JP2638461B2 - Heat dissipation material - Google Patents
Heat dissipation materialInfo
- Publication number
- JP2638461B2 JP2638461B2 JP33815193A JP33815193A JP2638461B2 JP 2638461 B2 JP2638461 B2 JP 2638461B2 JP 33815193 A JP33815193 A JP 33815193A JP 33815193 A JP33815193 A JP 33815193A JP 2638461 B2 JP2638461 B2 JP 2638461B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat radiating
- face
- powder
- radiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2245/00—Coatings; Surface treatments
- F28F2245/06—Coatings; Surface treatments having particular radiating, reflecting or absorbing features, e.g. for improving heat transfer by radiation
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば電子部品等、熱
を発生する部品の放熱を行うために用いられる放熱材に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating material used for dissipating heat from components that generate heat, such as electronic components.
【0002】[0002]
【従来の技術】近年、電子機器等に使用されているIC
等の電子部品は、その集積度の向上及び動作の高速化に
より消費電力が増大すると共に発熱量も増大し、その放
熱対策が大きな問題となっている。2. Description of the Related Art In recent years, ICs used in electronic devices and the like have been developed.
For electronic components such as these, the power consumption increases due to the improvement in the degree of integration and the speed of operation, and the amount of heat generation also increases.
【0003】即ち、こういった電子部品は過熱される
と、電子部品の特性が変動して電子機器の誤動作の原因
となったり、電子部品自体が故障してしまうことがあ
る。そこで従来より、電子機器等においては、その使用
中に電子部品が過熱することを防止するために放熱板等
が使用されている。そして放熱板は、熱を発生する電子
部品に接触させる等して設置され、電子部品が発生する
熱を放熱板に伝導させることにより、電子部品の放熱を
助けるものであり、熱伝導率の大きい材料により構成さ
れていた。また、放熱板に伝導された熱は、放熱板の表
面と外部との温度差に従って放熱板の表面から放熱され
る。[0003] That is, when such electronic components are overheated, the characteristics of the electronic components fluctuate, which may cause malfunction of the electronic equipment or cause the electronic components themselves to fail. Therefore, conventionally, in an electronic device or the like, a radiator plate or the like has been used to prevent the electronic component from being overheated during use. The heat radiating plate is installed in such a manner as to be in contact with an electronic component that generates heat, and conducts the heat generated by the electronic component to the heat radiating plate, thereby assisting heat radiation of the electronic component, and has a large heat conductivity. It was composed of materials. Further, the heat conducted to the heat sink is radiated from the surface of the heat sink according to the temperature difference between the surface of the heat sink and the outside.
【0004】[0004]
【発明が解決しようとする課題】しかし、この種の放熱
板は、電子部品が発生する熱を、熱を受けた端面から他
端面に向けて素早く伝導することができるが、放熱板に
伝導された熱を放熱板の外部に放熱する能力に限界があ
り、放熱板に熱がこもってしまうという問題があった。However, this kind of heat radiating plate can quickly conduct the heat generated by the electronic component from the heated end face to the other end face. There is a limit in the ability to radiate the heat to the outside of the radiator plate, and there is a problem that heat is trapped in the radiator plate.
【0005】また、放熱板に熱がこもってしまうと、十
分な放熱効果が期待できないため、放熱板の表面積を大
きくしたり、放熱板を強制的に冷却する等の対策を施す
必要があり、その結果、こういった放熱板を必要とする
電子部品で構成された電子機器を小型化することができ
ないという問題があった。If heat is trapped in the heat radiating plate, a sufficient heat radiating effect cannot be expected. Therefore, it is necessary to take measures such as increasing the surface area of the heat radiating plate and forcibly cooling the heat radiating plate. As a result, there is a problem that it is not possible to reduce the size of an electronic device including an electronic component that requires such a heat sink.
【0006】本発明は、上記問題点を解決するために、
外部への熱の放射を効率よく行うことのできる放熱材を
提供することを目的とする。The present invention has been made to solve the above problems.
It is an object of the present invention to provide a radiator capable of efficiently radiating heat to the outside.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
になされた本発明は、熱伝導率の大きい熱伝導材料と熱
放射率の大きい熱放射材料とを混合した混合材料により
所定の形状に形成してなる放熱材であって、発熱体から
の熱を受けるべき端面は、上記熱放射材料の比率を小さ
くすると共に、該端面から他端面に向けて徐々に上記熱
放射材料の比率を大きくしてなることを特徴とする。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention has been made to achieve a predetermined shape by using a mixed material obtained by mixing a heat conductive material having a large thermal conductivity and a heat radiating material having a large thermal emissivity. The heat radiation material formed, the end face to receive the heat from the heating element, while reducing the ratio of the heat radiating material, gradually increasing the ratio of the heat radiating material from the end face toward the other end face. It is characterized by becoming.
【0008】[0008]
【作用および発明の効果】上記のように構成された本発
明の放熱材においては、放熱材を形成する熱伝導率の大
きい材料が、発熱体が発生する熱を素早く伝導し、放熱
材に混合された放射率の大きい熱放射材料が放熱材に伝
導した熱を放熱材の外部に放射する。In the heat radiator of the present invention configured as described above, the material having a high thermal conductivity forming the heat radiator quickly conducts the heat generated by the heating element and is mixed with the heat radiator. The heat radiating material having a high emissivity radiates the heat conducted to the heat radiating material to the outside of the heat radiating material.
【0009】しかも、発熱体からの熱を受けるべき端面
では、熱放射材料が混合されている比率が小いので、放
熱材としての熱伝導率が損なわれることがなく、従っ
て、発熱体が発生する熱は効率よく放熱材に伝導され、
また、他の端面では、熱放射材料が混合されている比率
が大きいので、熱放射率が高く、従って、放熱材に伝導
した熱は効率よく放射される。In addition, at the end face to receive the heat from the heating element, the ratio of the heat radiating material mixed is small, so that the thermal conductivity as the heat radiating material is not impaired, and therefore, the heating element is not generated. Heat is efficiently conducted to the heat dissipating material,
At the other end face, the ratio of the heat radiating material mixed is large, so that the heat emissivity is high, and thus the heat conducted to the heat radiating material is efficiently radiated.
【0010】このように、本発明の放熱材によれば、発
熱体の熱を放熱材に伝導するだけでなく、放熱材に伝導
された熱を積極的に放射しているので、放射の少ない従
来の放熱材に比べて、きわめて効率よく放熱を行なうこ
とができる。また、従来の放熱材より小さくても同等の
放熱効果を得ることができるので、電子機器等を小型化
することができる。As described above, according to the heat dissipating material of the present invention, not only the heat of the heating element is conducted to the heat dissipating material, but also the heat conducted to the heat dissipating material is actively radiated, so that the radiation is small. Heat can be dissipated extremely efficiently as compared with conventional heat dissipating materials. Further, since the same heat radiation effect can be obtained even if the heat radiation material is smaller than the conventional heat radiation material, the size of the electronic device or the like can be reduced.
【0011】ここで、熱伝導率の大きい熱伝導材料とし
ては、例えば、高弾性率カーボン繊維または銅,アルミ
ニウム,鉄等の金属粉末,金属繊維,セラミック,カー
ボンブラックあるいはそれらの複合体等を使用すること
ができる。また、熱放射率の大きい熱放射材料として
は、例えば、遠赤外線の放射特性が優れている各種セラ
ミックや、黒鉛等が挙げられる。この内、セラミックと
しては、例えばアルミナ,ジルコニア,チタニア等を用
いることができるが、遠赤外線の放射率が高く、しかも
低熱膨張性で耐熱性のあるセラミックスとして、コージ
ライト(2MgO・2Al2O3・5SiO2),β−ス
ポジューメン(LiO2・Al2O3・4SiO2),チタ
ン酸アルミニウム(Al2O3・Ti2O3)等も好適に用
いられる。更に、全赤外域で放射率の高いセラミックス
として、遷移元素酸化物系セラミックス(1例として、
MnO2:60%,Fe2O3:20%,CuO:10
%,CoO:10%)を用いることもできる。Here, as the heat conductive material having a high heat conductivity, for example, high elastic modulus carbon fiber, metal powder of copper, aluminum, iron, etc., metal fiber, ceramic, carbon black, or a composite thereof is used. can do. Examples of the heat radiation material having a large heat emissivity include various ceramics and graphite having excellent radiation characteristics of far infrared rays. Among them, the ceramic, such as alumina, zirconia, it can be used titania, as far infrared emissivity high and ceramics having heat resistance at a low thermal expansion, cordierite (2MgO · 2Al 2 O 3 · 5SiO 2), β- spodumene (LiO 2 · Al 2 O 3 · 4SiO 2), aluminum titanate (Al 2 O 3 · Ti 2 O 3) or the like is also preferably used. Further, as a ceramic having a high emissivity in the entire infrared region, a transition element oxide-based ceramic (for example,
MnO 2 : 60%, Fe 2 O 3 : 20%, CuO: 10
%, CoO: 10%).
【0012】尚、上述のように、熱放射材料としては、
遠赤外線の放射特性が優れているものを用いることが好
ましいが、より具体的には、30℃〜120℃程度の温
度範囲で、遠赤外線を黒体レベル程度(即ち、例えば放
射率が0.9以上)発生放射するものであればより一層
好ましい。As described above, the heat radiation material includes
It is preferable to use a material having excellent radiation characteristics of far infrared rays. More specifically, in a temperature range of about 30 ° C. to 120 ° C., far infrared rays are emitted to a black body level (that is, for example, an emissivity of 0.1%). (9 or more) It is even more preferable that it emits and emits.
【0013】また、熱放射材料と熱伝導材料とを混合し
て混合材料とする際にベースとなるマトリックス材料と
しては、ポリオルガノシロキサン,ポリアミド,ポリエ
ステル,ポリオレフィン等の熱可塑性のホモポリマー,
及びこれらのコポリマーや混合物が用いられる。また、
フェノール樹脂のような熱硬化性の樹脂も使用できる。When the heat radiation material and the heat conduction material are mixed to form a mixed material, the matrix material serving as a base may be a thermoplastic homopolymer such as polyorganosiloxane, polyamide, polyester, or polyolefin.
And copolymers and mixtures thereof. Also,
Thermosetting resins such as phenolic resins can also be used.
【0014】[0014]
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。ここで、図1は、本実施例の放熱材2が用いら
れたICチップ等の発熱体4の断面図である。図1に示
すように、放熱材2は、ICチップ等の発熱体4に接触
させて、発熱体4の放熱を行うためのものであり、ジメ
チルシリコーン6を基材として、熱放射率が大きい熱放
射性材料としてのコージライト粉粒体8と、熱伝導率が
大きい熱伝導性材料としての銅粉10とを混合させた混
合圧縮成形体をシート状に成形したものである。An embodiment of the present invention will be described below with reference to the drawings. Here, FIG. 1 is a cross-sectional view of a heating element 4 such as an IC chip using the heat radiating material 2 of the present embodiment. As shown in FIG. 1, the heat dissipating material 2 is for contacting the heat generating element 4 such as an IC chip to dissipate heat from the heat generating element 4, and has a large heat emissivity using dimethyl silicone 6 as a base material. It is formed by mixing a cordierite powder 8 as a heat-radiating material and a copper powder 10 as a heat-conductive material having a high thermal conductivity into a mixed compression-molded body.
【0015】なお、コージライト粉粒体8と銅粉10と
の混合比率は、発熱体4と接触させる熱伝導面2a付近
では、コージライト粉粒体8の比率が高く、反対側の面
である熱放射面2b付近では逆に銅粉10の比率が高
く、その中間ではこれらの中間となるように構成されて
いる。The mixing ratio between the cordierite powder 8 and the copper powder 10 is such that the ratio of the cordierite powder 8 is high in the vicinity of the heat conducting surface 2a which is brought into contact with the heating element 4, and the ratio of the cordierite powder 8 is high in the opposite surface. Conversely, the ratio of the copper powder 10 is high in the vicinity of a certain heat radiation surface 2b, and it is configured to be intermediate between them in the middle.
【0016】このように構成された放熱材2において
は、熱伝導率の大きい銅粉10が、発熱体4が発生する
熱を素早く伝導し、銅粉10により発熱体から伝導され
た熱により暖められたコージライト粉粒体8が、熱を遠
赤外線に変換して、放熱材2の外部に放射する。In the heat radiating material 2 configured as described above, the copper powder 10 having high thermal conductivity quickly conducts the heat generated by the heating element 4 and is heated by the heat transmitted from the heating element by the copper powder 10. The obtained cordierite powder 8 converts heat into far-infrared rays and radiates it to the outside of the heat radiating material 2.
【0017】従って、本実施例の放熱材2によれば、非
常に効率よく放熱を行なうことができるので、発熱体4
の温度上昇を抑制することができる。次に、上記実施例
の放熱材2の製造方法について説明する。まず、平均粒
子径35μmのコージライト粉粒体,平均粒子径10μ
mの銅粉,およびジメチルシリコーンを、基材であるジ
メチルシリコーンが40体積%、添加剤であるコージラ
イト粉粒体および銅粉が60体積%となるように混合し
た3種類のシート材料を作製する。[表1]に示すよう
に、ジメチルシリコーンに対して、シート材料Aはコー
ジライト粉粒体のみを添加し、シート材料Bはコージラ
イト粉粒体,銅粉の両方を添加し、シート材料Cは、銅
粉のみを添加している。Therefore, according to the heat dissipating material 2 of this embodiment, heat can be dissipated very efficiently, so that the heat generating element 4
Temperature rise can be suppressed. Next, a method of manufacturing the heat dissipating material 2 of the above embodiment will be described. First, cordierite powder having an average particle diameter of 35 μm, and an average particle diameter of 10 μm
m of copper powder and dimethylsilicone were mixed so that dimethylsilicone as a base material was 40% by volume, cordierite powder and copper powder as additives were 60% by volume, and three types of sheet materials were prepared. I do. As shown in [Table 1], for dimethyl silicone, sheet material A added only cordierite granules, sheet material B added both cordierite granules and copper powder, and sheet material C Has only copper powder added.
【0018】[0018]
【表1】 [Table 1]
【0019】そして、これら3種のシート材料がA−B
−Cの順に重ね合わされたものを、圧縮ローラを用いて
延伸する。このとき重ね合わされたシート材料の厚さは
9mmであるが、延伸後の厚さは5mmとなる。この延
伸されたシート材料を、今度は100℃に加熱した圧縮
ローラを用いて再度延伸することにより、厚さ2mmの
複合シート材料を作製する。And these three types of sheet materials are AB
The layers superimposed in the order of -C are stretched using a compression roller. At this time, the thickness of the superposed sheet material is 9 mm, but the thickness after stretching is 5 mm. The stretched sheet material is stretched again by using a compression roller heated to 100 ° C. to produce a composite sheet material having a thickness of 2 mm.
【0020】更に、この複合シート材料を金型に入れて
プレスし、170℃のオーブン中で10分間加熱した
後、加硫することにより、本実施例の放熱材2が得られ
る。なお、得られた放熱材2の厚さは約1.5mmであ
り、その断面は図1に示したように、コージライト粉粒
体8および銅粉10の濃度が厚さ方向に沿って徐々に変
化するいわゆる傾斜材料となっている。Further, the composite sheet material is put into a mold, pressed, heated in an oven at 170 ° C. for 10 minutes, and then vulcanized, whereby the heat radiating material 2 of this embodiment is obtained. In addition, the thickness of the obtained heat radiating material 2 is about 1.5 mm, and the cross section thereof is such that the concentrations of the cordierite powder 8 and the copper powder 10 gradually increase along the thickness direction as shown in FIG. This is a so-called graded material that changes to.
【0021】次に、上記のようにして製造した放熱材の
放熱性を評価するために行った実験について説明する。
ここでは、放熱材の放熱性を評価するために、並列にト
ランジスタ素子を内蔵したICチップを使用し、このI
Cチップの表面に放熱材を張り付け、一方のトランジス
タに定電流を流した状態で、もう一方のトランジスタを
動作させた時の出力電圧を測定し、この測定値からIC
チップの温度を換算する方法を用いた。Next, a description will be given of an experiment conducted to evaluate the heat dissipation of the heat dissipation material manufactured as described above.
Here, in order to evaluate the heat radiating property of the heat radiating material, an IC chip having a built-in transistor element in parallel is used.
A heat radiating material is attached to the surface of the C chip, and the output voltage when the other transistor is operated with a constant current flowing through one transistor is measured.
A method of converting the temperature of the chip was used.
【0022】なお、測定には、上述した方法で製造した
放熱材(実施例1)と、実施例1と同様の手法により、
熱放射性材料として0.1μm×1mmの気相成長炭素
繊維を用い、熱伝導性材料として平均粒子径20μmの
アルミニウム粉末を用い、ジメチルシリコーンが40体
積%、炭素繊維およびアルミニウム粉末が60体積%と
なるように調合して製造した放熱材(実施例2)を使用
した。The measurement was performed by using the heat dissipating material manufactured by the above-described method (Example 1) and the same method as in Example 1.
A vapor-grown carbon fiber of 0.1 μm × 1 mm is used as a heat radiation material, an aluminum powder having an average particle diameter of 20 μm is used as a heat conductive material, dimethyl silicone is 40% by volume, and carbon fiber and aluminum powder are 60% by volume. A heat dissipating material (Example 2) prepared by mixing as described above was used.
【0023】また、比較のために、平均粒子径10μm
の銅粉を60体積%、ジメチルシリコーンを40体積%
として実施例1の製造方法に準じて製造された厚さ1.
5mmの熱放射性材料を使用した場合(比較例1)と、
放熱材を使用しない場合(比較例2)についても測定し
た。For comparison, the average particle diameter is 10 μm.
60% by volume of copper powder and 40% by volume of dimethyl silicone
Thickness produced according to the production method of Example 1.
When using a 5 mm heat-radiating material (Comparative Example 1),
The measurement was also made when no heat radiating material was used (Comparative Example 2).
【0024】測定結果を[表2]に示す。Table 2 shows the measurement results.
【0025】[0025]
【表2】 [Table 2]
【0026】表2から明らかなように、熱放射性材料を
使用しない従来の放熱材(比較例1)および放熱材を使
用しない場合(比較例2)と比較し、本実施例の放熱材
を使用した場合のICチップの温度は低く、放熱材によ
り効率よく放熱が行われていることがわかる。As is clear from Table 2, the heat radiating material of the present embodiment is used in comparison with the conventional heat radiating material not using the heat radiating material (Comparative Example 1) and the case not using the heat radiating material (Comparative Example 2). In this case, the temperature of the IC chip is low, and it can be seen that heat is efficiently dissipated by the heat dissipating material.
【0027】以上、本発明の一実施例について説明した
が、本発明の構成は上記実施例に限定されるものではな
く、本発明の要旨を逸脱しない範囲において、様々な態
様で実施することができる。例えば、上記実施例におい
ては、熱放射性材料および熱伝導性材料の混合比率が異
なる3種類のシート材を重ね合わせて圧縮することによ
り、3層構造の放熱材を製造したが、この層は、最低2
層でもよく、また4層以上で構成してもよい。Although the embodiment of the present invention has been described above, the configuration of the present invention is not limited to the above-described embodiment, and may be implemented in various modes without departing from the gist of the present invention. it can. For example, in the above embodiment, a heat radiation material having a three-layer structure was manufactured by stacking and compressing three types of sheet materials having different mixing ratios of the heat-radiating material and the heat-conducting material. At least 2
It may be a layer or may be composed of four or more layers.
【図1】 本実施例の構成を表す説明図である。FIG. 1 is an explanatory diagram illustrating a configuration of a present embodiment.
2・・・放熱材 4・・・発熱体 6・・・ジ
メチルシリコーン 8・・・コージライト粉粒体 10・・・銅粉2 ... heat dissipation material 4 ... heating element 6 ... dimethyl silicone 8 ... cordierite powder 10 ... copper powder
Claims (1)
の大きい熱放射材料とを混合した混合材料により所定の
形状に形成してなる放熱材であって、 発熱体からの熱を受けるべき端面は、上記熱放射材料の
比率を小さくすると共に、該端面から他端面に向けて徐
々に上記熱放射材料の比率を大きくしてなることを特徴
とする放熱材。1. A heat dissipating material formed in a predetermined shape by a mixed material obtained by mixing a heat conducting material having a large heat conductivity and a heat emitting material having a large heat emissivity, and receiving heat from a heating element. A heat dissipating material, wherein the end face to be formed has a smaller ratio of the heat radiating material and a gradually increased ratio of the heat radiating material from the end face to the other end face.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33815193A JP2638461B2 (en) | 1993-12-28 | 1993-12-28 | Heat dissipation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33815193A JP2638461B2 (en) | 1993-12-28 | 1993-12-28 | Heat dissipation material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07190675A JPH07190675A (en) | 1995-07-28 |
JP2638461B2 true JP2638461B2 (en) | 1997-08-06 |
Family
ID=18315398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33815193A Expired - Fee Related JP2638461B2 (en) | 1993-12-28 | 1993-12-28 | Heat dissipation material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2638461B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2795626B2 (en) | 1995-08-21 | 1998-09-10 | 北川工業株式会社 | Electronic components with heat dissipation function |
JP2807198B2 (en) | 1994-10-12 | 1998-10-08 | 北川工業株式会社 | Heat radiator |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002344178A (en) | 2001-05-17 | 2002-11-29 | Denso Corp | Electronic device |
JP5301121B2 (en) * | 2006-07-12 | 2013-09-25 | 積水化学工業株式会社 | Synthetic resin pipe for radiant cooling and heating, and panel for radiant cooling and heating |
JP2012109508A (en) * | 2010-10-29 | 2012-06-07 | Jnc Corp | Heat dissipation member for electronic device, electronic device, and method for manufacturing electronic device |
JP6349543B2 (en) * | 2013-12-25 | 2018-07-04 | パナソニックIpマネジメント株式会社 | COOLING STRUCTURE AND METHOD FOR MANUFACTURING COOLING STRUCTURE |
JP6941810B2 (en) * | 2017-04-19 | 2021-09-29 | パナソニックIpマネジメント株式会社 | Resin composition and electronic components and electronic devices using it |
WO2019030905A1 (en) * | 2017-08-10 | 2019-02-14 | 一般社団法人ウエタ | Radiation plate |
-
1993
- 1993-12-28 JP JP33815193A patent/JP2638461B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2807198B2 (en) | 1994-10-12 | 1998-10-08 | 北川工業株式会社 | Heat radiator |
JP2795626B2 (en) | 1995-08-21 | 1998-09-10 | 北川工業株式会社 | Electronic components with heat dissipation function |
Also Published As
Publication number | Publication date |
---|---|
JPH07190675A (en) | 1995-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4725581B2 (en) | Radiation wiring board and electrical equipment using it | |
US7027304B2 (en) | Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials | |
CN108461462B (en) | Method for manufacturing thermally conductive sheet, and heat dissipating member | |
JP4711956B2 (en) | A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices | |
JP2009088117A (en) | Substrate for thermoelectric modules, and thermoelectric module using the substrate | |
JP2638461B2 (en) | Heat dissipation material | |
JP2010153803A (en) | Electronic component mounting module and electrical apparatus | |
JP2009188088A (en) | Thermoelectric apparatus | |
CN112602189A (en) | Method for manufacturing semiconductor device, thermally conductive sheet, and method for manufacturing thermally conductive sheet | |
JP2002164481A (en) | Heat conductive sheet | |
JP2005150249A (en) | Heat conductive member and heat radiating structure using the same | |
JP2698036B2 (en) | Heat dissipation material for electronic components | |
US5649593A (en) | Radiator member | |
JP2006196593A (en) | Semiconductor device and heat sink | |
JPH07162177A (en) | Radiator | |
KR101619806B1 (en) | Method for manufacturing heatsink and the heatsink thereby | |
JP2000355654A (en) | Heat-conductive silicone molding and its use | |
TWM540741U (en) | Multi-layer composite heat conduction structure | |
JP2002299534A (en) | Heat radiation material and manufacturing method therefor | |
CN111480228A (en) | Cooling device | |
CN112602190A (en) | Method for manufacturing semiconductor device and heat conductive sheet | |
JP2000185328A (en) | Heat conductive silicone moldings and manufacture thereof and use applications | |
JP2000286370A (en) | Heat radiation member of electronic component | |
US20210274682A1 (en) | Heat sink device provided with a secondary cold plate | |
JPH05299545A (en) | Heat dissipation body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20090425 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20100425 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 15 Free format text: PAYMENT UNTIL: 20120425 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 16 |
|
LAPS | Cancellation because of no payment of annual fees |