JP2635607B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2635607B2
JP2635607B2 JP62213083A JP21308387A JP2635607B2 JP 2635607 B2 JP2635607 B2 JP 2635607B2 JP 62213083 A JP62213083 A JP 62213083A JP 21308387 A JP21308387 A JP 21308387A JP 2635607 B2 JP2635607 B2 JP 2635607B2
Authority
JP
Japan
Prior art keywords
film
substrate
metal
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62213083A
Other languages
Japanese (ja)
Other versions
JPS6457623A (en
Inventor
啓治 堀岡
弘剛 西野
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62213083A priority Critical patent/JP2635607B2/en
Priority to DE3829015A priority patent/DE3829015C2/en
Priority to KR1019880010924A priority patent/KR920004540B1/en
Publication of JPS6457623A publication Critical patent/JPS6457623A/en
Priority to US08/029,307 priority patent/US5258332A/en
Application granted granted Critical
Publication of JP2635607B2 publication Critical patent/JP2635607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置の製造方法に係り、例えば溝部
を有する単結晶あるいは多結晶シリコン等の基板表面に
絶縁物を設け、MOS型メモリーセルのキャパシタ等を形
成したり、単結晶のシリコン基板に溝を掘り、この溝に
素子分離領域を形成したり、あるいは多層の配線を形成
する等の方法において、前記溝あるいは配線の段差部等
に生じる角部に丸みを持たせるエッチング工程を含む半
導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for manufacturing a semiconductor device, for example, providing an insulator on a substrate surface such as a single crystal or polycrystalline silicon having a groove. A method of forming a capacitor or the like of a MOS type memory cell, digging a groove in a single crystal silicon substrate, forming an element isolation region in this groove, or forming a multi-layered wiring. The present invention relates to a method for manufacturing a semiconductor device including an etching step for rounding a corner generated in a step portion or the like of a semiconductor device.

(従来の技術) 近年、MOSダイナミックメモリ(dRAM)等に代表され
る半導体装置は、比例縮小側に従って素子の微細化及び
高集積化が進められている。dRAMの構成要素であるMOS
キャパシタも例外ではなく、ゲート酸化膜厚tOX及び面
積Sの縮小化が進んでいる。スケーリング係数をαとす
ると、ゲート酸化膜厚はtOX/αに、面積S/αとなる。
MOSキャパシタの容量Cは誘電率をεとして、C=εS/t
OXと表わされるため、比例縮小後の容量C′はC′=C/
αとなり、1/αに小さくなると、アルファ線飛来による
ソフトエラーが小さくなる。こうしてMOSキャパシタの
容量がが起り易くなり、またビット線飛来によるソフト
エラーが起き易くなり、またビット線の容量との比が小
さくなってセンス余裕が小さくなる結果、誤動作を生じ
る原因になったりする。このため、一般にMOSキャパシ
タの面積はS/αではなく、S/αの縮小に止どめること
が行われてきた。しかし、世代毎に寸法縮小が進み、信
頼性の高いdRAM等の半導体装置を得ることは限界に近付
きつつある。
(Related Art) In recent years, in a semiconductor device represented by a MOS dynamic memory (dRAM) or the like, miniaturization and high integration of elements have been promoted in accordance with the proportional reduction side. MOS, a component of dRAM
The capacitor is no exception, and the gate oxide film thickness t OX and the area S have been reduced. Assuming that the scaling factor is α, the gate oxide film thickness is t OX / α and the area is S / α 2 .
The capacitance C of a MOS capacitor is expressed as follows:
Since it is expressed as OX , the capacity C ′ after proportional reduction is C ′ = C /
When it becomes α and becomes smaller to 1 / α, the soft error due to the flying alpha ray becomes smaller. In this way, the capacitance of the MOS capacitor is likely to occur, a soft error due to a bit line jump is likely to occur, and the ratio to the capacitance of the bit line is reduced to reduce the sensing margin, thereby causing a malfunction. . Therefore, the area of general MOS capacitor instead S / alpha 2, have been made possible stop General Domel to the reduction of S / alpha. However, the size has been reduced for each generation, and it has been approaching the limit to obtain highly reliable semiconductor devices such as dRAM.

MOSキャパシタの容量を大きくする手段として、誘電
率の大きい絶縁膜、例えばTa2O5膜等を用いることも検
討されているが、未だ実用に至っていない。また、10nm
以下の極めて薄い信頼性の高いシリコン酸化膜の適用が
検討されているが、これも極めて高純度の純粋や薬品等
を必要とし、また清浄度の高いクリーンルームを必要と
する等の理由で実用に至っていない。
The use of an insulating film having a large dielectric constant, such as a Ta 2 O 5 film, has been studied as a means for increasing the capacity of a MOS capacitor, but it has not yet been put to practical use. Also, 10nm
The application of the following extremely thin and highly reliable silicon oxide film is being studied, but this also requires practical use because it requires extremely high-purity pure and chemicals, and also requires a clean room with high cleanliness. Not reached.

そこで最近、MOSキャパシタの容量を増大する方法と
して、半導体基板の表面に溝を掘り、占有面積を増大さ
せることなく、実質的にキャパシタ面積の増大をはか
る、所謂トレンチキャパシタ技術が検討されている。と
ころが、このような溝を、反応性イオンエッチング(RI
E)等の異方性エッチングにより垂直の側片をもって形
成すると、次のような問題が生じる。即ち、このような
溝(凹部)の上部或いは底部のコーナの部分(角部)は
曲率半径が極めて小さく、熱酸化によりゲート膜を形成
したとき、この角部において平坦部より酸化膜厚が薄く
なる。この現象は次のように説明されている。シリコン
を酸化すると、形成される酸化膜の体積は元のシリコン
の約2.3倍になる。このため、酸化が進行すると、シリ
コンとシリコン酸化膜の界面が酸化膜側では圧縮応力が
働き、前述の応力の集中が起こる結果、酸化が抑制され
るものと思われる。
Therefore, recently, as a method of increasing the capacitance of a MOS capacitor, a so-called trench capacitor technique has been studied in which a trench is dug in the surface of a semiconductor substrate to substantially increase the capacitor area without increasing the occupied area. However, such grooves are formed by reactive ion etching (RI
The following problem arises when vertical side pieces are formed by anisotropic etching such as E). That is, the corner (corner) at the top or bottom of such a groove (recess) has a very small radius of curvature, and when the gate film is formed by thermal oxidation, the oxide film thickness is smaller at this corner than at the flat portion. Become. This phenomenon is explained as follows. When silicon is oxidized, the volume of the formed oxide film is about 2.3 times that of the original silicon. For this reason, it is considered that as oxidation proceeds, a compressive stress acts on the oxide film side at the interface between silicon and the silicon oxide film, and as a result of the concentration of stress described above, oxidation is suppressed.

このように溝の底部或いは上部の角部で酸化膜厚が平
坦部より薄くなると、この部分は絶縁破壊耐圧が低くな
り、また低い電界で大きいリーク電流が流れる原因とな
る。使用電圧でのリーク電流が十分小さく保つためにゲ
ート酸化膜厚を厚くすると、平坦部では厚くなりすぎ、
溝を堀って面積を大きくすることによる容量増大の効果
が相殺されることになる。
If the oxide film thickness at the bottom or upper corner of the groove is thinner than that at the flat portion, the dielectric breakdown voltage in this portion decreases, and a large leak current flows in a low electric field. If the gate oxide film thickness is increased to keep the leakage current at the working voltage sufficiently small, it will be too thick in the flat part,
The effect of increasing the capacity by digging the groove to increase the area is offset.

またMOSキャパシタの容量を増大するもう一つの方法
として、多結晶シリコン等の電極を他の素子や素子分離
領域の上に積み重ねて、その表面を酸化した後、さらに
もう一方の電極を形成し、キャパシタとするスタックド
キャパシタ技術が検討されている。しかし前記多結晶シ
リコン等の電極もRIE法等の加工により、前記電極の上
部には鋭い角部が生じる。この角部を放置したまま多結
晶シリコン表面を酸化すると、単結晶シリコンのトレン
チ部と同様に前記角部で酸化膜厚が薄くなってしまい。
この部分の絶縁耐圧が低くなるという問題が生じる。
Another method to increase the capacity of a MOS capacitor is to stack electrodes such as polycrystalline silicon on other elements or element isolation regions, oxidize the surface, and form another electrode. Stacked capacitor technology as a capacitor is being studied. However, the electrodes made of polycrystalline silicon or the like also have sharp corners at the upper portions of the electrodes due to processing such as RIE. If the surface of the polycrystalline silicon is oxidized while the corners are left as it is, the oxide film becomes thinner at the corners as in the trenches of single crystal silicon.
There is a problem that the withstand voltage of this portion is reduced.

この他にも半導体装置を製造する過程で形成される溝
あるいは段差部の角部により前記溝あるいは段差部を被
覆する膜の平坦性が失われる等のその後の工程を困難と
したり、あるいは半導体装置自身の特性に影響を与える
ことがあった。
In addition, it is difficult to perform subsequent steps such as losing flatness of a film covering the groove or the step due to a corner of the groove or the step formed in the process of manufacturing the semiconductor device, or May affect their own characteristics.

(発明が解決しようとする問題点) このように従来,トレンチキャパシタ等の溝が段差部
を製造する際に形成される溝あるいは段差部等の底部或
いは上部の角部にリーク電流が集中したり、前記角部に
おける絶縁破壊耐圧が低くなる等の問題があった。つま
り、RIE等の異方性エッチングにより半導体基板等に溝
あるいは段差部を形成した場合、溝あるいは段差部の底
部や上部における角部の曲率半径が極めて小さくなり、
この急峻な角部が各種素子を作製する上での難点となっ
ていた。
(Problems to be Solved by the Invention) As described above, conventionally, the leakage current concentrates on the bottom or upper corner of the groove or the step formed when the step of the trench capacitor or the like is formed. There has been a problem that the dielectric breakdown voltage at the corners is low. In other words, when a groove or a step is formed in a semiconductor substrate or the like by anisotropic etching such as RIE, the radius of curvature of the corner at the bottom or upper part of the groove or the step becomes extremely small,
These steep corners are difficult points in manufacturing various devices.

本発明は上記事情を考慮してなされたもので、その目
的とするところは、トレンチキャパシタやスタッドキャ
パシタ等の半導体素子の形成に際し、リーク電流の発生
や、絶縁耐圧低下等の問題となる溝あるいは段差の角部
に丸みをつけ、前記問題を解決して素子の信頼性を向上
せしめることにある。
The present invention has been made in view of the above circumstances, and its purpose is to form a trench or a groove which causes problems such as generation of a leak current and a decrease in dielectric strength when forming a semiconductor element such as a trench capacitor or a stud capacitor. It is an object of the present invention to round the corners of the step to solve the above problem and improve the reliability of the device.

〔発明の構成〕[Configuration of the invention]

(問題点を解決するための手段) 本発明上記した問題点を解決するために、本発明は、
単結晶、多結晶等のシリコン基板あるいは薄膜、又は金
属、金属硅化物の薄膜等にエッチングにより形成された
溝部、段差部の角部にフッ素に対する酸素の存在比が過
剰となるようなエッチングガスを作用させることによ
り、前記角部を丸めて、前記工程を経て形成されるトレ
ンチキャパシタ、DRAM等の半導体素子の形成に際し、生
じる絶縁耐圧低下等の問題を抑制し、素子の信頼性を向
上せしめるものである。
(Means for Solving the Problems) The present invention In order to solve the above problems, the present invention provides:
Etching gas such that the ratio of oxygen to fluorine is excessive in the corners of grooves and steps formed by etching a silicon substrate or thin film of single crystal or polycrystal, or a thin film of metal or metal silicide. By acting, the corners are rounded to suppress a problem such as a decrease in withstand voltage that occurs when forming a semiconductor element such as a trench capacitor or a DRAM formed through the above steps, and to improve the reliability of the element. It is.

(作用) 本発明の骨子は、単結晶シリコン等の基板や多結晶シ
リコン等の薄膜をRIE等の異方性のエッチングにより形
成された溝、段差部に生じる急峻な角部を丸めるために
放電により活性化されて作られたフッ素等のラジカル
と、過剰の酸素ガスを含む雰囲気にさらし、前記溝、段
差部の形成された基板等の表面にシリコン酸フッ化物を
形成させながら、表面を薄くエッチング除去することに
ある。
(Function) The gist of the present invention is to discharge a substrate such as single crystal silicon or a thin film such as polycrystalline silicon to round a sharp corner generated in a groove or a step formed by anisotropic etching such as RIE. By exposing it to an atmosphere containing fluorine and other radicals activated by the method and an excess of oxygen gas, and forming silicon oxyfluoride on the surface of the substrate or the like on which the grooves and steps are formed, while thinning the surface. It is to remove by etching.

すなわち、エッチングガス中のフッ素原子数より酸素
原子が多い条件では、シリコン表面で酸フッ化膜形成と
エッチングが競合する。このためエッチングの速度は、
シリコン酸フッ化物中を拡散して到来するフッ素ラジカ
ルの供給により律速され、立体角が大きく、供給が豊富
な突出部はより速くエッチングされ、逆に凹部のエッチ
ング速度は遅くなり、前記溝の角部が丸められる。
That is, under conditions where the number of oxygen atoms is larger than the number of fluorine atoms in the etching gas, formation of the oxyfluoride film and etching compete on the silicon surface. Therefore, the etching speed is
The rate is controlled by the supply of fluorine radicals arriving by diffusing in the silicon oxyfluoride, the solid angle is large, the protruding part with a large supply is etched faster, and conversely, the etching rate of the concave part is slowed down, The part is rounded.

このように角部が丸められたSi基板や多結晶シリコン
膜の溝の表面に薄いゲート酸化膜等の絶縁膜を形成し
て、キャパシタを作製した場合、絶縁膜の厚さは、全体
的に均一となり、従来、溝の角部に生じていた電界集中
も緩和されて絶縁膜の絶縁耐圧が向上する。
When a capacitor is manufactured by forming an insulating film such as a thin gate oxide film on the surface of a groove of a Si substrate or a polycrystalline silicon film having rounded corners as described above, the thickness of the insulating film is generally reduced. It becomes uniform, the electric field concentration which has conventionally occurred at the corners of the groove is alleviated, and the withstand voltage of the insulating film is improved.

また同時にSi基板や多結晶シリコン膜の表面が平滑化
されるため、表面準位の密度が減少し、側壁に逆方向リ
ーク電流の小さいp−n接合が形成でき、素子分離が容
易となる。
At the same time, since the surface of the Si substrate or the polycrystalline silicon film is smoothed, the density of surface states is reduced, a pn junction having a small reverse leakage current can be formed on the side wall, and element isolation becomes easy.

さらに、polysiや、モリブデンシリサイド、タングス
テン等の配線をテーパ状に加工できるため、多層配線構
造の素子の製造が容易となる。
Further, since the wiring of polysi, molybdenum silicide, tungsten, or the like can be processed into a tapered shape, the manufacture of an element having a multilayer wiring structure is facilitated.

(実 施 例) 本発明による半導体装置の製造方法の実施例について
説明する前に、本発明の主要な工程の1つであるドライ
エッチング工程に用いられるダウンフロー型エッチング
装置(以下、ケミカルドライエッチング:CDEと称す
る。)について説明する。第1図は、そのCDE装置の概
略図である。この装置の主要部は真空容器(11)と、こ
の容器内に試料(19)を載置する試料台(12)と2種類
のガスが導入されるガス導入口(15)、(16)と、導入
されるガスを放電せしめるための石英製の放電管(14)
と、前記導入されるガスを排気するための排気口(13)
とから構成される。ガス導入口(15)からCF4のフッ素
元素を含むガス、(16)から酸素(O2)ガスを所定の流
量を制御しながら導入するとともに排気口(13)から真
空排気を行うことにより、所定の圧力を保持する。又、
放電管(14)には導波管(17)を介して、周波数2.45GH
zのマイクロ波を印加し、内部に無電極放電が発生され
る。この放電により前記CF4ガスが解離して、フッ素
(F)ラジカルが発生する。このFラジカルは、酸素ガ
スとともに真空容器(11)内に輸送され、試料(19)の
所定の材料と化学的な反応を生じ、エッチングを行な
う。
(Embodiment) Before describing an embodiment of a method of manufacturing a semiconductor device according to the present invention, a downflow type etching apparatus (hereinafter referred to as chemical dry etching) used in a dry etching step which is one of the main steps of the present invention. : CDE.). FIG. 1 is a schematic diagram of the CDE device. The main part of this device is a vacuum vessel (11), a sample table (12) for placing a sample (19) in this vessel, and gas inlets (15) and (16) for introducing two types of gases. , A quartz discharge tube for discharging the gas introduced (14)
And an exhaust port (13) for exhausting the introduced gas.
It is composed of By introducing a gas containing the elemental fluorine of CF 4 from the gas inlet port (15) and oxygen (O 2 ) gas from the gas inlet port (16) while controlling a predetermined flow rate, and performing vacuum evacuation from the exhaust port (13), Maintain a predetermined pressure. or,
The discharge tube (14) has a frequency of 2.45GH via a waveguide (17).
When a microwave of z is applied, an electrodeless discharge is generated inside. This discharge dissociates the CF 4 gas to generate fluorine (F) radicals. The F radicals are transported together with the oxygen gas into the vacuum vessel (11), cause a chemical reaction with a predetermined material of the sample (19), and perform etching.

次に本発明方法の重要な鍵となる。フッ素ラジカル及
び酸素とシリコンとの反応について述べる。第2図はCF
4流量を50atm cm2/分として酸素流量を変化させた時の
シリコンのエッチング速度の関係を示したものである。
実線は単結晶シリコン、破線はリン添加の多結晶シリコ
ンの結果を示す。どちらの場合も、酸素を加えると、O2
流量が100cm3atm/min程度までシリコンエッチング速度
は増加し、さらにO2流量を増すと逆に減少する。シリコ
ンのエッチング反応は、次の化学反応により進行する。
Next, it is an important key of the method of the present invention. The reaction between silicon and fluorine radicals and oxygen will be described. Figure 2 shows CF
4 shows the relationship between the silicon etching rate when the oxygen flow rate is changed while the flow rate is set to 50 atm cm 2 / min.
The solid line shows the result for single-crystal silicon, and the broken line shows the result for polycrystalline silicon doped with phosphorus. In both cases, adding oxygen will result in O 2
The silicon etching rate increases up to a flow rate of about 100 cm 3 atm / min, and decreases when the O 2 flow rate is further increased. The silicon etching reaction proceeds by the following chemical reaction.

Si+4F→SiF4↑ また、酸素はCF4が解離して、生じたCF3やCF2等のラ
ジカルと反応してこれらのラジカルを除去する作用を行
なう。このため、CF3やCF2とF原子の再結合が防止さ
れ、エッチング速度は増大する。前記CF4の前記流量に
対して100cm3atm/ming過剰な酸素を添加すると逆に速度
は減少する。この原因を明らかにするためシリコン表面
をオージェ電子分光により測定したところ表面に、20〜
80Åのフッ素を含むシリコン酸化膜が形成されているこ
とが発見された。第2図には、エッチング速度の他にこ
のシリコン酸フッ化膜の形成膜厚を示してある。すなわ
ち、フッ素原子の存在下では、下記のような反応が生
じ、Siは酸素とも反応し不揮発性の酸フッ化膜が堆積す
ると考えられる。
Si + 4F → SiF 4酸 素 Further, oxygen dissociates CF 4 and reacts with generated radicals such as CF 3 and CF 2 to remove these radicals. Therefore, recombination of CF 3 or CF 2 with F atoms is prevented, and the etching rate is increased. Conversely, adding 100 cm 3 atm / ming excess oxygen to the flow rate of the CF 4 will decrease the rate. The silicon surface was measured by Auger electron spectroscopy to clarify the cause.
It was discovered that a silicon oxide film containing 80% of fluorine was formed. FIG. 2 shows the formed film thickness of the silicon oxyfluoride film in addition to the etching rate. That is, in the presence of fluorine atoms, the following reaction occurs, and Si also reacts with oxygen to deposit a nonvolatile oxyfluoride film.

このような条件で、Siのエッチングが促進されるため
には、フッ素原子が前記膜中を拡散してSiと反応し、さ
らに生成物のSiF4が膜を逆拡散して脱離する必要があ
る。よって、シリコン基板、多結晶シリコン膜等に形成
された溝あるいは段差部の角部ではフッ素原子の供給を
受ける立体角が大きいため速くエッチングが促進され、
角部がまるめられる。逆にへこんだ部分はエッチング速
度が小さいため、全体として凹凸の表面は平滑化され
る。
Under these conditions, in order to promote the etching of Si, it is necessary that fluorine atoms diffuse in the film and react with Si, and that SiF 4 as a product must be de-diffused and desorbed from the film. is there. Therefore, the etching is accelerated quickly because the solid angle receiving the supply of fluorine atoms is large in the corner of the groove or the step formed in the silicon substrate, the polycrystalline silicon film, or the like,
The corners are rounded. Conversely, since the concave portion has a low etching rate, the uneven surface is smoothed as a whole.

第3図は、第1図に示した装置を用いてRIEにより形
成された溝の角部を丸める処理を行なった断面図を示す
ものである。すなわち、第3図(a)に示すようにま
ず、シリコン基板(32)状に形成されたSiO2膜(31)を
マスクとして、反応性イオンエッチング(RIE)により
前記基板(32)に溝を形成する。次にこのようにして溝
の形成された基板をフッ酸、フッ化アンモニウム緩衝液
で浸漬し、SiO2膜(31)の溝(33)の開口部周辺をとり
除く(第3図(b))。その後、第1図に示したCDE装
置の真空容器(11)内に基板を収容し、エッチングを行
った。エッチング条件は、CF4流量50atm cm3/分、O2
量150atm cm3/分であり、その処理条件は1分間であっ
た。前記処理の後の溝の形状は、第3図(c)のように
溝(33)の上部の角部(34)、および下部の角部(35)
ともに曲率半径が約500Å程度の丸みをもつことが確認
された。さらに、溝の角部を丸める処理の前には溝(3
3)の側壁には微小な凹凸がみられていたが、前記角部
の丸め処理によって平滑化されててることも確認され
た。
FIG. 3 is a cross-sectional view showing a process of rounding a corner of a groove formed by RIE using the apparatus shown in FIG. That is, as shown in FIG. 3A, first, a groove is formed in the substrate (32) by reactive ion etching (RIE) using the SiO 2 film (31) formed in the shape of the silicon substrate (32) as a mask. Form. Next, the substrate having the groove thus formed is immersed in hydrofluoric acid and ammonium fluoride buffer to remove the periphery of the opening of the groove (33) of the SiO 2 film (31) (FIG. 3 (b)). . Thereafter, the substrate was accommodated in a vacuum vessel (11) of the CDE apparatus shown in FIG. 1, and etching was performed. The etching conditions were a CF 4 flow rate of 50 atm cm 3 / min and an O 2 flow rate of 150 atm cm 3 / min, and the processing condition was 1 minute. As shown in FIG. 3 (c), the shape of the groove after the above treatment is as follows: the upper corner (34) and the lower corner (35) of the groove (33).
It was confirmed that both had a radius of curvature of about 500 mm. Furthermore, before the rounding of the corner of the groove, the groove (3
Although fine irregularities were observed on the side wall of 3), it was also confirmed that the side wall was smoothed by the rounding processing of the corners.

これらの効果は、第2図において、添加するO2流量の
増加に供ない膜形状が生じはじめるのに対応している。
すなわち、フッ素原子に対する酸素原子の比率が1以上
で丸める効果があり、それ以下の場合は全く効果がなか
った。
These effects correspond to the fact that in FIG. 2, a film shape which does not increase the flow rate of O 2 to be added starts to be generated.
That is, the effect of rounding was obtained when the ratio of oxygen atoms to fluorine atoms was 1 or more, and no effect was obtained when the ratio was less than 1.

次に第3図に示したようにRIEによりSiO2膜をマスク
としてシリコン基板に溝を形成した後、フッ酸中に表面
に自然酸化膜が残存している場合に第1図の装置を用い
てCDE処理をした場合の断面図を示す。
Next, as shown in FIG. 3, after a groove is formed in the silicon substrate by RIE using the SiO 2 film as a mask, if a natural oxide film remains on the surface in hydrofluoric acid, the apparatus shown in FIG. 1 is used. FIG. 4 shows a cross-sectional view when CDE processing is performed.

第4図(a)はRIEにより溝(43)を形成した直後第
1図に示した装置で処理した基板(41)の断面形状であ
る。(42)は、SiO2膜である。その結果、溝(43)の底
部の角部はある程度丸められているが、溝(43)の側壁
の荒れは処理前よりさらに悪化していた。
FIG. 4 (a) shows a cross-sectional shape of the substrate (41) processed by the apparatus shown in FIG. 1 immediately after forming the groove (43) by RIE. (42) is a SiO 2 film. As a result, the corner at the bottom of the groove (43) was rounded to some extent, but the roughness of the side wall of the groove (43) was further worse than before the treatment.

次に、RIEにより溝を形成した後、CDE処理の前に溝
(43)の形成された基板(41)を希釈フッ酸中に浸し
て、溝(43)の内壁表面の自然酸化膜を除去するように
した。その結果、溝(43)の底部及び側壁には荒れのな
い、第4図(b)に示すような形状となった、すなわ
ち、この処理によってCDE自体による荒れの発生が防止
できる上に、RIE直後に存在していた微小な荒れも緩和
されていることが明らかとなった。一方、SiO2マスク
(42)に近接した溝(43)の開口部分付近だけは、エッ
チングされ難く残ることが明らかとなった。
Next, after the grooves are formed by RIE, the substrate (41) on which the grooves (43) are formed is immersed in diluted hydrofluoric acid before CDE treatment to remove a natural oxide film on the inner wall surface of the grooves (43). I did it. As a result, the bottom and side walls of the groove (43) had no roughness, as shown in FIG. 4 (b). That is, this treatment can prevent the occurrence of roughness due to the CDE itself, and can also prevent RIE. It became clear that the minute roughness that existed immediately was also reduced. On the other hand, it became clear that only the vicinity of the opening of the groove (43) close to the SiO 2 mask (42) was hardly etched and remained.

以上の結果はFラジカルによるエンチッグ速度が、酸
素濃度とともに急激に減少することに原因している。す
なわち、SiO2マスクからは、酸素ガスが放出されるた
め、局部的にエッチング速度が低下する。RIE直後の溝
表面にはムラの多い自然酸化膜が存在し、この自然酸化
膜の厚い部分の周囲は全くエッチングされないのに対
し、薄い部分は、エッチングされ、荒れが激しくなる。
The above results are attributable to the fact that the enzymatic velocity due to F radicals rapidly decreases with oxygen concentration. That is, since the oxygen gas is released from the SiO 2 mask, the etching rate locally decreases. A natural oxide film having many irregularities is present on the groove surface immediately after the RIE, and the periphery of the thick portion of the natural oxide film is not etched at all, whereas the thin portion is etched and becomes rough.

次にエッチングマスクの材料として、有機物フォトレ
ジストを用いた場合とSiO2膜を用いた場合のそれぞれの
部分の基板のエッチング形状の関係について第5図によ
り説明する。第5図(a),(b)はシリコン基板(5
1)上の有機物のフォトレジスト(52)をマスクとし
て、前記基板(51)をエッチングしたものである。また
第5図(c),(b)は、SiO(53)をマスクとした場
合である。まず、レジストマスクの場合、後述するSiO2
をマイクとする場合と異なりマスクと接する溝(54)は
開口部分(55)もエッチングされる。すなわち、第5図
(a)のようにマスクを除去してない場合でそのまま酸
素とフッ素によるCDE処理をする場合溝(54)の底部の
角部は丸まるが溝(54)の上部は開口部(55)は丸まら
ない。また第5図(b)のようにマスク(52)を後退さ
せた場合、マスク(52)の真下にえぐれ(56)が生じ
る。従って、レジストマスクの場合、溝(51)上部の開
口部(55)も丸めるにはマスク(52)を完全に除去する
必要がある。この場合、トレンチの溝以外の部分もエッ
チングされてしまう。これに対し、SiO2マスク(53)を
用いた場合、第5図(c)のようにマスクを除去しない
で前述したようなCDE処理を行った場合、マスク(53)
の真下の溝(54)開口部(57)がエッチングされ難く、
他の側壁面に比較して突出する。一方、マスク(53)の
開口部端を溝(54)の側壁面より後退させる(第5図
(d))と、溝の上部の角部(58)も丸めることができ
る。このように酸素を含むSiO2等のマスクを用い、一旦
マスクの開口端を後退させた後で、酸素とフッ素を用い
たCDE処理を行うと、トレンチの溝以外をエッチングせ
ずかつ、溝(54)の上下の角部を丸めることができる。
Next, the relationship between the etching shape of the substrate in each case where an organic photoresist is used and the case where an SiO 2 film is used as the material of the etching mask will be described with reference to FIG. FIGS. 5A and 5B show a silicon substrate (5
1) The substrate (51) is etched using the above organic photoresist (52) as a mask. FIGS. 5C and 5B show the case where SiO (53) is used as a mask. First, in the case of a resist mask, SiO 2
The groove (54) in contact with the mask is also etched at the opening (55), unlike the case of using a microphone. In other words, when the mask is not removed as shown in FIG. 5 (a) and the CDE treatment is performed with oxygen and fluorine, the corner of the bottom of the groove (54) is rounded, but the upper part of the groove (54) is an opening. (55) does not round. When the mask (52) is retracted as shown in FIG. 5 (b), a scuff (56) occurs immediately below the mask (52). Therefore, in the case of a resist mask, it is necessary to completely remove the mask (52) in order to round the opening (55) above the groove (51). In this case, portions other than the trench of the trench are also etched. On the other hand, when the SiO 2 mask (53) is used, when the CDE processing as described above is performed without removing the mask as shown in FIG.
It is difficult to etch the groove (54) opening (57) just below the
It protrudes compared to the other side wall surfaces. On the other hand, when the end of the opening of the mask (53) is retracted from the side wall surface of the groove (54) (FIG. 5 (d)), the upper corner (58) of the groove can also be rounded. When a CDE process using oxygen and fluorine is performed after the opening end of the mask is once retracted using a mask such as SiO 2 containing oxygen as described above, the trench other than the trench is not etched and the trench ( The upper and lower corners of 54) can be rounded.

実施例1 本発明による第1の実施例としてトレンチMOSキャパ
シタの製造方法について述べる。第6図その製造工程の
断面図を示す。まず第6図(a)のように面方位(10
0)比抵抗10Ωcmのシリコンウエハ(61)上に素子分離
のために厚い酸化膜(62)を形成した後、厚さ1000Åの
酸化膜(63)、1000Åのシリコン窒化膜(64)5000Åの
酸化膜(65)を順次堆積してRIEにより加工し、シリコ
ンウエハ(61)のエッチングマスクとして形成する。
Embodiment 1 As a first embodiment of the present invention, a method for manufacturing a trench MOS capacitor will be described. FIG. 6 shows a sectional view of the manufacturing process. First, as shown in FIG.
0) After forming a thick oxide film (62) for device isolation on a silicon wafer (61) with a specific resistance of 10 Ωcm, a 1000 酸化 thick oxide film (63), a 1000 シ リ コ ン silicon nitride film (64), and a 5000 酸化 oxidation The film (65) is sequentially deposited and processed by RIE to form an etching mask for the silicon wafer (61).

次に、第6図(b)のように塩素ガス等をエッチング
ガスとしてRIEにより前記エッチングマスクに対して自
己整合的に例えば深さ3μmの溝(66)を形成した。そ
の後、マスクの除去と溝(66)内壁の自然酸化膜除去の
ために、フッ酸フッ化アンモニウム緩衝液により前記ウ
エハ(61)の処理を行った。
Next, as shown in FIG. 6B, a groove (66) having a depth of, for example, 3 μm was formed in a self-aligned manner with the etching mask by RIE using a chlorine gas or the like as an etching gas. Thereafter, the wafer (61) was treated with an ammonium hydrofluoride buffer for removing the mask and removing the natural oxide film on the inner wall of the groove (66).

その結果、第6図(c)のように上層酸化膜のマスク
(65)が除去されると同時にSiウエハ(61)に接したSi
O2膜(63)が約1000Å後退した。
As a result, as shown in FIG. 6 (c), the mask (65) of the upper oxide film is removed and at the same time, the Si in contact with the Si wafer (61) is removed.
The O 2 film (63) receded by about 1000 °.

次に、第1図に示した如くCDE装置を用いて、CF4を50
atm cm3/分、O2を150atm cm3/分前後装置の反応容器内
に導入する条件で400〔W〕のマイクロ波を放電管に印
加して、1分間処理すると、第6図(d)に示すごと
く、溝(66)の上下の角部(67a),(67b)が丸められ
た。さらに、第6図(e)のように溝(66)内壁に砒素
を拡散し、濃度5×1020cm-3、深さ約2000Åのn型拡散
層(68)を形成した。
Next, using the CDE apparatus as shown in FIG. 1, CF 4 50
atm cm 3 / min, and a microwave of 400 [W] in the conditions of introducing O 2 into a reaction vessel of 150 atm cm 3 / min before and after the device is applied to the discharge tube, and treated for 1 min, FIG. 6 (d ), The upper and lower corners (67a) and (67b) of the groove (66) were rounded. Further, as shown in FIG. 6 (e), arsenic was diffused into the inner wall of the groove (66) to form an n-type diffusion layer (68) having a concentration of 5 × 10 20 cm −3 and a depth of about 2000 °.

次に、マスクの窒化膜(64)及び酸化膜(63)を除去
した後、第6図(f)に示す如く、溝の内壁の前記n型
層(68)上を酸化し、厚さ150Åの酸化膜(69)を形成
する。その後、第6図(g)に示す如く、電極となるリ
ン添加多結晶シリコン(610)を前記n型拡散層(68)
の形成された溝に埋込み、トレンチMOSキャパシタを形
成した。このように形成されたトレンチキャパシタで
は、溝部の上下の角部(67a),(67b)の曲率半径が大
きくなっているため、前記角部上に形成されるゲート酸
化膜(69)厚は、他の酸化膜(69)と比べて薄くなるこ
とがなく、従ってリーク電流が増加して、酸化膜の絶縁
耐圧が低下するという問題を防止することができる。従
がって、この実施例によれば信頼性の高いトレンチMOS
キャパシタを製造することができ、このように形成され
たMOSキャパシタを用いてMOS型dRAM等の半導装置製を形
成すれば、その特性及び信頼性を向上させることができ
る。
Next, after removing the nitride film (64) and the oxide film (63) of the mask, as shown in FIG. 6 (f), the inner wall of the groove is oxidized on the n-type layer (68) to a thickness of 150 .ANG. An oxide film (69) is formed. Thereafter, as shown in FIG. 6 (g), phosphorus-added polycrystalline silicon (610) serving as an electrode is placed on the n-type diffusion layer (68).
And the trench MOS capacitor was formed. In the trench capacitor formed as described above, since the upper and lower corners (67a) and (67b) of the trench have a large radius of curvature, the gate oxide film (69) formed on the corner has a thickness of: It is possible to prevent a problem that the thickness of the oxide film is not reduced as compared with the other oxide film (69), so that the leak current increases and the dielectric strength of the oxide film decreases. Therefore, according to this embodiment, a highly reliable trench MOS
A capacitor can be manufactured. If a semiconductor device such as a MOS type dRAM is formed using the MOS capacitor formed as described above, its characteristics and reliability can be improved.

実際に発明者らが総面積0.1cm2、溝の周辺長50mmのキ
ャパシタについて、絶縁膜(69)の両端に5Vの電圧を印
加したところ、溝の角部を丸めない従来方法で形成した
キャパシタでは10-6Aのリーク電流が流れていたのに対
し、この実施例のように形成したトレンチキャパシタで
はリーク電流は10-9以下に減少させることができた。
When the inventors applied a voltage of 5 V to both ends of the insulating film (69) for a capacitor having a total area of 0.1 cm 2 and a peripheral length of 50 mm, the capacitor formed by a conventional method without rounding the corners of the groove. In this case, a leakage current of 10 −6 A was flowing, whereas the leakage current could be reduced to 10 −9 or less in the trench capacitor formed as in this example.

実施例2 次に本発明による第2の実施例として素子間の分離領
域を形成する例について示す。
Embodiment 2 Next, as a second embodiment of the present invention, an example of forming an isolation region between elements will be described.

第7図(a)は、その工程の断面図である。まず、第
7図(a)に示すように例えばp型の比抵抗10Ωcmのシ
リコンウエハ基板(71)上にSiO2膜をマスク(72)とす
るパターンを形成する。次に、RIEにより前記シリコン
ウエハ(71)に幅1.0μm、深さ0.5μmの溝(73)を加
工する。次にフッ酸−フッ化アンモニウム緩衝液に前記
ウエハを浸漬して第7図(c)の如く溝(73)開口部周
辺のマスクを除去しシリコンウエハ(71)の表面の一部
(74)を露出させた。さらに、第1図に示した如くCDE
装置内にCF4を50atm・cm3/分、O2を150atm・cm3/分のの
条件で導入し、1分30秒エッチングした。その結果、第
7図(d)に示す如く、溝(73)の上下の角部(75
a)、(75b)が丸められた。次に前記溝(73)内・壁に
B+等イオンを加速電圧30KeV、ドーズ量5×10-13cm-2
イオン注入し、p型の反転防止層(76)を形成した。こ
こでB+の注入量は丸められた角部(77)に他の溝部分よ
りも相対的に多く注入され効率よく素子分離が可能とな
る(第7図(e))。さらに溝(73)内部にSiO2膜(7
8)をCVD法等により埋めこんで、素子分離領域(79)を
形成することができる(第7図(f))。実際の半導体
装置ではその後例えば第7図(g)に示すように前記形
成された素子分離領域(79)の両側には、基板(71)表
面にn-層(710)が形成され、さらにその上に酸化膜(7
11)、及び多結晶シリコン電極(712)が形成されたMOS
キャパシタ(720)と、n-層(713)、基板(71)上に形
成されたゲート酸化膜(715)と、さらにその上に形成
された多結晶シリコンゲート電極(714)と、その両側
の前記基板(71)表面にシリコンゲート電極(714)
と、その両側の前記基板(71)表面にソース、ドレイン
となるn-層(713)よりなMOS FET(73)が形成され
る。
FIG. 7A is a cross-sectional view of the step. First, as shown in FIG. 7 (a), a pattern using an SiO 2 film as a mask (72) is formed on a p-type silicon wafer substrate (71) having a specific resistance of 10Ωcm, for example. Next, a groove (73) having a width of 1.0 μm and a depth of 0.5 μm is formed in the silicon wafer (71) by RIE. Next, the wafer is immersed in a hydrofluoric acid-ammonium fluoride buffer to remove the mask around the opening of the groove (73) as shown in FIG. 7 (c), and a part (74) of the surface of the silicon wafer (71) is removed. Was exposed. Furthermore, as shown in FIG.
50 atm · cm 3 / min of CF 4 into the apparatus, the O 2 was introduced under the conditions of 150 atm · cm 3 / minutes, and 1 minute 30 seconds etching. As a result, as shown in FIG. 7D, the upper and lower corners (75
a) and (75b) were rounded. Next, on the inside of the groove (73) and on the wall
Two ions of B + etc. were implanted at an acceleration voltage of 30 KeV and a dose of 5 × 10 −13 cm −2 to form a p-type inversion prevention layer (76). Here, the amount of B + implanted is relatively larger in the rounded corners (77) than in the other groove portions, so that element isolation can be performed efficiently (FIG. 7 (e)). Furthermore, an SiO 2 film (7
By embedding 8) by a CVD method or the like, an element isolation region (79) can be formed (FIG. 7 (f)). In the actual semiconductor device, for example, as shown in FIG. 7 (g), an n layer (710) is formed on the surface of the substrate (71) on both sides of the formed element isolation region (79). Oxide film (7
11), MOS with polycrystalline silicon electrode (712) formed
A capacitor (720), an n - layer (713), a gate oxide film (715) formed on a substrate (71), and a polycrystalline silicon gate electrode (714) formed thereon, Silicon gate electrode (714) on the surface of the substrate (71)
Then, on the surface of the substrate (71) on both sides thereof, a MOS FET (73) composed of an n layer (713) serving as a source and a drain is formed.

この実施例では前述したように素子分離領域(79)の
溝上部の開口部の角部(77)が丸められているためこの
部分に効率よく、B+イオンを注入することができ、p−
n接合の形成された領域への逆方向リーク電流を低減す
ることができる。また角部(77)および側壁のRIEによ
る荒れも抑制されて前記部分が平滑化されるため、表面
準位密度が低下し、小数キャリヤの生成効率を低下する
こともできる。
In this embodiment, since the corner (77) of the opening above the groove of the element isolation region (79) is rounded as described above, B + ions can be efficiently implanted into this portion, and p-
Reverse leakage current to the region where the n-junction is formed can be reduced. In addition, since the corners (77) and the side walls are suppressed from being roughened by RIE, the portions are smoothed, so that the surface state density is reduced, and the generation efficiency of decimal carriers can be reduced.

これらの結果から本発明を、ダイナミックメモリに適
用すればキャパシタの保持特性が大幅に向上する。
From these results, when the present invention is applied to a dynamic memory, the retention characteristics of the capacitor are greatly improved.

実施例3 次に本発明による第3の実施例としてスタックドキャ
パシタ素子を形成する例について図面を用いて説明す
る。
Embodiment 3 Next, as a third embodiment of the present invention, an example of forming a stacked capacitor element will be described with reference to the drawings.

第8図はその工程の断面図である。先ず、第8図
(a)に示す如く、p型の(100)シリコン基板(81)
上に素子分離用の厚い酸化膜(82)を形成し、シリコン
基板(8)上にゲート酸化膜(87)を形緩し、さらにそ
の上にゲートシリコン電極(83)を設け、この電極(8
3)の両側へ基板表面に2つのn-層(84)が形成されたM
OS FET等の素子をあらかじめ形成しておく。さらに絶
縁膜(88)を全面に堆積した後、前記n-層と接続するコ
ンタクトホールを形成し例えば厚さ4000Åのリン添加多
結晶シリコン薄膜(89)を前記n-層上及び絶縁膜(88)
上に堆積する。
FIG. 8 is a cross-sectional view of the process. First, as shown in FIG. 8A, a p-type (100) silicon substrate (81)
A thick oxide film (82) for element isolation is formed thereon, a gate oxide film (87) is formed on a silicon substrate (8), and a gate silicon electrode (83) is further provided thereon. 8
M with two n - layers (84) formed on the substrate surface on both sides of 3)
An element such as an OS FET is formed in advance. Further, after depositing an insulating film (88) on the entire surface, a contact hole connected to the n - layer is formed, and a phosphorous-doped polycrystalline silicon thin film (89) having a thickness of, for example, 4000 Å is formed on the n - layer and the insulating film (88). )
Deposit on top.

次に、第8図(b)に示す如くこのリン添加多結晶シ
リコン膜(89)をRIEによりエッチング加工すると、エ
ッチングされた前記多結晶シリコン(89)部分は急唆な
角部(810)を有している。また、図示はしてないが多
結晶シリコン膜(89表面には多数の粒界が存在し、凹凸
が生じていた。
Next, as shown in FIG. 8 (b), when this phosphorus-doped polycrystalline silicon film (89) is etched by RIE, the etched polycrystalline silicon (89) has sharp edges (810). Have. Although not shown, a polycrystalline silicon film (a large number of grain boundaries existed on the surface of 89, and unevenness was generated.

次に、第8図(c)に示すように20分の1のフッ酸希
釈液で、20秒間前記基板を処理し、多結晶シリコン膜
(89)表面の自然酸化膜を除去した後、前記実施例と同
様にしてCF4 50atm cm3/分、O2 120atm cm3/分の条件で
45秒CDE処理し、500Å程度の多結晶シリコン膜(89)を
エッチングした。その結果図に示すごとく前記多結晶シ
リコン膜(89)のエッチングされた角部(810)は丸め
られて、表面の凹凸も平滑化された。また酸化膜(88)
直上のエッチング加工された部分(811)はエッチング
され難いので、側壁は良好なテーパー状となった。
Next, as shown in FIG. 8 (c), the substrate was treated with a 1/20 hydrofluoric acid diluent for 20 seconds to remove a native oxide film on the surface of the polycrystalline silicon film (89). example and CF 4 50atm cm 3 / min in the same manner, with O 2 120atm cm 3 / min conditions
The CDE treatment was performed for 45 seconds, and the polycrystalline silicon film (89) of about 500 ° was etched. As a result, as shown in the figure, the etched corners (810) of the polycrystalline silicon film (89) were rounded, and the surface irregularities were smoothed. Also oxide film (88)
The etched portion (811) immediately above was difficult to be etched, so that the side wall had a good tapered shape.

さらに、前記リン添加多結晶シリコン膜(810)表面
を酸化して膜厚100Åの酸化膜(812)を形成した後、さ
らにその上にリン添加の多結晶シリコン電極(813)を
積層して形成し、MOSキャパシタを作製した。
Further, after oxidizing the surface of the phosphorus-doped polycrystalline silicon film (810) to form an oxide film (812) having a thickness of 100 mm, a phosphorus-doped polycrystalline silicon electrode (813) is further laminated thereon. Then, a MOS capacitor was manufactured.

このようにして作製されたいわゆるスタックドMOSキ
ャパシタは、従来の多結晶シリコン膜の丸みづけを行な
わない場合と比較して、エッチングにより加工された前
記多結晶シリコンの角部に丸みが付き、その表面をなめ
らかであるので、酸化膜の耐圧は向上し、リーク電流は
大幅に低下する。
The so-called stacked MOS capacitor manufactured in this manner has a rounded corner of the polycrystalline silicon processed by etching, as compared with a conventional case where the polycrystalline silicon film is not rounded, and the surface thereof has Therefore, the breakdown voltage of the oxide film is improved, and the leak current is significantly reduced.

実施例4 本発明による第4の実施例として多層配線を形成する
例について、第9図を用いて説明する。
Fourth Embodiment An example of forming a multilayer wiring as a fourth embodiment according to the present invention will be described with reference to FIG.

比較例として、まず従来の多層配線の形成工程の断面
図を第9図(a)〜(d)に示す。まず、第9図(a)
に示すように半導体基板(91)上全面にSiO2等の絶縁膜
(92)を堆積した後、リン添加多結晶シリコン又はモリ
ブデンシリサイド、タングステン等の配線層(93)を堆
積する。
As a comparative example, FIGS. 9A to 9D are cross-sectional views of a conventional multi-layer wiring forming process. First, FIG. 9 (a)
After depositing an insulating film such as SiO 2 (92) on a semiconductor substrate (91) on the entire surface as shown in, deposited phosphorus-doped polycrystalline silicon or molybdenum silicide, the wiring layer such as tungsten (93).

次に、第9図(b)のように前記配線層(93)をRIE
により所望のパターンに加工する。その後、第9図
(c)の如く、例えば前記配線層(93)表面を酸化等の
方法で、酸化膜(94)を形成する。
Next, as shown in FIG. 9B, the wiring layer (93) is subjected to RIE.
To form a desired pattern. Thereafter, as shown in FIG. 9C, an oxide film (94) is formed on the surface of the wiring layer (93) by, for example, oxidation.

このとき、配線層の下側の角部(95)は前記酸化膜圧
がうすくなり、えぐれが生じる。このように形成された
配線層を被覆するように第2の配線(96)を堆積すると
前記配線層(93)の側壁部分上の前記配線層(97)は薄
くなり、断線を生じやすくなる。また、SiO2膜(94)の
えぐれた部分(95)に入りこんだ配線層(96)は、次の
RIE工程でエッチングする場合に除去しにくく、配線間
のリークの原因となる。
At this time, the oxide film pressure at the lower corner (95) on the lower side of the wiring layer is weakened, and scuffing occurs. When the second wiring (96) is deposited so as to cover the wiring layer thus formed, the wiring layer (97) on the side wall portion of the wiring layer (93) becomes thin, and disconnection easily occurs. Also, the wiring layer (96) penetrating into the recessed portion (95) of the SiO 2 film (94)
It is difficult to remove when etching in the RIE process, which causes leakage between wirings.

これに対し、本発明方法により、多層配線を形成する
実施例を第10図(a)〜(c)に示す。第9図を同一の
部分は同一の符号を付して示す。まず、半導体基板(9
1)上の絶縁膜(92)上に配線層(93)を形成するのは
第9図と全く同様である。その後、第10図(a)に示す
如く、前述した実施例と同様に、第1図に示した装置を
用いてCF450atm cm3/分、O2120atm cm3/分の条件で、1
分間エッチングし、約800Åの多結晶シリコンからなる
配線層表面をエッチングした。前述の実施例と同様、下
地のSiO2膜(92)直上の前記エッチング加工された配線
層(93)との界面はほとんどエッチングが進まず、前記
配線層の上部の角部は図のように側壁がテーパ状の配線
層(93a)となる。次いで、前記配線層(93a)表面に酸
化等により酸化膜(94a)を形成しても界面のえぐれは
生じない。さらに、その状に第2の配線層(96a)を堆
積しても前記配線層(93a)の側壁状の前記第2の配線
層(96a)の膜厚が小さくなることは大幅に緩和され
る。
On the other hand, an embodiment in which a multilayer wiring is formed by the method of the present invention is shown in FIGS. In FIG. 9, the same parts are denoted by the same reference numerals. First, the semiconductor substrate (9
1) Forming the wiring layer (93) on the upper insulating film (92) is exactly the same as in FIG. Then, as shown in FIG. 10 (a), in the same manner as in the above-described embodiment, using the apparatus shown in FIG. 1 under the conditions of CF 4 50 atm cm 3 / min and O 2 120 atm cm 3 / min, 1
Then, the surface of the wiring layer made of polycrystalline silicon of about 800 ° was etched. As in the previous embodiment, almost no etching proceeds on the interface with the etched wiring layer (93) immediately above the underlying SiO 2 film (92), and the upper corner of the wiring layer is as shown in the figure. The sidewall becomes a tapered wiring layer (93a). Next, even if an oxide film (94a) is formed on the surface of the wiring layer (93a) by oxidation or the like, no scuffing of the interface occurs. Furthermore, even if the second wiring layer (96a) is deposited on the second wiring layer (96a), the reduction in the thickness of the side wall-shaped second wiring layer (96a) of the wiring layer (93a) is greatly reduced. .

このようにう本発明による実施例方法を用いれば、多
層の配線構造を形成しても、断線やショートが発生しに
くいので半導体装置の信頼性を大幅に向上することがで
きる。
By using the embodiment method according to the present invention as described above, even if a multilayer wiring structure is formed, disconnection and short circuit hardly occur, so that the reliability of the semiconductor device can be greatly improved.

またこの本実施例では丸めを行う配線層として多結晶
シリコンの例を示したが、他にもモリブデン、タングス
テン等のフッ素と反応して、輝発性の化合物を生じる金
属や、、金属硅化物等の配線材料を用いても、酸素をフ
ッ素との存在比1以上に添加したCDEにより角を丸めら
れることが実験的に確認された。
Further, in this embodiment, an example in which polycrystalline silicon is used as the wiring layer to be rounded is described. However, other metals such as molybdenum and tungsten which react with fluorine to generate a bright compound, or metal silicide It was experimentally confirmed that even when a wiring material such as that described above was used, the corner could be rounded by CDE in which oxygen was added to an abundance ratio of 1 or more with fluorine.

以上、述べてきたように本発明は、上記実施例に限定
されるものではなく、その要旨を逸脱しない範囲で適宜
変形して応用できることは言うまでもない。
As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be appropriately modified and applied without departing from the gist thereof.

〔発明の効果〕〔The invention's effect〕

本発明によれば、単結晶、多結晶等のシリコン基板あ
るいは薄膜、又は金属、金属硅化物の薄膜等にエッチン
グにより形成された溝部、段差部の角部がフッ素に対す
る酸素の存在比が過剰となるようなエッチングガスの作
用により、前記角部を丸めて、前記工程を経て形成され
るトレンチキャパシタ、dRAM等の半導体素子の形成に際
し、生じる絶対耐圧低下等の問題を抑制し、素子の信頼
性を向上せしめることができる。被処理基体、又は膜の
表面の微妙な凹凸が平滑化され、表面準位密度が低下
し、少数キャリアの生成効率を低下することができる。
According to the present invention, a single crystal, a polycrystalline silicon substrate or a thin film, or a metal, a groove formed by etching a metal silicide thin film, or the like, a corner of a stepped portion has an excessive oxygen to fluorine ratio. By the action of the etching gas as described above, the corners are rounded to suppress problems such as a decrease in absolute withstand voltage that occur in the formation of a semiconductor element such as a trench capacitor and a dRAM formed through the above-described steps, and to improve the reliability of the element. Can be improved. Subtle irregularities on the surface of the substrate to be processed or the film are smoothed, the surface state density is reduced, and the efficiency of minority carrier generation can be reduced.

【図面の簡単な説明】 第1図は、本発明に用いられるCDE装置の概略図、第2
図は、本発明による作用を説明するための特性図、第3
図乃至第5図は本発明を説明するための説明図、第6図
は本発明による第1の実施例を説明するための工程断面
図、第7図乃至第10図は他の実施例を説明するための図
である。 11……真空容器、12……試料台、 13……排気口、14……放電管、 15……ガス導入口、16……ガス導入口、 17……導波管、18……マイクロ波発振器、 31,42,53……SiO2マスク、 32,14,51……シリコン基板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a CDE device used in the present invention, FIG.
FIG. 3 is a characteristic diagram for explaining the operation of the present invention, and FIG.
5 to 5 are explanatory views for explaining the present invention, FIG. 6 is a process sectional view for explaining a first embodiment according to the present invention, and FIGS. 7 to 10 are other embodiments. It is a figure for explaining. 11 ... Vacuum container, 12 ... Sample stand, 13 ... Exhaust port, 14 ... Discharge tube, 15 ... Gas inlet, 16 ... Gas inlet, 17 ... Waveguide, 18 ... Microwave Oscillator, 31, 42, 53 ... SiO 2 mask, 32, 14, 51 ... Silicon substrate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−219759(JP,A) 特開 昭56−103424(JP,A) 特開 昭59−172235(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-219759 (JP, A) JP-A-56-103424 (JP, A) JP-A-59-172235 (JP, A)

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属若しくは半導体材料を主成分とする被
処理基体、又は金属若しくは半導体材料を主成分とする
膜が形成された被処理基体を、異方性エッチングにより
加工する工程と、前記被処理基体をプラズマに晒すこと
なく、少なくともフッ素と酸素を含みかつフッ素原子に
対する酸素原子の比率が1以上のガスにより前記金属若
しくは半導体材料を主成分とする被処理基体又は膜の表
面上に薄膜を堆積させながらドライエッチングを行うこ
とを特徴とする半導体装置の製造方法。
A step of processing, by anisotropic etching, a substrate to be processed mainly containing a metal or a semiconductor material, or a substrate to be processed on which a film mainly containing a metal or a semiconductor material is formed; Without exposing the treated substrate to plasma, a thin film is formed on the surface of the treated substrate or the film mainly containing the metal or semiconductor material with a gas containing at least fluorine and oxygen and having a ratio of oxygen atoms to fluorine atoms of 1 or more. A method for manufacturing a semiconductor device, wherein dry etching is performed while depositing.
【請求項2】前記金属若しくは半導体材料として、フッ
素原子と反応して揮発性の化合物を形成する材料を用い
ることを特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。
2. The method according to claim 1, wherein a material that reacts with fluorine atoms to form a volatile compound is used as said metal or semiconductor material.
【請求項3】前記金属若しくは半導体材料として、シリ
コン、金属珪化物、又はタングステン若しくはモリブデ
ンを用いることを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
3. The method according to claim 1, wherein silicon, metal silicide, tungsten or molybdenum is used as said metal or semiconductor material.
【請求項4】前記金属若しくは半導体材料を主成分とす
る被処理基体又は膜は、シリコンを主成分とし、前記薄
膜として、シリコン、フッ素、及び酸素を含む膜を堆積
させることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
4. A patent characterized in that the substrate or film to be processed containing a metal or semiconductor material as a main component has silicon as a main component, and a film containing silicon, fluorine and oxygen is deposited as the thin film. A method for manufacturing a semiconductor device according to claim 1.
【請求項5】前記異方性エッチングにより加工する工程
と、前記ドライエッチング工程の間に、前記被処理基
体、又は前記膜の表面に形成された自然酸化膜を除去す
る工程を含むことを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
5. The method according to claim 1, further comprising a step of removing a natural oxide film formed on the surface of the substrate to be processed or the film, between the step of processing by the anisotropic etching and the step of dry etching. 2. The method of manufacturing a semiconductor device according to claim 1, wherein:
【請求項6】前記ドライエッチングを行う工程に先立
ち、少なくとも前記異方性エッチングにより加工する領
域周辺の前記異方性エッチング工程で用いたマスク材料
を除去する工程を含むことを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
6. The method according to claim 1, further comprising, prior to the step of performing the dry etching, removing a mask material used in the anisotropic etching step at least around a region to be processed by the anisotropic etching. 3. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項7】前記異方性エッチングのマスク材料とし
て、酸素を含む材料を用い、前記異方性エッチングによ
り加工した領域周辺のマスク材料のみ除去して前記ドラ
イエッチングを行うことを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
7. A patent wherein the dry etching is performed by using a material containing oxygen as a mask material for the anisotropic etching and removing only a mask material around a region processed by the anisotropic etching. A method for manufacturing a semiconductor device according to claim 1.
【請求項8】前記被処理基体、又は膜には不純物が添加
され、n型もしくはp型の伝導性をしめすことを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方
法。
8. The method for manufacturing a semiconductor device according to claim 1, wherein an impurity is added to said substrate to be processed or said film to show n-type or p-type conductivity.
【請求項9】前記被処理基体を前記異方性エッチングに
より加工することで前記被処理基体に溝を形成し、前記
ドライエッチング工程の後に前記溝の表面に絶縁膜を形
成し、この絶縁膜が表面に形成された前記溝に電極を形
成することを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
9. A groove is formed in the substrate by processing the substrate by the anisotropic etching, and an insulating film is formed on a surface of the groove after the dry etching step. 2. The method according to claim 1, wherein an electrode is formed in the groove formed on the surface.
【請求項10】前記被処理基体を前記異方性エッチング
により加工することで前記被処理基体に溝を形成し、前
記ドライエッチング工程の後に前記溝内部に絶縁膜を埋
め込んで素子分離領域を形成することを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
10. A substrate is processed by the anisotropic etching to form a groove in the substrate, and after the dry etching step, an insulating film is embedded in the groove to form an element isolation region. 3. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項11】前記膜を前記異方性エッチングにより加
工して電極又は配線層を形成し、前記ドライエッチング
工程の後に前記電極又は配線層を絶縁膜により被覆する
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。
11. An electrode or wiring layer is formed by processing said film by said anisotropic etching, and said electrode or wiring layer is covered with an insulating film after said dry etching step. 2. The method for manufacturing a semiconductor device according to claim 1.
【請求項12】金属若しくは半導体材料を主成分とし、
表面に微細な凹凸が形成された被処理基体、又は金属若
しくは半導体材料を主成分とし、表面に微細な凹凸が形
成された膜を有する被処理気体をプラズマに晒すことな
く、少なくともフッ素と酸素を含みかつフッ素原子に対
する酸素原子の比率が1以上のガスにより、前記金属若
しくは半導体材料を主成分とする被処理基体又は膜の表
面上に薄膜を堆積させながら、ドライエッチングを行う
ことを特徴とする半導体装置の製造方法。
12. A metal or semiconductor material as a main component,
Substrate to be processed with fine irregularities formed on the surface, or a metal or semiconductor material as a main component, without exposing the gas to be processed having a film with fine irregularities on the surface to plasma, at least fluorine and oxygen Dry etching is performed while depositing a thin film on a surface of a substrate or a film containing the metal or semiconductor material as a main component by using a gas containing and having a ratio of oxygen atoms to fluorine atoms of 1 or more. A method for manufacturing a semiconductor device.
【請求項13】前記金属若しくは半導体材料として、フ
ッ素原子と反応して揮発性の化合物を形成する材料を用
いることを特徴とする特許請求の範囲第12項記載の半導
体装置の製造方法。
13. The method for manufacturing a semiconductor device according to claim 12, wherein a material which reacts with fluorine atoms to form a volatile compound is used as said metal or semiconductor material.
【請求項14】前記金属若しくは半導体材料として、シ
リコン、金属珪化物、又はタングステン若しくはモリブ
デンを用いることを特徴とする特許請求の範囲第12項記
載の半導体装置の製造方法。
14. The method according to claim 12, wherein silicon or metal silicide, or tungsten or molybdenum is used as said metal or semiconductor material.
【請求項15】前記金属若しくは半導体材料を主成分と
する被処理基体又は膜は、シリコンを主成分とし、前記
薄膜として、シリコン、フッ素、及び酸素を含む膜を堆
積させることを特徴とする特許請求の範囲第12項記載の
半導体装置の製造方法。
15. A substrate or film to be processed containing a metal or a semiconductor material as a main component, wherein silicon is a main component, and a film containing silicon, fluorine and oxygen is deposited as the thin film. 13. The method for manufacturing a semiconductor device according to claim 12.
JP62213083A 1987-08-28 1987-08-28 Method for manufacturing semiconductor device Expired - Lifetime JP2635607B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62213083A JP2635607B2 (en) 1987-08-28 1987-08-28 Method for manufacturing semiconductor device
DE3829015A DE3829015C2 (en) 1987-08-28 1988-08-26 Method of manufacturing a semiconductor device with rounded corner portions
KR1019880010924A KR920004540B1 (en) 1987-08-28 1988-08-27 Manufacturing method of semiconductor device
US08/029,307 US5258332A (en) 1987-08-28 1993-03-08 Method of manufacturing semiconductor devices including rounding of corner portions by etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62213083A JP2635607B2 (en) 1987-08-28 1987-08-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6457623A JPS6457623A (en) 1989-03-03
JP2635607B2 true JP2635607B2 (en) 1997-07-30

Family

ID=16633269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62213083A Expired - Lifetime JP2635607B2 (en) 1987-08-28 1987-08-28 Method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP2635607B2 (en)
KR (1) KR920004540B1 (en)
DE (1) DE3829015C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6482701B1 (en) 1999-08-04 2002-11-19 Denso Corporation Integrated gate bipolar transistor and method of manufacturing the same
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129854A (en) * 1989-10-16 1991-06-03 Toshiba Corp Manufacture of semiconductor device
EP0439727A3 (en) * 1990-02-01 1991-10-02 Siemens Aktiengesellschaft Process to make grooves in silicon substrates for high density integrated circuits
KR960006714B1 (en) * 1990-05-28 1996-05-22 가부시끼가이샤 도시바 Semiconductor device fabrication process
JP3400846B2 (en) * 1994-01-20 2003-04-28 三菱電機株式会社 Semiconductor device having trench structure and method of manufacturing the same
KR100223586B1 (en) * 1996-05-22 1999-10-15 윤종용 Rounding manufacturing process of lower part of trench
WO1999024172A1 (en) * 1997-11-12 1999-05-20 Abb K.K. Automatic coating method and apparatus
KR20000013397A (en) * 1998-08-07 2000-03-06 윤종용 Manufacturing method of trench isolation
US6762129B2 (en) * 2000-04-19 2004-07-13 Matsushita Electric Industrial Co., Ltd. Dry etching method, fabrication method for semiconductor device, and dry etching apparatus
TW523816B (en) 2000-06-16 2003-03-11 Gen Semiconductor Inc Semiconductor trench device with enhanced gate oxide integrity structure
KR20060087875A (en) * 2005-01-31 2006-08-03 주식회사 하이닉스반도체 Semiconductor device with step gate and method for manufacturing the same
JP2008193107A (en) * 2008-02-18 2008-08-21 Toshiba Corp Manufacturing method of semiconductor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103424A (en) * 1980-01-22 1981-08-18 Toshiba Corp Plasma etching method
JPS5712533A (en) * 1980-06-26 1982-01-22 Fujitsu Ltd Manufacture of semiconductor device
JPS57137472A (en) * 1981-02-17 1982-08-25 Nec Corp Etching method for polycrystalline silicon
JPS5817619A (en) * 1981-07-23 1983-02-01 Toshiba Corp Forming method for pattern
JPS59172235A (en) * 1983-03-18 1984-09-28 Toshiba Corp Etching method of semiconductor substrate according to gas plasma
JPS59172234A (en) * 1983-03-18 1984-09-28 Toshiba Corp Controlling method of taper angle according to gas plasma
US4484978A (en) * 1983-09-23 1984-11-27 Fairchild Camera & Instrument Corp. Etching method
JPH073858B2 (en) * 1984-04-11 1995-01-18 株式会社日立製作所 Method for manufacturing semiconductor device
JPS60219759A (en) * 1984-04-16 1985-11-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor ic device
JPS6154630A (en) * 1984-08-27 1986-03-18 Hitachi Ltd Dry etching process
US4662059A (en) * 1985-09-19 1987-05-05 Rca Corporation Method of making stabilized silicon-on-insulator field-effect transistors having 100 oriented side and top surfaces

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482701B1 (en) 1999-08-04 2002-11-19 Denso Corporation Integrated gate bipolar transistor and method of manufacturing the same
US6469345B2 (en) 2000-01-14 2002-10-22 Denso Corporation Semiconductor device and method for manufacturing the same
US6864532B2 (en) 2000-01-14 2005-03-08 Denso Corporation Semiconductor device and method for manufacturing the same
US7354829B2 (en) 2000-01-14 2008-04-08 Denso Corporation Trench-gate transistor with ono gate dielectric and fabrication process therefor
US6521538B2 (en) 2000-02-28 2003-02-18 Denso Corporation Method of forming a trench with a rounded bottom in a semiconductor device

Also Published As

Publication number Publication date
JPS6457623A (en) 1989-03-03
DE3829015C2 (en) 1996-07-11
DE3829015A1 (en) 1989-04-06
KR920004540B1 (en) 1992-06-08
KR890004411A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US5258332A (en) Method of manufacturing semiconductor devices including rounding of corner portions by etching
US7772671B2 (en) Semiconductor device having an element isolating insulating film
JP2635607B2 (en) Method for manufacturing semiconductor device
JP2804037B2 (en) Dry etching method
JPH11224947A (en) Semiconductor device and manufacture thereof
US7754610B2 (en) Process for etching tungsten silicide overlying polysilicon particularly in a flash memory
US5164331A (en) Method of forming and etching titanium-tungsten interconnects
US7262101B2 (en) Method of manufacturing a semiconductor integrated circuit device
JPH06260497A (en) Semiconductor device and manufacture thereof
US20210074829A1 (en) Semiconductor structure and fabrication method thereof
US6326670B1 (en) Semiconductor device and method for manufacturing the same
CN109216433A (en) The production method of grid on flush type character line and fin structure
KR100799129B1 (en) Method of manufacturing capacitor for semiconductor memory device
US6818505B2 (en) Non-volatile semiconductor memory device and manufacturing method thereof
US6744113B2 (en) Semiconductor device with element isolation using impurity-doped insulator and oxynitride film
US6797596B2 (en) Sacrificial deposition layer as screening material for implants into a wafer during the manufacture of a semiconductor device
JP2001127288A (en) Manufacturing method of gate structure
JP3476184B2 (en) Trench capacitor and method of manufacturing trench capacitor
JP3872069B2 (en) Manufacturing method of semiconductor device
JPS63166230A (en) Dry etching method
US20060115967A1 (en) Methods of manufacturing a semiconductor device
JP2877354B2 (en) Surface treatment method and semiconductor device manufacturing method
JP2000315768A (en) Fabrication of semiconductor device
WO2021204291A1 (en) Semiconductor structure and forming method therefor
WO2024045259A1 (en) Semiconductor structure and manufacturing method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11