JP2623302B2 - Aluminum alloy for forming and female screw processing and method for producing the same - Google Patents

Aluminum alloy for forming and female screw processing and method for producing the same

Info

Publication number
JP2623302B2
JP2623302B2 JP63178780A JP17878088A JP2623302B2 JP 2623302 B2 JP2623302 B2 JP 2623302B2 JP 63178780 A JP63178780 A JP 63178780A JP 17878088 A JP17878088 A JP 17878088A JP 2623302 B2 JP2623302 B2 JP 2623302B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
female screw
forming
less
average crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63178780A
Other languages
Japanese (ja)
Other versions
JPH0230729A (en
Inventor
詔司 古賀
一徳 小林
正和 平野
光雄 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63178780A priority Critical patent/JP2623302B2/en
Publication of JPH0230729A publication Critical patent/JPH0230729A/en
Application granted granted Critical
Publication of JP2623302B2 publication Critical patent/JP2623302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ネジ特性に優れた成形及びメスネジ加工用
アルミニウム合金の製造を関し、更に詳しくは、メスネ
ジ破壊トルク強度の優れた成形及びメスネジ加工用アル
ミニウム合金とその製造方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to forming with excellent screw properties and manufacturing an aluminum alloy for female screw processing, and more particularly to forming and female screw processing with excellent female screw breaking torque strength. The present invention relates to an aluminum alloy for use and a method for producing the same.

(従来の技術) 最近、電気機器、特にVTR、オーディオ等の弱電気製
品のシャシー、放熱板、パネル板等の部品に磁気シール
ド性の確保並びに軽量化の目的から、アルミニウム合金
が使用され始めている。
(Prior Art) Recently, aluminum alloys have begun to be used for components such as chassis, heat sinks, panel boards, and the like of electric appliances, in particular, weak electric products such as VTRs and audios, in order to secure magnetic shielding properties and reduce weight. .

このような用途に供されるアルミニウム合金において
は、強度及び成形性が優れていることや、耐食性が良い
こと等が要求されるため、従来、純アルミや、Al−Mg系
合金のA5052、5083−O材等が使用されている。
Aluminum alloys used for such applications are required to have excellent strength and formability, good corrosion resistance, etc., and therefore, conventionally, pure aluminum or Al-Mg alloy A5052, 5083 -O material or the like is used.

そして、上記製品を製作する場合には、アルミニウム
合金圧延板を必須形状に成形加工後、メスネジ加工した
得たメスネジと、鋼製オスネジとにより組立てを行って
いる。
When the above product is manufactured, a rolled aluminum alloy plate is formed into an essential shape and then assembled with a female screw obtained by female screw processing and a steel male screw.

(発明が解決しようとする課題) しかし、純アルミやAl−Mg系合金のA5052及び5083−
O材は、成形性や耐食性は優れているものの、上記部品
を組立てる際、精度向上のための鋼製オスネジによる高
締付トルクに対し、アルミニウムからなるメスネジ部の
破壊トルク強度が低いため、メスネジ部が破壊し、ネジ
止めできなくなると云う問題があった。
(Problems to be solved by the invention) However, pure aluminum and A5052 and 5083-
O material is excellent in formability and corrosion resistance, but when assembling the above parts, the female screw part made of aluminum has a low fracture torque strength compared to the high tightening torque of a male screw made of steel to improve accuracy. There was a problem that the part was broken and could not be screwed.

そこで、従来より、この問題を解決する方法として、
板厚を厚くして破壊トルク強度を高めることが行われて
いるが、これでは軽量化ができなくなる。
Therefore, as a method of solving this problem,
Although the thickness of the plate is increased to increase the breaking torque strength, the weight cannot be reduced.

一方、ネジ特性の向上のためにAl−Mg−Zn系、Al−Cu
系等の強度の高い材料を使用することにより、ネジ特性
の向上は可能であるが、逆に成形性が悪くなる等、ネジ
特性と成形性は相反すると云う問題があった。
On the other hand, Al-Mg-Zn based, Al-Cu
The use of a high-strength material such as a system can improve the screw properties, but on the other hand, there is a problem that the screw properties and formability are contradictory, such as poor moldability.

本発明は、上記従来技術の問題点を解決するためにな
されたものであって、必要な成形性及び強度を有し、特
にネジ特性に優れた成形及びメスネジ加工用アルミニウ
ム合金を供給し、またその製造方法を提供することを目
的とするものである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and has the necessary formability and strength, and provides an aluminum alloy for forming and female screw processing having particularly excellent screw characteristics, It is an object of the present invention to provide a method of manufacturing the same.

(課題を解決するための手段) 本発明者は、上記問題点を鑑みて鋭意研究を行った結
果化学成分調整すると共に熱処理、圧延条件を最適化
し、材料の組織を調整することにより、可能になること
を見い出し、ここに本発明をなすに至ったものである。
(Means for Solving the Problems) The present inventor has made intensive studies in view of the above problems, and as a result, has made possible by adjusting the chemical composition, optimizing the heat treatment and rolling conditions, and adjusting the structure of the material. It has been found that the present invention has been made.

すなわち、本発明は、Mg:3〜5%及びCu:0.3〜1.5%
を必須成分として含み、更にMn:0.03〜0.3%、Cr:0.03
〜0.3%、Ti:0.005〜0.2%及びB:0.001〜0.05%の1種
又は2種以上を含み、残部がAl及び不可避的不純物から
なり、板表面において平均結晶粒系が40μm以下の組織
を有することを特徴とする成形及びメスネジ加工用アル
ミニウム合金を要旨するものである。
That is, the present invention provides: Mg: 3 to 5% and Cu: 0.3 to 1.5%
As an essential component, further Mn: 0.03-0.3%, Cr: 0.03
~ 0.3%, Ti: 0.005 ~ 0.2% and B: 0.001 ~ 0.05% containing one or more kinds, the balance consists of Al and unavoidable impurities, and the average grain system on the plate surface has a structure of 40 μm or less. It is an object of the present invention to provide an aluminum alloy for forming and processing a female screw, which is characterized by having an aluminum alloy.

また、かゝる成形及びメスネジ加工用アルミニウム合
金の製造方法は、上記化学成分を有するアウミニウム合
金につき、480〜550℃×1〜48時間の均質化処理を施し
た後、熱間圧延し、最終冷間加工率30%以上で冷間圧延
した所定の板厚とし、その後軟質化処理を施して、板表
面において平均結晶粒径が40μm以下の組織を得ること
を特徴とするものである。
In addition, the method for producing the aluminum alloy for forming and female screw processing is such that after subjecting the aluminium alloy having the above chemical components to a homogenization treatment at 480 to 550 ° C. for 1 to 48 hours, hot rolling is performed. The steel sheet is characterized in that a predetermined thickness obtained by cold rolling at a cold working ratio of 30% or more and then softening treatment is performed to obtain a structure having an average crystal grain size of 40 μm or less on the sheet surface.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

先ず、本発明における化学成分の限定理由を説明す
る。
First, the reasons for limiting the chemical components in the present invention will be described.

Mg: Mgはネジ特性及び強度の向上を寄与する元素である
が、3%未満ではその効果が少なく、また5%を超える
とネジ特性、強度等の改善効果が飽和すると共に、通常
の工業的製造が困難になる。よって、Mg量は3〜5%の
範囲とする。
Mg: Mg is an element that contributes to the improvement of the screw properties and strength. However, if it is less than 3%, the effect is small. Manufacturing becomes difficult. Therefore, the Mg content is in the range of 3 to 5%.

Cu: Cuは特にネジ特性の向上に寄与する元素であり、Mgと
共存するとその効果は更に向上する。しかし、0.3%未
満ではその効果が少なく、また1.5%を超えるとネジ特
性の改善効果が飽和すると共に、通常の工業的製造が困
難になる。よって、Cu量は0.3〜1.5%の範囲とする。
Cu: Cu is an element particularly contributing to the improvement of screw properties, and its effect is further improved when coexisting with Mg. However, if it is less than 0.3%, the effect is small, and if it exceeds 1.5%, the effect of improving the screw characteristics is saturated, and ordinary industrial production becomes difficult. Therefore, the Cu content is in the range of 0.3 to 1.5%.

本発明においては上記の2元素Mg、Cuを必須成分とす
るが、以下の元素の1種又は2種以上を適量にて添加す
る。
In the present invention, the above two elements Mg and Cu are essential components, but one or more of the following elements are added in an appropriate amount.

Mn: Mnはネジ特性及び成形加工性の向上に寄与する元素で
あるが、0.03%未満ではその効果が少なく、また0.2%
を超えるとネジ特性及び成形加工性が悪くなる。よっ
て、Mn量は0.03〜0.2%の範囲とする。
Mn: Mn is an element that contributes to the improvement of screw properties and formability, but less than 0.03% has little effect, and 0.2%
Exceeding the above results in poor screw characteristics and moldability. Therefore, the Mn content is in the range of 0.03 to 0.2%.

Cr: Crは強度の向上並びにネジ特性の向上に寄与する元素
であるが、0.03%未満ではその効果が少ない。また0.2
%を超えると強度の向上とネジ破壊トルク強度の改善効
果が飽和すると共に、成形加工性が著しく悪くなる。よ
って、Cr量は0.03〜0.2%の範囲とする。
Cr: Cr is an element that contributes to the improvement of the strength and the screw properties, but the effect is small when it is less than 0.03%. Also 0.2
%, The effect of improving the strength and improving the thread breaking torque strength is saturated, and the formability is significantly deteriorated. Therefore, the Cr content is in the range of 0.03 to 0.2%.

Ti: Tiは鋳造組織を微細化し、成形性向上に寄与する元素
であるが、0.005%未満ではその効果がなく、また0.2%
を超えると巨大金属化合物を成形し、成形加工性が悪く
なる。よつて、Ti量は0.005〜0.2%の範囲とする。
Ti: Ti is an element that refines the cast structure and contributes to the improvement of formability. However, if it is less than 0.005%, it has no effect, and 0.2%
If it exceeds 300, a giant metal compound is formed, and the moldability deteriorates. Therefore, the Ti content is in the range of 0.005 to 0.2%.

B: BはTiと同様に、鋳造組織の微細化、成形性向上に寄
与する元素であるが、0.001%未満ではその効果がな
く、0.05%を超えると巨大金属間化合物を生成し、成形
加工性が悪くなる。
B: Similar to Ti, B is an element that contributes to the refinement of the cast structure and the improvement of the formability. However, if it is less than 0.001%, there is no effect. Worse.

よって、B量は0.001〜0.05%の範囲とする。 Therefore, the B amount is in the range of 0.001 to 0.05%.

なお、上記アルミニウム合金には不可避的に不純物が
含まれるが、不純物は本発明の効果を損なわない限度で
許容される。
Although the aluminum alloy inevitably contains impurities, the impurities are allowed as long as the effects of the present invention are not impaired.

次に、本発明における熱処理、圧延条件について説明
する。
Next, the heat treatment and rolling conditions in the present invention will be described.

上記化学成分を有するアルミニウム合金は常法により
溶製、鋳造するが、得られた鋳塊に対しては、480〜550
℃の範囲内の温度で4〜48時間の均質化処理を施す。こ
のような均質化処理を行うことにより、ネジ特性の向上
に効果のあるMg、Cuを十分に拡散固溶させてミクロ偏析
をなくし、更に同時に組織を安定化させ、ネジ特性及び
強度に影響するMn、Cu、Ti等の微細均一に析出させるこ
とができる。しかし、処理温度が480℃未満では上述の
効果が不十分であり、一方、550℃で超えればバーニン
グを生じる恐れがある。また処理時間が1時間未満では
その効果が少なく、48時間が超えると通常の工業的製造
法では経済的でなくなる。したがって、均質化処理の条
件は480〜550℃×1〜48時間とする。
Aluminum alloy having the above chemical components is melted and cast by a conventional method, but for the obtained ingot, 480 to 550
A homogenization treatment is carried out at a temperature in the range of ° C. for 4 to 48 hours. By performing such a homogenization treatment, Mg and Cu, which are effective in improving the screw properties, are sufficiently diffused and solid-solved to eliminate microsegregation, and at the same time, stabilize the structure and affect the screw properties and strength. Mn, Cu, Ti, etc. can be finely and uniformly deposited. However, if the processing temperature is lower than 480 ° C., the above-mentioned effects are insufficient, while if it is higher than 550 ° C., burning may occur. When the treatment time is less than 1 hour, the effect is small, and when the treatment time is more than 48 hours, it is not economical by the usual industrial production method. Therefore, the conditions for the homogenization treatment are 480-550 ° C. × 1-48 hours.

均質化処理後は、通常の方法で熱間圧延を施し、更に
その後、最終加工率30%以上の冷間圧延を行い、所定の
板厚とする。しかし、冷間圧延において最終冷間加工率
が30%未満では、その後の熱処理で再結晶微細化ができ
ず、平均結晶粒径が40μm以上となり、また固溶化促進
が行われない。このため、ネジ特性の向上、強度の向上
が十分でなくなる。
After the homogenization treatment, hot rolling is performed by an ordinary method, and thereafter, cold rolling is performed at a final working ratio of 30% or more to obtain a predetermined thickness. However, if the final cold work ratio is less than 30% in cold rolling, recrystallization and refinement cannot be performed by the subsequent heat treatment, the average crystal grain size becomes 40 μm or more, and the solution treatment is not promoted. For this reason, the screw characteristics and strength are not sufficiently improved.

次いで、最終熱処理として軟質化処理を施すが、その
条件は特に制限されない。例えば、330〜550℃で通常の
バッチ炉による処理、或いは連続加熱処理装置(CAL)
による処理のどちらでも良いが、強いて云えば、CAL法
の方がバッチ法に比べて結晶粒径微細化ができ、ネジ特
性、ベーク強度の向上に好ましい。
Next, a softening treatment is performed as a final heat treatment, but the conditions are not particularly limited. For example, normal batch furnace processing at 330-550 ° C, or continuous heating processing equipment (CAL)
The CAL method is more preferable than the batch method in that the crystal grain size can be reduced and the screw characteristics and bake strength can be improved.

上記製造のプロセスにより、最終熱処理後に得られる
組織は、平均結晶粒径が40μm以下のものである。本発
明者の実験研究によれば、圧延→最終熱処理後の結晶粒
径はネジ特性に大きく影響し、40μmを超えるとネジ特
性が悪くなるので、40μm以下にコントロールする必要
があることが判明した。勿論、前述の化学成分の調整と
製造条件との組合せによりはじめて、このような所定の
組織が得られることは云うまでもない。
The structure obtained after the final heat treatment by the above manufacturing process has an average crystal grain size of 40 μm or less. According to the experimental study of the present inventor, it has been found that the crystal grain size after rolling → final heat treatment has a large effect on the screw properties, and when it exceeds 40 μm, the screw properties deteriorate, so that it is necessary to control the crystal grain size to 40 μm or less. . Of course, it is needless to say that such a predetermined structure can be obtained only by the combination of the adjustment of the chemical components and the manufacturing conditions described above.

次に本発明の実施例を示す。 Next, examples of the present invention will be described.

(実施例) 第1表に示す化学成分を有する各種アルミニウム合金
を通常の方法により溶製、鋳造し、得られた鋳塊に対し
て第2表に示す条件の均質化処理を施した後、板厚6mm
まで熱間圧延した。次いで、第2表に示す最終冷間加工
率にて板厚1mmまで冷間圧延し、最終熱処理として、以
下の2種類の条件の軟質化処理を施した。
(Examples) Various aluminum alloys having the chemical components shown in Table 1 were melted and cast by a usual method, and the obtained ingot was subjected to a homogenization treatment under the conditions shown in Table 2, Board thickness 6mm
To hot rolling. Next, the steel sheet was cold-rolled to a thickness of 1 mm at a final cold working rate shown in Table 2 and subjected to softening treatment under the following two conditions as a final heat treatment.

(A)480〜530℃×10秒のCAL処理 (B)350℃×3hrのバッチ処理 なお、各アルミニウム合金に対する均質化利条件、最
終冷間加工率、最終熱処理条件は第3表に示す組み合せ
とした。
(A) CAL treatment at 480-530 ° C x 10 seconds (B) Batch treatment at 350 ° C x 3hr The homogenization conditions, final cold working rate, and final heat treatment conditions for each aluminum alloy are combinations shown in Table 3. And

得られた供試片(厚さ1mm)についてM3、M4のネジ加
工を行ってメスネジ部を作成し、鋼製のオスネジによる
ネジ特性(ネジ破壊トルク性)を調べた。その結果を機
械的性質と共に第3表に示す。
The obtained test piece (thickness: 1 mm) was subjected to M3 and M4 screw processing to form a female screw portion, and the screw characteristics (screw breaking torque) of a male steel screw were examined. The results are shown in Table 3 together with the mechanical properties.

なお、ネジ破壊トルクの測定では、20mm角試験片の中
心にタップでネジ加工を行ってメスネジ部を形成した
後、鋼製オスネジに座金を使用してトルク・ディテター
にセットし、電動ドライバーにより鋼製オスネジを回転
させ締付けてメスネジ部が破壊した時のトルクを測定し
た。潤滑は無潤滑である。
In the measurement of the screw breaking torque, a female screw was formed by tapping the center of a 20 mm square test piece with a tap, and then the steel male screw was set on a torque detector using a washer, and the steel screw was set with an electric screwdriver. The torque at the time when the female screw part was broken by rotating and tightening the male screw made was measured. Lubrication is unlubricated.

第3表から明らかなように、本発明の成分範囲内の合
金No.1〜No.4について、本発明範囲内の条件で熱処理及
び圧延を施した場合(本発明例No.1〜No.7)は、いずれ
もネジ特性が非常に優れ、かつ、成形性及び強度も優れ
ていることが確認された。
As is clear from Table 3, alloys No. 1 to No. 4 within the component range of the present invention were subjected to heat treatment and rolling under the conditions within the range of the present invention (Examples of the present invention No. 1 to No. 4). In 7), it was confirmed that the screw characteristics were all excellent and the moldability and strength were also excellent.

これに対し、従来のA1100、5052、5083についての比
較例No.11〜No.13や、本発明範囲外の化学成分を有する
ものについての比較例No.5、更には本発明範囲内の化学
成分を有するものの、熱処理条件或いは冷間圧延条件が
本発明範囲外の比較例No.8〜No.9は、いずれもネジ特性
や成形性が悪くなっている。
On the other hand, Comparative Examples No. 11 to No. 13 for the conventional A1100, 5052, 5083, and Comparative Example No. 5 for those having a chemical component outside the scope of the present invention, and further, the chemicals within the scope of the present invention. Although Comparative Examples No. 8 to No. 9 having the components but heat treatment conditions or cold rolling conditions were out of the range of the present invention, the screw characteristics and the formability were all poor.

なお、圧延条件については前以って予備テストを実施
し、まず、第1表中の合金No.1について第2表の製造プ
ロセス(ニ)の均質化処理を施し、次いで熱間圧延を実
施したが、熱間圧延時に表面割れ、耳割れが発生したの
で、以後の試験を中心した。
Preliminary tests were conducted on the rolling conditions in advance. First, the alloy No. 1 in Table 1 was subjected to the homogenization treatment of the production process (d) in Table 2, and then hot rolling was performed. However, surface cracks and edge cracks occurred during hot rolling, so the subsequent tests were mainly conducted.

また、最終冷間圧延率30%未満の条件を場合には、第
3表中の比較例No.9に示した以外は、その後の熱処理で
再結晶粒径が大きくなりすぎて、特にネジ特性が悪く、
伸び、エリクセン値も低く、成形加工性が著しく悪くな
ったため、本実施例の試験より除外した。
In addition, when the condition of the final cold rolling reduction was less than 30%, except for the case of Comparative Example No. 9 in Table 3, the recrystallization grain size became too large in the subsequent heat treatment, and especially the screw characteristics Is bad,
Since the elongation and Erichsen value were low, and the moldability was significantly deteriorated, it was excluded from the test of this example.

(発明の効果) 以上詳述したように、本発明によれば、ネジ特性と成
形性が要求される成形加工品に使用されるアルミニウム
合金圧延板として、従来の1100、5052、5083等と同等以
上の強度並びに成形性を有すると同時に、特にネジとし
ての機械的性質が格段に優れたアルミニウム合金を得る
ことができる。
(Effects of the Invention) As described in detail above, according to the present invention, a rolled aluminum alloy plate used for a formed product requiring screw properties and formability is equivalent to conventional 1100, 5052, 5083, etc. An aluminum alloy having the above strength and formability, and at the same time, having particularly excellent mechanical properties as a screw can be obtained.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で(以下、同じ)、Mg:3〜5%及び
Cu:0.3〜1.5%を必須成分として含み、更にMn:0.03〜0.
3%を含み、残部がAl及び不可避的不純物からなり、板
表面において平均結晶粒径が40μm以下の組織を有する
ことを特徴とする成形及びメスネジ加工用アルミニウム
合金。
(1) Mg: 3 to 5% by weight (hereinafter the same) and
Cu: 0.3 to 1.5% as an essential component, and Mn: 0.03 to 0.
An aluminum alloy for forming and female screw working, characterized by containing 3%, with the balance being Al and unavoidable impurities, and having a structure having an average crystal grain size of 40 μm or less on the plate surface.
【請求項2】Mg:3〜5%及びCu:0.3〜1.5%を必須成分
として含み、更にCr:0.03〜0.3%を含み、残部がAl及び
不可避的不純物からなり、板表面において平均結晶粒径
が40μm以下の組織を有することを特徴とする成形及び
メスネジ加工用アルミニウム合金。
2. An alloy containing Mg: 3 to 5% and Cu: 0.3 to 1.5% as essential components, further containing Cr: 0.03 to 0.3%, and the balance consisting of Al and unavoidable impurities. An aluminum alloy for forming and machining a female screw, having a structure having a diameter of 40 μm or less.
【請求項3】Mg:3〜5%及びCu:0.3〜1.5%を必須成分
として含み、更にTi:0.005〜0.2%及びB:0.001〜0.05%
のいずれか一方又は双方を含み、残部がAl及び不可避的
不純物からなり、板表面において平均結晶粒径が40μm
以下の組織を有することを特徴とする成形及びメスネジ
加工用アルミニウム合金。
3. An essential component containing Mg: 3-5% and Cu: 0.3-1.5%, and further Ti: 0.005-0.2% and B: 0.001-0.05%.
Containing either one or both, the balance consisting of Al and inevitable impurities, the average crystal grain size on the plate surface is 40μm
An aluminum alloy for forming and machining a female screw, having the following structure.
【請求項4】Mg:3〜5%及びCu:0.3〜1.5%を必須成分
として含み、更にMn:0.03〜0.3%、Cr:0.03〜0.3%を含
み、残部がAl及び不可避的不純物からなり、板表面にお
いて平均結晶粒径が40μm以下の組織を有することを特
徴とする成形及びメスネジ加工用アルミニウム合金。
4. An essential component containing Mg: 3 to 5% and Cu: 0.3 to 1.5%, further containing Mn: 0.03 to 0.3%, Cr: 0.03 to 0.3%, with the balance being Al and unavoidable impurities. An aluminum alloy for forming and female screw working, characterized in that the plate surface has a structure having an average crystal grain size of 40 μm or less.
【請求項5】Mg:3〜5%及びCu:0.3〜1.5%を必須成分
として含み、更にMn:0.03〜0.3%と、Ti:0.005〜0.2%
及びB:0.001〜0.05%のいずれか一方又は双方を含み、
残部がAl及び不可避的不純物からなり、板表面において
平均結晶粒径が40μm以下の組織を有することを特徴と
する成形及びメスネジ加工用アルミニウム合金。
5. It contains Mg: 3-5% and Cu: 0.3-1.5% as essential components, and further contains 0.03-0.3% of Mn and 0.005-0.2% of Ti.
And B: including one or both of 0.001 to 0.05%,
An aluminum alloy for forming and female screw processing, characterized in that the balance consists of Al and unavoidable impurities, and has a structure having an average crystal grain size of 40 μm or less on the plate surface.
【請求項6】Mg:3〜5%及びCu:0.3〜1.5%を必須成分
として含み、更にCr:0.03〜0.3%と、Ti:0.005〜0.2%
及びB:0.001〜0.05%のいずれか一方又は双方を含み、
残部がAl及び不可避的不純物からなり、板表面において
平均結晶粒径が40μm以下の組織を有することを特徴と
する成形及びメスネジ加工用アルミニウム合金。
6. The alloy contains Mg: 3-5% and Cu: 0.3-1.5% as essential components, and further contains Cr: 0.03-0.3% and Ti: 0.005-0.2%.
And B: including one or both of 0.001 to 0.05%,
An aluminum alloy for forming and female screw processing, characterized in that the balance consists of Al and unavoidable impurities, and has a structure with an average crystal grain size of 40 μm or less on the plate surface.
【請求項7】Mg:3〜5%及びCu:0.3〜1.5%を必須成分
として含み、更にMn:0.03〜0.3%、Cr:0.03〜0.3%と、
Ti:0.005〜0.2%及びB:0.001〜0.05%のいずれか一方又
は双方を含み、残部がAl及び不可避的不純物からなり、
板表面において平均結晶粒径が40μm以下の組織を有す
ることを特徴とする成形及びメスネジ加工用アルミニウ
ム合金。
7. It contains Mg: 3-5% and Cu: 0.3-1.5% as essential components, further contains Mn: 0.03-0.3%, Cr: 0.03-0.3%,
Ti: 0.005 to 0.2% and B: one or both of 0.001 to 0.05%, the balance consisting of Al and inevitable impurities,
An aluminum alloy for forming and female screw processing, characterized in that the plate surface has a structure having an average crystal grain size of 40 μm or less.
【請求項8】請求項1〜7のいずれかに記載された化学
成分を有するアルミニウム合金につき、480〜550℃×1
〜48時間の均質化処理を施した後、熱間圧延し、最終冷
間加工率30%以上で冷間圧延して所定の板厚とし、その
後軟質化処理を施して、板表面において平均結晶粒径が
40μm以下の組織を得ることを特徴とする成形及びメス
ネジ加工用アルミニウム合金の製造方法。
8. An aluminum alloy having the chemical composition according to any one of claims 1 to 7, which is 480 to 550 ° C. × 1.
After performing homogenization treatment for ~ 48 hours, hot rolling, cold rolling at a final cold work rate of 30% or more to a predetermined thickness, then softening treatment, average crystal on the plate surface Particle size
A method for producing an aluminum alloy for forming and machining a female screw, characterized by obtaining a structure of 40 μm or less.
JP63178780A 1988-07-18 1988-07-18 Aluminum alloy for forming and female screw processing and method for producing the same Expired - Fee Related JP2623302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63178780A JP2623302B2 (en) 1988-07-18 1988-07-18 Aluminum alloy for forming and female screw processing and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63178780A JP2623302B2 (en) 1988-07-18 1988-07-18 Aluminum alloy for forming and female screw processing and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0230729A JPH0230729A (en) 1990-02-01
JP2623302B2 true JP2623302B2 (en) 1997-06-25

Family

ID=16054505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63178780A Expired - Fee Related JP2623302B2 (en) 1988-07-18 1988-07-18 Aluminum alloy for forming and female screw processing and method for producing the same

Country Status (1)

Country Link
JP (1) JP2623302B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103914A (en) * 1977-02-22 1978-09-09 Sumitomo Light Metal Ind Highhstrength aluminum alloy for formed products and articles

Also Published As

Publication number Publication date
JPH0230729A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
WO2010018161A1 (en) Clad automotive sheet product
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP0030070A1 (en) Method for producing aircraft stringer material
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPS585980B2 (en) High-strength aluminum alloy with excellent formability
JPH0639651B2 (en) Non-heat treatment type extruded aluminum alloy tube rod
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2623302B2 (en) Aluminum alloy for forming and female screw processing and method for producing the same
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH0138866B2 (en)
JP2005082827A (en) Aluminum alloy sheet for forming and its production method
JP4807484B2 (en) Aluminum alloy plate for forming and method for producing the same
JPH0711363A (en) High strength and high conductivity copper alloy member and its production
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
CA2958132A1 (en) Superplastic-forming aluminum alloy plate and production method therefor
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPH0418019B2 (en)
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JP2698888B2 (en) Manufacturing method of aluminum alloy sheet with excellent stress corrosion cracking resistance
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH04176837A (en) Aluminum alloy material for forming excellent in bendability, corrosion resistance and spring property and its manufacture
JPH0256416B2 (en)
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JP2942172B2 (en) Method of manufacturing aluminum alloy plate for PP cap

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees