) | 1987-02-18 | 1987-02-18 | Driving force control device for hybrid drive vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2664674B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175466A (en) * | 1988-12-28 | 1990-07-06 | Toyota Central Res & Dev Lab Inc | Posture control device of vehicle |
JPH09298802A (en) * | 1996-05-02 | 1997-11-18 | Toyota Motor Corp | Hybrid vehicle |
JPH1169509A (en) * | 1997-08-19 | 1999-03-09 | Nissan Motor Co Ltd | Transmission controlling device for hybrid vehicle |
JPH11240351A (en) * | 1998-02-24 | 1999-09-07 | Honda Motor Co Ltd | Vehicular starting assist device |
ES2135318A1 (en) * | 1997-01-16 | 1999-10-16 | Larraya Rufino Lumbier | Hybrid motor vehicle powered electrically and by combustion |
US6059064A (en) * | 1996-05-02 | 2000-05-09 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
EP1236603A3 (en) * | 2001-03-01 | 2004-08-18 | Hitachi, Ltd. | A driving apparatus for controlling gear shifting in a hybrid vehicle |
DE19758789B4 (en) * | 1996-05-02 | 2006-07-06 | Toyota Jidosha K.K., Toyota | Control device for a hybrid vehicle |
EP2068042A1 (en) * | 2006-09-12 | 2009-06-10 | Toyota Jidosha Kabushiki Kaisha | Driving force control device for vehicle |
JP2011020664A (en) * | 2009-07-13 | 2011-02-03 | Hyundai Motor Co Ltd | Method for reducing shift impact of hybrid vehicle |
JP2013085375A (en) * | 2011-10-11 | 2013-05-09 | Toyota Motor Corp | Driving force controller of vehicle |
DE10059696B4 (en) * | 1999-12-02 | 2017-11-23 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system and vehicle control method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4197013B2 (en) | 2006-06-28 | 2008-12-17 | トヨタ自動車株式会社 | Control device for hybrid vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56145702A (en) * | 1980-03-12 | 1981-11-12 | Daihatsu Motor Co Ltd | Controller for hybrid vehicle |
JPS61258936A (en) * | 1985-05-13 | 1986-11-17 | Nissan Motor Co Ltd | Engine rotation controller |
-
1987
- 1987-02-18 JP JP62035114A patent/JP2664674B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56145702A (en) * | 1980-03-12 | 1981-11-12 | Daihatsu Motor Co Ltd | Controller for hybrid vehicle |
JPS61258936A (en) * | 1985-05-13 | 1986-11-17 | Nissan Motor Co Ltd | Engine rotation controller |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175466A (en) * | 1988-12-28 | 1990-07-06 | Toyota Central Res & Dev Lab Inc | Posture control device of vehicle |
JPH09298802A (en) * | 1996-05-02 | 1997-11-18 | Toyota Motor Corp | Hybrid vehicle |
US5984034A (en) * | 1996-05-02 | 1999-11-16 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
US6059064A (en) * | 1996-05-02 | 2000-05-09 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
US6334498B1 (en) | 1996-05-02 | 2002-01-01 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
DE19758789B4 (en) * | 1996-05-02 | 2006-07-06 | Toyota Jidosha K.K., Toyota | Control device for a hybrid vehicle |
US7178617B2 (en) | 1996-05-02 | 2007-02-20 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
ES2135318A1 (en) * | 1997-01-16 | 1999-10-16 | Larraya Rufino Lumbier | Hybrid motor vehicle powered electrically and by combustion |
JPH1169509A (en) * | 1997-08-19 | 1999-03-09 | Nissan Motor Co Ltd | Transmission controlling device for hybrid vehicle |
JPH11240351A (en) * | 1998-02-24 | 1999-09-07 | Honda Motor Co Ltd | Vehicular starting assist device |
DE10059696B4 (en) * | 1999-12-02 | 2017-11-23 | Toyota Jidosha Kabushiki Kaisha | Vehicle control system and vehicle control method |
EP1236603A3 (en) * | 2001-03-01 | 2004-08-18 | Hitachi, Ltd. | A driving apparatus for controlling gear shifting in a hybrid vehicle |
EP2068042A4 (en) * | 2006-09-12 | 2011-03-23 | Toyota Motor Co Ltd | Driving force control device for vehicle |
US8246510B2 (en) | 2006-09-12 | 2012-08-21 | Toyota Jidosha Kabushiki Kaisha | Vehicle drive force control apparatus |
EP2068042A1 (en) * | 2006-09-12 | 2009-06-10 | Toyota Jidosha Kabushiki Kaisha | Driving force control device for vehicle |
JP2011020664A (en) * | 2009-07-13 | 2011-02-03 | Hyundai Motor Co Ltd | Method for reducing shift impact of hybrid vehicle |
JP2013085375A (en) * | 2011-10-11 | 2013-05-09 | Toyota Motor Corp | Driving force controller of vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2664674B2 (en) | 1997-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100214361B1 (en) | Touch point identification for automatic clutch controller | |
US6692402B2 (en) | Drive control apparatus for oil pump | |
US5259260A (en) | Multiple step transmission | |
JPH07158667A (en) | Equipment and method of determining contact point of clutch | |
JPH09210092A (en) | Slide mode control method of automatic clutch and device thereof | |
EP0245069A1 (en) | Device for controlling 4wd vehicle central differential restriction device according to front and rear wheels rotational speed difference, and method of operation thereof | |
JPS63203430A (en) | Driving force controller for hybrid driving car | |
JPH0761779B2 (en) | Front and rear wheel drive system | |
EP0237147A1 (en) | Four wheel drive vehicle slippage control device and method limiting center differential action during transmission shifting | |
JPH02182541A (en) | Controlling method for four-wheel drive device | |
US4947325A (en) | Diagnostic system for rotational speed sensors in drive train of four wheels drive vehicle having central differential device | |
US5954778A (en) | Four-wheel drive transfer case controller with torque decrement strategy | |
JP2577902B2 (en) | Fail-safe device for four-wheel drive vehicle | |
JP2844463B2 (en) | Control device for braking of continuously variable transmission for vehicles | |
US6719663B2 (en) | Vehicular automatic transmission apparatus | |
JP3446219B2 (en) | Throttle control device for internal combustion engine for vehicles | |
US5820516A (en) | Automatic transmission control system | |
JP6421210B2 (en) | Torque distribution control device for four-wheel drive vehicle | |
JP3523375B2 (en) | Control device for automatic transmission for vehicles | |
JPH01105052A (en) | Control device for electric motor transmission | |
JP2546348B2 (en) | Front and rear wheel differential control device for four-wheel drive vehicle | |
JP2832475B2 (en) | Transmission control device for automatic transmission | |
JP2850452B2 (en) | Automatic transmission for vehicles | |
JP2796878B2 (en) | Vehicle driving force control device | |
JP2550682B2 (en) | Front and rear wheel differential control device for four-wheel drive vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |