JP2638001B2 - Angle Beam Ultrasonic Testing and Probes - Google Patents

Angle Beam Ultrasonic Testing and Probes

Info

Publication number
JP2638001B2
JP2638001B2 JP62271662A JP27166287A JP2638001B2 JP 2638001 B2 JP2638001 B2 JP 2638001B2 JP 62271662 A JP62271662 A JP 62271662A JP 27166287 A JP27166287 A JP 27166287A JP 2638001 B2 JP2638001 B2 JP 2638001B2
Authority
JP
Japan
Prior art keywords
flaw detection
echo
probe
flaw
oblique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62271662A
Other languages
Japanese (ja)
Other versions
JPH01114749A (en
Inventor
哲男 中野
章 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP62271662A priority Critical patent/JP2638001B2/en
Publication of JPH01114749A publication Critical patent/JPH01114749A/en
Application granted granted Critical
Publication of JP2638001B2 publication Critical patent/JP2638001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は金属管等の探傷を斜角超音波探傷器を用い
て行なう技術に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for performing flaw detection on a metal tube or the like using an oblique ultrasonic flaw detector.

[従来技術] 例えば鋼管(継目無管、溶接管)の超音波探傷には第
5図に示すように横波斜角探傷法が用いられる。第5図
において、1は鋼管、2は外面傷、3は内面傷、4は横
波斜角探触子である。同図は外面傷2を1スキップ、内
面傷3を0.5スキップで横波斜角探触子4で探傷してい
る図である。ところが、オーステナイト系ステンレス
鋼、二相ステンレス鋼のような高合金鋼の鋼管(溶接管
においては溶接部)は比較的大きな結晶粒と凝固組織を
有するため超音波の減衰が激しく、かつ結晶粒界から反
射する林状エコー(雑音)のためS/N比が悪くなる。ま
た、溶接部においては音響異方性のための超音波の屈曲
現象が発生し、疑似欠陥が検出される。従ってこれらの
材料に対しては横波斜角探傷法は、ビーム路程の長い外
面傷2に対して使用できなくなる。このような材料に対
しては内面傷3を横波斜角探傷法で探傷し、外面傷2を
クリーピング波を使用して探傷する方法が開発されてい
る。[特願昭62−216702号(特開平1−59152号公
報)]。
[Prior Art] For example, as shown in FIG. 5, a shear wave oblique flaw detection method is used for ultrasonic flaw detection of a steel pipe (seamless pipe, welded pipe). In FIG. 5, 1 is a steel pipe, 2 is an external flaw, 3 is an internal flaw, and 4 is a shear wave oblique probe. FIG. 3 is a diagram in which the outer surface flaw 2 is detected by the shear wave oblique probe 4 by one skip and the inner surface flaw 3 by 0.5 skip. However, steel pipes of high alloy steel such as austenitic stainless steel and duplex stainless steel (welded parts in welded pipes) have relatively large crystal grains and a solidification structure, so that ultrasonic waves are strongly attenuated and crystal grain boundaries S / N ratio deteriorates due to forest-like echo (noise) reflected from. Further, in the welded portion, a bending phenomenon of ultrasonic waves due to acoustic anisotropy occurs, and a pseudo defect is detected. Therefore, the shear wave oblique flaw detection method cannot be used for these materials for the external flaw 2 having a long beam path. For such a material, a method has been developed in which the inner surface flaw 3 is inspected by a shear wave oblique flaw detection method, and the outer surface flaw 2 is inspected by a creeping wave. [Japanese Patent Application No. 62-216702 (JP-A-1-59152)].

第6図は鋼管1の外面傷2をクリーピング波探触子14
で、内面傷3を横波斜角探触子4で探傷している例であ
る。クリーピング波探触子14によるクリーピング波探傷
法は縦波の臨界角(鋼の場合27.5゜)で測定対象に超音
波を入射して測定対象の表面にクリーピング波を発生さ
せることによって行われる。このとき同時に横波が発生
するのでその影響を避けるべく、クリーピング波探傷に
使用するクリーピング波探触子には二振動子斜角探触子
が用いられる。第7図はクリーピング波探触子14の構造
を示す図である。送信振動子21と受信振動子22が音響分
割面20をはさんで配置されている。
FIG. 6 shows a creep wave probe 14 for creeping the outer surface scratch 2 of the steel pipe 1.
This is an example in which the inner surface flaw 3 is detected by the shear wave oblique angle probe 4. The creeping wave flaw detection method using the creeping wave probe 14 is performed by injecting ultrasonic waves at a critical angle of a longitudinal wave (27.5 ° in the case of steel) to a measuring object and generating a creeping wave on the surface of the measuring object. Will be At this time, since a transverse wave is generated at the same time, in order to avoid the influence, a two-vibrator oblique angle probe is used as a creeping wave probe used for creeping wave detection. FIG. 7 is a view showing the structure of the creeping wave probe 14. The transmitting vibrator 21 and the receiving vibrator 22 are arranged with the acoustic division surface 20 interposed therebetween.

実際の自動探傷ラインにおいては、被探傷材を水浸さ
せて探傷を行なう水浸法、被探傷材と探触子間に水を介
在させて行なう水ギャップ法が用いられる。第9図に水
ギャップ法を用いたクリーピング波自動探傷法の概念図
を示す。クリーピング波探触子14を探触子ホルダー15中
に保持し鋼管1とクリーピング波探触子14の間に接触媒
質の水16を介在させている。第10図にこの探傷法で探傷
した場合の探傷波形を示す。送信パルス31は送信振動子
21が超音波を発信したときに現れるパルスである。欠陥
エコー32は傷から反射されて受信振動子22で受信された
超音波によるエコーである。探傷子距離の変化により、
同じ傷であっても欠陥エコー32a、欠陥エコー32bのよう
にエコー高さが変化している。
In an actual automatic flaw detection line, a water immersion method in which a material to be flawed is immersed in water to perform flaw detection, and a water gap method in which water is interposed between the material to be flawed and the probe are used. FIG. 9 shows a conceptual diagram of the automatic creeping wave flaw detection method using the water gap method. The creeping wave probe 14 is held in a probe holder 15, and couplant water 16 is interposed between the steel pipe 1 and the creeping wave probe 14. FIG. 10 shows a flaw detection waveform when flaw detection is performed by this flaw detection method. Transmission pulse 31 is the transmission oscillator
21 is a pulse that appears when an ultrasonic wave is transmitted. The defect echo 32 is an echo by an ultrasonic wave reflected by the flaw and received by the receiving transducer 22. Due to changes in the probe distance,
Even for the same scratch, the echo height changes like the defect echo 32a and the defect echo 32b.

一方、一般に欠陥エコー32を送信パルス31、その他傷
以外から発生するパルスと区別するため探傷ゲート33を
設け、このゲート内にあるパルスのみを欠陥エコーとし
て検出することが行われている。この探傷ゲートの起点
34を定めるのに従来は基準点として超音波発信の時点、
即ち第4図の送信パルス(トリガーパルス)31の立ち上
がり時を使用していた。また、距離振幅特性によるエコ
ー高さの変動を補償する方法として、従来より距離振幅
補正(DAC)が使用されている。これは、例えば第4図
(c)に示すように、ある基準点より傷までの探傷距離
(探傷法上は基準点から傷エコーまでの時間)にあわせ
て探傷器のゲインを変化させることにより、距離振幅特
性によるエコー高さの変動を補償する方法である。一般
に使用されている横波斜角探傷法においては、この基準
点として探傷ゲート起点34の基準点と同様に送信パルス
(トリガーパルス)の立ち上がり時が用いられている。
On the other hand, in general, a flaw detection gate 33 is provided to distinguish the defect echo 32 from the transmission pulse 31 and other pulses generated from sources other than the flaw, and only the pulse within this gate is detected as a defect echo. Starting point of this flaw detection gate
Conventionally, the point of ultrasound transmission as a reference point to determine 34,
That is, the rising edge of the transmission pulse (trigger pulse) 31 in FIG. 4 was used. Further, as a method of compensating for the fluctuation of the echo height due to the distance amplitude characteristic, a distance amplitude correction (DAC) has conventionally been used. This is achieved by changing the gain of the flaw detector according to the flaw detection distance from a certain reference point to the flaw (time from the reference point to the flaw echo in the flaw detection method) as shown in FIG. 4 (c), for example. This is a method of compensating for a change in echo height due to the distance amplitude characteristic. In the generally used shear wave oblique flaw detection method, the rising point of a transmission pulse (trigger pulse) is used as the reference point, similarly to the reference point of the flaw detection gate starting point 34.

[発明が解決しようとする問題点] このように探傷ゲート起点34または距離振幅補正の基
準点として送信パルスの立ち上がりを使用する方法は、
被検査材の外径変動、曲がり、振動、探傷装置の摺動特
性等により被検査材と探触子の間の水ギャップが変化し
た場合には有効に働かない。何故ならば、このような場
合には被検査材中での傷までの超音波のビーム路程は変
化しないにもかかわらず、探触子距離が変化するので、
探傷ゲート起点34または距離振幅補正の基準点としてT
エコーの立ち上がりを使用すると間違った補償をしてし
まうことになるからである。通常用いられる横波斜角探
傷法においては探触子距離が多少変動してもエコー高さ
の変化が少ないのでこの方法でも実用上問題となること
は少なかった。しかしながらクリーピング波探傷法にお
いてはこの方法は使用できないという問題点があった。
[Problems to be Solved by the Invention] As described above, the method of using the rising edge of the transmission pulse as the flaw detection gate starting point 34 or the reference point of the distance amplitude correction is as follows.
It does not work effectively when the water gap between the material to be inspected and the probe changes due to fluctuations in the outer diameter of the material to be inspected, bending, vibration, sliding characteristics of the flaw detector, and the like. Because, in such a case, the probe distance changes even though the path of the ultrasonic beam to the flaw in the test material does not change,
T as the flaw detection gate starting point 34 or the reference point for distance amplitude correction
This is because use of the rising edge of the echo results in incorrect compensation. In the shear wave oblique flaw detection method which is usually used, even if the probe distance fluctuates a little, the change in the echo height is small, so even this method has little problem in practical use. However, this method cannot be used in creeping wave flaw detection.

第8図は鋼管1の外面に深さ1.0mm,0.8mm,0.5mmのノ
ッチ人工傷を作成し、クリーピング波探触子14を使用し
て、その距離振幅特性を調べた結果を示すものである。
同図から明らかなように、探触子距離(探触子と傷との
距離)が10mmから20mmまで変化すると、各人工傷ともエ
コー高さが約9dB低下することがわかる。このように探
触子距離の変動に対するエコー高さの変化が大きい場合
は、被検査材中での超音波のビーム路程を正確に把握し
ないと距離振幅補正による補償に大きな誤差が生じ、オ
ーバインスペクション、見落としの原因となり信頼性の
高い検査が期待できない。
Fig. 8 shows the results of creating notch artificial flaws with a depth of 1.0mm, 0.8mm, 0.5mm on the outer surface of the steel pipe 1 and examining the distance amplitude characteristics using a creeping wave probe 14. It is.
As is clear from the figure, when the probe distance (the distance between the probe and the flaw) changes from 10 mm to 20 mm, the echo height of each artificial flaw decreases by about 9 dB. If the change in the echo height with respect to the change in the probe distance is large in this way, a large error will occur in the compensation by the distance amplitude correction unless the beam path of the ultrasonic wave in the test material is accurately grasped, resulting in over-inspection. However, it may cause oversight, and a highly reliable inspection cannot be expected.

本発明は前記問題点を解決するためになされたもので
あり、その目的は水ギャップの変動があってもその影響
を受けないで距離振幅補正を実現できる斜角超音波探傷
法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an oblique ultrasonic flaw detection method capable of realizing distance amplitude correction without being affected by fluctuation of a water gap. It is in.

[問題点を解決するための手段] 前記問題点は、分割型斜角探触子と同一の探触子内に
設けた垂直振動子から発せられた超音波パルスの被検査
材の底面よりの反射エコーを検出し、この反射エコーの
時間を基準点として、分割型斜角振動子による探傷ゲー
トの起点及び距離振幅補正ゲートの起点を時系列的に補
正することにより解決される。
[Means for Solving the Problem] The problem is that the ultrasonic pulse emitted from the vertical transducer provided in the same probe as the split-type beveled probe is measured from the bottom surface of the material to be inspected. The problem is solved by detecting the reflected echo and correcting the starting point of the flaw detection gate and the starting point of the distance amplitude correction gate by the divided type oblique vibrator in time series with the time of the reflected echo as a reference point.

[作用] 垂直振動子から発せられた超音波パルスの被検査材の
底面よりの反射エコーと、傷によるエコーとの相対的位
置(時間差)は、被検査材の外径変動、曲がり、振動、
探傷装置の摺動特性等により被検査材と探触子の間の水
ギャップが変化しても変化しないので、垂直振動子から
発せられた超音波パルスの被検査材の底面よりの反射エ
コーを検出し、前記反射エコーを基準として距離振幅補
正を行なうことにより、これらの外乱要因の影響を受け
る事無く正確な距離振幅補正を実現することができる。
[Operation] The relative position (time difference) between the reflected echo of the ultrasonic pulse emitted from the vertical vibrator from the bottom surface of the material to be inspected and the echo due to the flaw is determined by the outer diameter variation, bending, vibration,
Even if the water gap between the test material and the probe changes due to the sliding characteristics of the flaw detection device, it does not change, so the reflected echo of the ultrasonic pulse emitted from the vertical transducer from the bottom surface of the test material is measured. By detecting and performing distance amplitude correction on the basis of the reflected echo, accurate distance amplitude correction can be realized without being affected by these disturbance factors.

[発明の実施例] 以下、第1図ないし第4図に基づいて本発明の1実施
例について説明する。図中、以前の図に現れた部分と同
じ部分には同じ符号を付している。第1図は本願第2の
発明の探触子の構造を示す図である。クリーピング波探
触子14の中にコントロールエコー用振動子23を設け、こ
れにより被検査材の表面に垂直に超音波を発射し、被検
査材の裏面より反射されるエコーを受信する。なお、第
1図の例においてはコントロールエコー用振動子23は二
分割型となっているが、必ずしも二分割型とする必要は
なく、たとえば第1図のコントロールエコー用振動子23
のどちらか一方の位置に送受信兼用の一個の探触子を置
いてもよい。第2図、第3図は前記探触子を使用した本
願第1の発明の探傷方法を示す図であり、第2図は縦傷
のクリーピング波探傷法、第3図は横傷のクリーピング
波探傷法を示す図である。第2図および第3図に示すも
のは水ギャップ法であるが、以下の作用の説明は水浸法
(局部水浸法を含む)についても同じである。第4図は
第2図、第3図に示した実施例の作用を示す図である。
同図(a)はコントロールエコー用振動子から得られる
信号の波形を示し、31は送信パルスを、30は底面エコー
を示す。同図(b)は無欠陥部におけるクリーピング振
動子の波形を示し、同図(c)は距離振幅補正の補正曲
線、同図(d)は傷がある場合の本発明の探傷波形を示
す。実際の探傷においては、コントロールエコー用振動
子の超音波と、クリーピング振動子の超音波が干渉する
のを避けるため、コントロールエコー用振動子23と送信
振動子21をタイミングをずらせて、時間Tごとに、交互
に励振する等の方法が使用されている。第4図におい
て、底面エコー30を基準にして探傷ゲート起点34および
距離値振幅補正の起点37のタイミングが決められてい
る。即ち、クリーピング波の入射点と検出すべき傷の間
の距離、被検査体の厚さ、クリーピング波と縦波の音速
等によって定められる送信パルス31から探傷ゲート起点
34までの時間と、送信パルス31から底面エコー30までの
時間の差をt1とし、送信パルス31から距離振幅補正の起
点37までの時間と、送信パルス31から底面エコー30まで
の時間の差をt2とし、コントロールエコ用振動子23と受
信振動子22が時間T毎に交互に励振されているとき底面
エコー30の立ち上がりから(T−t1)後を探傷ゲート起
点とし、(T−t2)を距離振幅補正の起点とすればよ
い。(第4図のように底面エコーが遅れる場合にt1、t2
は正とする。) このように底面エコー30を基準にして探傷ゲート起点
34および距離値振幅補正の起点37のタイミングを決める
ことにより、被検査材の外径変動、曲がり、振動、探傷
装置の摺動特性等により被検査材と探触子の間の水ギャ
ップが変化しても第4図(d)に示すように探傷ゲート
内のエコー高さを一定とすることができる。また、距離
振幅補正が正確に行えることの結果として、探傷ゲート
の幅を大きくすることができるので、横傷探傷の場合に
探傷範囲拡大により能率の向上が可能である。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 4. In the figure, the same parts as those appearing in the previous figures are denoted by the same reference numerals. FIG. 1 is a view showing the structure of a probe according to the second invention of the present application. A transducer 23 for control echo is provided in the creeping wave probe 14, thereby emitting ultrasonic waves perpendicular to the surface of the material to be inspected and receiving the echo reflected from the back surface of the material to be inspected. In the example of FIG. 1, the control echo oscillator 23 is of a two-part type, but it is not necessarily required to be a two-part type. For example, the control echo oscillator 23 of FIG.
A single probe for both transmission and reception may be placed at either one of the positions. 2 and 3 are views showing the flaw detection method of the first invention of the present application using the probe, FIG. 2 is a creeping wave flaw detection method for longitudinal flaws, and FIG. It is a figure showing a leaping wave flaw detection method. FIGS. 2 and 3 show the water gap method, but the following description of the operation is the same for the water immersion method (including the local water immersion method). FIG. 4 is a diagram showing the operation of the embodiment shown in FIG. 2 and FIG.
FIG. 6A shows the waveform of a signal obtained from the control echo oscillator, 31 indicates a transmission pulse, and 30 indicates a bottom echo. FIG. 2B shows the waveform of the creeping vibrator at the defect-free portion, FIG. 2C shows the correction curve for distance amplitude correction, and FIG. 2D shows the flaw detection waveform of the present invention when there is a flaw. . In actual flaw detection, in order to avoid interference between the ultrasonic waves of the control echo oscillator and the ultrasonic waves of the creeping oscillator, the timing of the control echo oscillator 23 and the transmission oscillator 21 are shifted, and the time T A method of alternately exciting each time is used. In FIG. 4, the timing of the flaw detection gate starting point 34 and the starting point 37 of the distance value amplitude correction are determined with reference to the bottom surface echo 30. That is, the flaw detection gate starting point is determined from the transmission pulse 31 determined by the distance between the point of incidence of the creeping wave and the flaw to be detected, the thickness of the test object, the sound speed of the creeping wave and the longitudinal wave, and the like.
The difference between the time from the transmission pulse 31 to the bottom echo 30 and the time from the transmission pulse 31 to the bottom echo 30 is t 1, and the difference between the time from the transmission pulse 31 to the starting point 37 of the distance amplitude correction and the time from the transmission pulse 31 to the bottom echo 30. Is defined as t 2, and when the control eco oscillator 23 and the reception oscillator 22 are excited alternately at intervals of time T, (T−t 1 ) after the rise of the bottom surface echo 30 is defined as the flaw detection gate starting point, and (T− t 2 ) may be used as the starting point of the distance amplitude correction. (If the bottom echo is delayed as shown in FIG. 4, t 1 , t 2
Shall be positive. Thus, the flaw detection gate starting point based on the bottom echo 30
By determining the timing of 34 and the starting point 37 of the distance value amplitude correction, the water gap between the material to be inspected and the probe changes due to variations in the outer diameter of the material to be inspected, bending, vibration, sliding characteristics of the flaw detector, etc. Even in this case, the echo height in the flaw detection gate can be kept constant as shown in FIG. Further, as a result of the correct distance amplitude correction, the width of the flaw detection gate can be increased, so that in the case of lateral flaw detection, the efficiency of the flaw detection can be improved by expanding the flaw detection range.

本実施例は、二分割斜角探触子を用いたクリーピング
波探傷についてのものであり、クリーピング波探傷の自
動化は、本発明の実施により初めて実用化できた。この
ように、本発明のクリーピング波探傷への応用は極めて
効果が大きい。
The present embodiment relates to creeping wave flaw detection using a two-piece angle beam probe, and automation of creeping wave flaw detection was practically realized for the first time by implementing the present invention. Thus, the application of the present invention to creeping wave flaw detection is extremely effective.

[発明の効果] 以上説明したごとく、本発明においては分割型斜角探
触子と同一の探触子内に設けた垂直振動子から発せられ
た超音波パルスの被検査材の底面よりの反射エコーを検
出し、前記反射エコーを基準として距離振幅補正を行な
っているので、水ギャップの変動があっても影響を受け
ない距離振幅補正を有する斜角超音波探傷法が実現でき
る。従って、特にクリーピング波探傷法の自動化の実現
に著しい効果がある。
[Effects of the Invention] As described above, in the present invention, the reflection of the ultrasonic pulse emitted from the vertical transducer provided in the same probe as the split-type angle beam probe from the bottom surface of the inspection object. Since the echo is detected and the distance amplitude is corrected with reference to the reflected echo, the oblique ultrasonic inspection method having the distance amplitude correction which is not affected by the fluctuation of the water gap can be realized. Therefore, there is a remarkable effect particularly in realizing automation of the creeping wave flaw detection method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の探触子の実施例を示す図で(a)は垂
直断面図、(b)は水平断面図、第2図は本発明による
縦傷の探傷の実施例を示す図、第3図は本発明による横
傷の探傷の実施例を示す図、第4図は本発明の作用を示
す図、第5図は横波斜角探傷法を示す図、第6図は従来
の高合金鋼鋼管の探傷法を示す図、第7図はクリーピン
グ波探触子を示す図で(a)は垂直断面図、(b)は水
平断面図、第8図はクリーピング波探触子の距離振幅特
性を示す図、第9図は水ギャップ法によるクリーピング
波探傷法を示す図、第10図は第9図の探傷法によって得
られる探傷波形を示す図である。 1……鋼管、2……外面傷、3……内面傷、4……横波
斜角探触子、14……クリーピング波探触子、15……探触
子ホルダー、16……接触媒質の水、21……送信振動子、
22……受信振動子、23……コントロールエコ用振動子、
31……送信パルス、32,32a,32b……欠陥エコー、33……
探傷ゲート、34……探傷ゲート起点、35……送信パルス
起点、36……底面エコー起点。
FIG. 1 is a view showing an embodiment of a probe according to the present invention, in which (a) is a vertical sectional view, (b) is a horizontal sectional view, and FIG. 2 is a view showing an embodiment of a longitudinal flaw detection according to the present invention. FIG. 3 is a view showing an embodiment of lateral flaw detection according to the present invention, FIG. 4 is a view showing the operation of the present invention, FIG. 5 is a view showing a shear wave oblique flaw detection method, and FIG. FIG. 7 is a view showing a flaw detection method for a high alloy steel pipe, FIG. 7 is a view showing a creeping wave probe, (a) is a vertical sectional view, (b) is a horizontal sectional view, and FIG. FIG. 9 is a diagram showing a distance amplitude characteristic of the probe, FIG. 9 is a diagram showing a creeping wave flaw detection method by a water gap method, and FIG. 10 is a diagram showing a flaw detection waveform obtained by the flaw detection method of FIG. 1 ... steel pipe, 2 ... external scratch, 3 ... internal scratch, 4 ... shear wave bevel probe, 14 ... creeping wave probe, 15 ... probe holder, 16 ... couplant The water, 21 …… Transmitting oscillator,
22 …… Receiver vibrator, 23 …… Control eco vibrator,
31 ... Transmission pulse, 32,32a, 32b ... Defect echo, 33 ...
Flaw detection gate, 34 ... flaw detection gate start point, 35 ... transmission pulse start point, 36 ... bottom echo start point.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分割型斜角振動子による斜角超音波探傷法
において、前記分割型斜角振動子と同一の探触子内に設
けた垂直振動子から発せられた超音波パルスの被検査材
の底面よりの反射エコーを検出し、この反射エコーの時
間を基準点として、分割型斜角振動子による探傷ゲート
の起点及び距離振幅補正ゲートの起点を時系列的に補正
することを特徴とする斜角超音波探傷法。
In an oblique ultrasonic flaw detection method using a split-type oblique transducer, an ultrasonic pulse emitted from a vertical transducer provided in the same probe as the split-type oblique transducer is inspected. Detecting the reflected echo from the bottom surface of the material, and using the time of this reflected echo as a reference point, correcting the starting point of the flaw detection gate and the starting point of the distance amplitude correction gate by the divided type oblique oscillator in time series. Bevel ultrasonic testing.
【請求項2】斜角超音波探傷方法がクリーピング波を使
用したことを特徴とする特許請求の範囲第1項記載の斜
角超音波探傷法。
2. The oblique ultrasonic flaw detection method according to claim 1, wherein the oblique ultrasonic flaw detection method uses a creeping wave.
JP62271662A 1987-10-29 1987-10-29 Angle Beam Ultrasonic Testing and Probes Expired - Fee Related JP2638001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271662A JP2638001B2 (en) 1987-10-29 1987-10-29 Angle Beam Ultrasonic Testing and Probes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271662A JP2638001B2 (en) 1987-10-29 1987-10-29 Angle Beam Ultrasonic Testing and Probes

Publications (2)

Publication Number Publication Date
JPH01114749A JPH01114749A (en) 1989-05-08
JP2638001B2 true JP2638001B2 (en) 1997-08-06

Family

ID=17503144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271662A Expired - Fee Related JP2638001B2 (en) 1987-10-29 1987-10-29 Angle Beam Ultrasonic Testing and Probes

Country Status (1)

Country Link
JP (1) JP2638001B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263956A (en) * 2006-03-02 2007-10-11 Jfe Steel Kk Ultrasonic flaw detection method and apparatus
JP2009058238A (en) * 2007-08-30 2009-03-19 Jfe Steel Kk Method and device for defect inspection
EP2348313B1 (en) * 2008-11-19 2019-09-25 Nippon Steel Corporation Method and apparatus for ultrasonically detecting flaws of a welded portion
JP5530975B2 (en) * 2011-05-23 2014-06-25 株式会社日立製作所 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831871B2 (en) * 1977-09-27 1983-07-08 日本鋼管株式会社 Ultrasonic flaw detection method
JPS56125661A (en) * 1980-03-07 1981-10-02 Hitachi Ltd Ultrasonic probe
JPS6089748A (en) * 1983-10-21 1985-05-20 Tokyo Keiki Co Ltd Ultrasonic flaw detector

Also Published As

Publication number Publication date
JPH01114749A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
JP2638001B2 (en) Angle Beam Ultrasonic Testing and Probes
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
JP5112942B2 (en) Ultrasonic flaw detection method and apparatus
EP3985387A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
RU2231753C1 (en) Procedure measuring thickness of article with use of ultrasonic pulses
RU2714868C1 (en) Method of detecting pitting corrosion
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US11054399B2 (en) Inspection method
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
RU2596242C1 (en) Method for ultrasonic inspection
JPS62194454A (en) Method for inspecting flaw of steel pipe welded part
RU2760487C1 (en) Ultrasonic method for measuring the height of vertically oriented planar defects in glass-ceramic materials of aircraft structural elements
RU2791670C1 (en) Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection
RU2814130C1 (en) Ultrasonic method for measuring height of vertically oriented planar defects in quartz ceramics
JPH0664027B2 (en) Angle beam inspection head for pipes and angle beam inspection device for pipes using the same
JP3457191B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
SU1000898A1 (en) Ultrasonic oscillation damping coefficient measuring method
JPS61210947A (en) Ultrasonic defectscope
JPH07325070A (en) Ultrasonic method for measuring depth of defect
CA3216686A1 (en) Method and device for checking the wall of a pipeline for flaws
JP4549512B2 (en) Ultrasonic flaw detection apparatus and method
RU2614195C2 (en) Methods of measuring ultrasonic signal parameters in presence of interference
SU1486917A1 (en) Method of ultrasonic monitoring of quality of elongated articles
JPH08285824A (en) Measuring method of defective position of material having different elastic stiffness in thickness direction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees