JPS585980B2 - High-strength aluminum alloy with excellent formability - Google Patents

High-strength aluminum alloy with excellent formability

Info

Publication number
JPS585980B2
JPS585980B2 JP9390077A JP9390077A JPS585980B2 JP S585980 B2 JPS585980 B2 JP S585980B2 JP 9390077 A JP9390077 A JP 9390077A JP 9390077 A JP9390077 A JP 9390077A JP S585980 B2 JPS585980 B2 JP S585980B2
Authority
JP
Japan
Prior art keywords
strength
aluminum alloy
strength aluminum
excellent formability
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9390077A
Other languages
Japanese (ja)
Other versions
JPS5428216A (en
Inventor
浅野吉男
浅野和彦
大内権一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9390077A priority Critical patent/JPS585980B2/en
Publication of JPS5428216A publication Critical patent/JPS5428216A/en
Publication of JPS585980B2 publication Critical patent/JPS585980B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、成形加工性と強度を兼ねそなえたA/−Cu
またはAJ!’−Cu−Mg−8i系高力アルミニウム
合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides A/-Cu that has both moldability and strength.
Or AJ! '-Cu-Mg-8i based high strength aluminum alloy.

高力系アルミニウム合金は、構造強度メンバーとして用
いられるほか、オイルタンクにおける深絞り加工、自動
車4体における張り出しおよび曲げ加工、自動車ホイー
ルにおける絞り加工またはスピニング、野球用バットに
おけるスェージングなと、さまざまな冷間加工工程を含
む広範な用途に利用されている。
In addition to being used as structural strength members, high-strength aluminum alloys are used in various cooling applications such as deep drawing in oil tanks, stretching and bending in automobile bodies, drawing or spinning in automobile wheels, and swaging in baseball bats. It is used in a wide range of applications, including intermediate machining processes.

しかしながら、高力合金は、T4材の如き低温時効材で
あっても成形加工性が十分でないため、多くの場合、一
旦軟質化焼鈍を施し、成形加工後に焼入れ・時効の熱処
理を行っている。
However, high-strength alloys do not have sufficient formability even if they are low-temperature aged materials such as T4 material, so in many cases, they are first subjected to softening annealing and then subjected to heat treatment of quenching and aging after forming.

そのため、成形加工メーカ自体が焼入れ・時効等の熱処
理設備を備え、熱処理を実施しなければならず、しかも
、その熱処理操作は複雑であり、また焼入れ時の歪みに
よる変形を生ずるなど、技術的・経済的に大きな問題と
なっており、成形加工用高力合金の用途を制限する要因
となっている。
For this reason, the molding manufacturer itself must have heat treatment equipment for quenching, aging, etc., and carry out the heat treatment. Moreover, the heat treatment operation is complicated, and there are technical problems such as deformation due to distortion during quenching. This is a major economic problem and is a factor that limits the use of high-strength alloys for forming processing.

かかる現状を打破するには、T4材自体に良好な成形加
工性を付与することが是非とも必要であリ、そのための
試みもいくつかなされている。
In order to overcome this current situation, it is absolutely necessary to impart good moldability to the T4 material itself, and several attempts have been made to this end.

たとえば、自動車4体用として最近開発され、注目をあ
びつつある熱処理型合金はいづれもこの点を指向してい
るものである。
For example, heat treatable alloys that have recently been developed for use in automobiles and are attracting attention all aim at this point.

しかし、自動車4体のごとく成形条件の厳しいものに対
しては、成形性就中曲げ加工性が未だ十分でなく、結局
成形条件を緩めるような設計で妥協が図られているのが
実情である。
However, the formability, particularly bending workability, is still insufficient for products that require strict molding conditions, such as four automobiles, and the reality is that a compromise is made with a design that loosens the molding conditions. .

本発明は、このような実情に鑑み、T4材の如き低温時
効材における成形加工性を飛躍的に改善し、苛酷な冷開
成形加工に耐えうるAA!−Cu系およびAA’−Cu
−Mg−8i系の高力合金を提供せんとするものである
In view of these circumstances, the present invention has been developed to dramatically improve the formability of low-temperature aged materials such as T4 material, and to withstand severe cold-open forming processing. -Cu system and AA'-Cu
- It is an object of the present invention to provide a high-strength Mg-8i alloy.

本発明者等は上記目的を達成すべく高力Al−Cu系合
金組成につき鋭意研究を重ねた結果、特定の低融点重金
属元素群から選らばれる元素の微量の添加により成形性
を付与し、また他の特定の遷移金属元素およびボロン群
から選らばれる元素の微量添加により肌荒れ性、強度等
を改善し得ることを見出し、本発明を完成するに到った
In order to achieve the above object, the inventors of the present invention have conducted extensive research on high-strength Al-Cu alloy compositions, and as a result, they have added formability by adding a small amount of an element selected from a specific group of low-melting heavy metal elements, and The present inventors have discovered that rough skin properties, strength, etc. can be improved by adding trace amounts of other specific transition metal elements and elements selected from the boron group, and have completed the present invention.

従来の成形性改善の試みが、主要合金元素量の低減化に
より強度を犠牲にして図られてきたのに対し、本発明で
は、強度低下を伴うことなく、特定元素の微量添加によ
り、高強度を維持しもしくは更に高めつつ成形加工性の
顕著な改善をなし得た点に大きな特徴を有するものであ
る。
While conventional attempts to improve formability have been made by reducing the amount of main alloying elements at the expense of strength, the present invention achieves high strength by adding small amounts of specific elements without reducing strength. The major feature is that the molding processability has been significantly improved while maintaining or even increasing the .

すなわち、本発明は、 (1)An−2,0〜5.O%Cu系アルミニウム合金
才たは (2)A/−1,0〜4.0%Cu−0,05〜1.0
%Mg−0,05〜1.0係Si系アルミニウム合金で
あって、かつ (A)Sn0.01〜0.5%、CdO,01=−0,
5%、In0.01〜0,5係より成る群から選らばれ
る1種もしくは2種以上の元素 および CB)Mn0.05〜1.5%、CrO,05〜0.3
%。
That is, the present invention provides (1) An-2,0 to 5. O%Cu-based aluminum alloy (2) A/-1.0~4.0%Cu-0.05~1.0
%Mg-0.05-1.0 Si-based aluminum alloy, and (A) Sn0.01-0.5%, CdO,01=-0,
5%, one or more elements selected from the group consisting of In0.01~0.5 and CB) Mn0.05~1.5%, CrO,05~0.3
%.

Ti0.01〜0.2%、ZrO,05〜0.3%、V
O002〜0.3≠、Bo、001〜0.1係より成る
群から選らばれる1種もしくは2種以上の元素。
Ti0.01-0.2%, ZrO, 05-0.3%, V
One or more elements selected from the group consisting of O002~0.3≠, Bo, and 001~0.1.

を複合添加して成る。It is made by adding a combination of.

本発明合金はいづれも時効硬化型合金であり、Al−C
u合金にあってはCuを、またLl−Cu→−−Si系
合金にあってはCu、MgおよびSiをそれぞれ時効硬
化元素として機能させるとともに、上記(2)および(
B)群に属する元素の複合添加により成形加工性を顕著
に改善せしめたものである。
All of the alloys of the present invention are age hardening alloys, and Al-C
In the u alloy, Cu is used as an age-hardening element, and in the Ll-Cu→--Si alloy, Cu, Mg, and Si are used as age-hardening elements, and the above (2) and (
The moldability is significantly improved by the combined addition of elements belonging to group B).

以下、各元素の限定理由について詳しく説明する。The reasons for limiting each element will be explained in detail below.

本発明に係るアルミニウム合金は、Cuまたは、Cu、
MgおよびSiの各元素が時効硬化元素として機能する
The aluminum alloy according to the present invention includes Cu or Cu,
Each element of Mg and Si functions as an age hardening element.

A11−Cu系合金では、Cu2.0〜5.0係、AA
’−Cu−Mg−8i系合金では、Cu1.0〜94.
0係、Mg0.05〜1.0係、Si0.05〜1.0
係を添加す。
In A11-Cu alloy, Cu2.0~5.0 ratio, AA
'-Cu-Mg-8i alloy, Cu1.0~94.
0 ratio, Mg 0.05-1.0 ratio, Si 0.05-1.0
Add a person in charge.

いづれの合金においても、各元素が上記範囲の下限値に
満たないと十分な強度が得られず、一方上記上限値を超
えると、強度は上昇するが、反面成形加工性および靭性
の劣化を伴ない萱好ましくない。
In any alloy, if each element is below the lower limit of the above range, sufficient strength cannot be obtained, while if it exceeds the above upper limit, the strength increases, but on the other hand, it is accompanied by deterioration of formability and toughness. I don't like it.

A群に属するSn、CdおよびInの各元素は成形加工
性を高める効果をもたらす。
The elements Sn, Cd, and In belonging to Group A have the effect of improving moldability.

この効果は次の如き機構によるものと考えられる。This effect is thought to be due to the following mechanism.

すなわち、成形加工性の良否は、成形加工により導入さ
れる転位のすべり運動の難易に左右され、すべり運動が
容易なほど成形加工性にすぐれる。
That is, the quality of moldability depends on the difficulty of sliding motion of dislocations introduced by molding, and the easier the sliding motion, the better the moldability.

このすべり運動を容易にするには、原子空孔の吸収を必
要とする転位の上昇運動を阻止する必要があるが、上記
各元素は、原子空孔と強く結合するため転位の上昇運動
を阻止する効果をもたらす。
In order to facilitate this sliding movement, it is necessary to prevent the upward movement of dislocations that requires the absorption of atomic vacancies, but each of the above elements binds strongly to the atomic vacancies and prevents the upward movement of dislocations. It brings about the effect of

その結果、すべり運動が容易になり良好な成形加工性を
もたらすものであろう。
As a result, sliding movement becomes easy and good moldability is achieved.

かかる効果を得るには、SnO,01〜o、s%、Cd
O,01〜0.5%、In0101〜0.5%の1種も
しくは2種以上が添加される。
To obtain such an effect, SnO, 01~o, s%, Cd
One or more of O101-0.5% and In0101-0.5% are added.

この範囲に満たないと上記効果は十分でなく、一方この
範囲を超えて添加しても、添加量の割に効果の増大は緩
慢でコスト的に不利であるばかりでなく、耐食性の劣化
をもたらし好ましくない。
If the amount is less than this range, the above effect will not be sufficient, and on the other hand, if it is added beyond this range, the effect will increase slowly compared to the amount added, which is not only disadvantageous in terms of cost, but also causes deterioration of corrosion resistance. Undesirable.

B群に属する元素のうち、Mn、Cr、ZrおよびVは
、肌荒れ性の改善に有効であり、TiおよびBは肌荒性
改善のほか、鋳塊の結晶粒の微細化の効果をもたらす。
Among the elements belonging to group B, Mn, Cr, Zr, and V are effective in improving surface roughness, and Ti and B have the effect of refining the crystal grains of the ingot in addition to improving surface roughness.

これら各元素は更に、耐応力腐食割れ性の改善、強度の
向上等の副次的効果をももたらす。
Each of these elements also brings about secondary effects such as improved stress corrosion cracking resistance and increased strength.

かかる効果を発揮させるために、Mn0.05〜1.5
%、CrO,05〜0.3%、TiO,01〜0.2%
、ZrO,05〜0.3%、Vo、02〜0.3係、B
o、001〜0.1%の各元素のうち1種もしくは2種
以上が添加される。
In order to exhibit this effect, Mn0.05 to 1.5
%, CrO, 05-0.3%, TiO, 01-0.2%
, ZrO, 05-0.3%, Vo, 02-0.3, B
o, 001 to 0.1% of each element is added.

上記範囲に満たない場合、添加効果は十分でなく、一方
この範囲を超えると、造塊時に巨大化合物として晶出し
、成形性および靭性を劣化させ好ましくない。
If it is less than the above range, the effect of addition is not sufficient, while if it exceeds this range, it will crystallize as a giant compound during agglomeration, resulting in undesirable deterioration of formability and toughness.

不純物としてはこの種合金に通常存在する不可避の成分
および量を許容する。
As impurities, the unavoidable components and amounts normally present in alloys of this type are allowed.

たとえば、0.9係以下のFe、0.7係以下のZn等
を含んでよく、さらにA/−Cu系合金においては0.
5係以下のSi等が存在してもよい。
For example, it may contain Fe with a coefficient of 0.9 or less, Zn with a coefficient of 0.7 or less, and in the case of A/-Cu alloys, it may contain Fe with a coefficient of 0.9 or less.
Si or the like having a ratio of 5 or less may be present.

次に実施例を挙げて本発明合金について具体的に説明す
る。
Next, the alloy of the present invention will be specifically explained with reference to Examples.

実施例 第1表に示す各種成分組成のA/−Cu系およびA/−
Cu−Mg−8i系合金を溶製し、401EII厚の鋳
塊を得、これを520℃で24時間均質化焼鈍した後、
直ちに3.6寵厚まで熱間圧延し、ついで2U厚まで冷
間圧延して板材を得た。
Examples A/-Cu system and A/- with various component compositions shown in Table 1
A Cu-Mg-8i alloy was melted to obtain a 401EII thick ingot, which was homogenized and annealed at 520°C for 24 hours.
It was immediately hot rolled to a thickness of 3.6cm, and then cold rolled to a thickness of 2U to obtain a plate.

この板材を525℃で30分間溶体化処理後、水焼入れ
し、室温で3ケ月間放置してT4材を製し、その成形性
を測定する一方、該室温3ケ月放置の処理後、更に高温
時効処理を施してT6材を製し、これについて引張り性
質を測定した。
This plate material was solution-treated at 525°C for 30 minutes, water-quenched, and left at room temperature for 3 months to produce T4 material, and its formability was measured. A T6 material was produced through aging treatment, and its tensile properties were measured.

同高温時効処理は、AJCu系供試合金/I61〜14
については150℃×24時間、AA!−Cu−Mg−
3i系供試合金/4615〜25については180℃×
1.5時間の条件で行つ′た。
The same high-temperature aging treatment is performed using AJCu-based specimen gold/I61-14.
For 150℃ x 24 hours, AA! -Cu-Mg-
3i series test gold/4615~25: 180℃
The test was carried out for 1.5 hours.

成形性および引張り性質の測定結果を第2表に示す。The measurement results of moldability and tensile properties are shown in Table 2.

なお、成形性の評価は、180°曲げ試験における最小
曲げ半径0.1xyxおよび2uでの割れ発生状況、張
出し試験(JISZ2−247)によるエリクセン値(
−)および肌荒れ状況で代表させた。
In addition, the evaluation of formability was based on the occurrence of cracks at the minimum bending radius of 0.1xyx and 2u in the 180° bending test, and the Erichsen value (
-) and rough skin condition.

同表中「曲げ試験」の欄において、rAJは「割れなし
」、rBJは「微少割れ」、rCJは「割れ」を表示し
、「肌荒れ性」の欄においてrAJは「肌荒れなし」、
rBJは「や−肌荒れ」、rCJは「肌荒れ顕著」を表
示する。
In the column of "bending test" in the same table, rAJ indicates "no cracking", rBJ indicates "microcracking", rCJ indicates "cracking", and in the column of "rough skin", rAJ indicates "no roughening",
rBJ displays "slightly rough skin" and rCJ displays "skin roughness noticeably."

上記第2表に示される結果に基づいて、まずA#−Cu
系合金につき、本発明合金(41〜11)と比較材(、
%12〜14)を比較すると、本発明合金(/I61〜
11)の強度は比較材(屑12〜14)のいづれよりも
すぐれていることが認められる。
Based on the results shown in Table 2 above, first A#-Cu
Regarding the alloys of the present invention (41 to 11) and the comparative material (,
%12~14), the present invention alloy (/I61~
It is recognized that the strength of Sample No. 11) is superior to any of the comparative materials (Scraps 12 to 14).

また、成形性についてみると、比較材412は曲げ性、
エリクセン値、肌荒れ性のいづれも悪く、同、%13は
Snを含むため成形性は良好であるが肌荒れ性に劣り、
また同、%14はMnを含むがSnを含まないため曲げ
性、エリクセン値が低劣であるのに対し、本発明材(/
161〜11)は、曲げ性、エリクセン値および肌荒れ
性のいづれにもすぐれていることが認められる。
In addition, regarding formability, comparative material 412 has bendability,
Both Erichsen value and rough skin resistance are poor, and %13 contains Sn, so moldability is good but poor skin roughness.
In addition, %14 contains Mn but does not contain Sn, so its bendability and Erichsen value are poor;
161-11) are recognized to be excellent in all of bendability, Erichsen value, and skin roughness.

同様にAA!−Cu−Mg−8i系合金につき、本発明
材(准15〜21)と比較材(/1622〜25)とを
比較すると、本発明材(/1615〜21)の強度は比
較材(、%22〜25)と同等ないしはそれ以上の値を
有し、成形加工性に著しい改善がなされていることが認
められる。
Similarly AA! -Cu-Mg-8i alloy, when comparing the present invention material (Jan. 15-21) and the comparative material (/1622-25), the strength of the present invention material (/1615-21) is the comparative material (,% 22 to 25), and it is recognized that the moldability has been significantly improved.

以上の説明から明らかなように、本発明に係るA#−C
u基合金およびA#−Cu−Mg−8i基合金は、相反
する材料特性である加工性と強度とを共に満足せしめた
ものであり、これにより従来軟質材にて成形加工後流こ
されていた焼入れ等の熱処理およびそれに伴う歪み矯正
等の煩雑な処理工程を省略することができ経済的に有利
であるだけでなく、従来製作困難とされていた寸法精度
の厳しい部材にも適用することができるなど、従来のこ
の種合金の適用上の制約を撤廃し、自動車4体、バンパ
ー、ホイールなどの自動車関係、オイルタンク、キャン
ボディ、スノーモービル車体等のほか、ヘルメット、ア
ルミバットあるいは導電用ケーブル継手や事務用機械部
材、光学機器部材など、広範な用途への適用が可能であ
り、その工業的価値は極めて高いものである。
As is clear from the above description, A#-C according to the present invention
U-based alloys and A#-Cu-Mg-8i-based alloys satisfy both workability and strength, which are contradictory material properties. Not only is it economically advantageous because it can omit complicated processing steps such as heat treatment such as hardening and accompanying distortion correction, but it can also be applied to parts with strict dimensional accuracy, which was traditionally difficult to manufacture. We have removed the conventional restrictions on the application of this type of alloy, and have applied it to four automobile bodies, automobile-related parts such as bumpers and wheels, oil tanks, can bodies, snowmobile bodies, etc., as well as helmets, aluminum bats, and conductive cables. It can be applied to a wide range of applications such as joints, office machine parts, and optical equipment parts, and its industrial value is extremely high.

Claims (1)

【特許請求の範囲】 1(a)Cu2.0〜5.0%、(b)Sn0.01〜
0.5%CdO,01〜0.5%またはIn0.01〜
0.5%のうち1種以上、(c)Mn0.05〜1.5
%、Cr0.05〜0.3係、Zr0.05〜0.3%
、またはVo、02〜0.3%のうち1種以上を含み、
残部A[および不可避的不純物より成る成形加工性にす
ぐれた高力アルミニウム合金。 2(a)Cn2.0〜5.0%、(b)sno、01〜
0.5%cd0.01〜0.5%またはIn0.01〜
0.5%のうち1種以上、(c)Mn0.05〜1.5
’%、CrO,05〜0.3係、ZrO,05〜0.3
%またはVo、02〜0.3係のうち1種以上、(a)
Ti0.01〜0.2係またはBo、001〜0.1%
のうち1種以上を含み、残部A[および不可避的不純物
より成る成形加工性にすぐれた高力アルミニウム合金。 3(a)Cu1.0〜4.0%、Mg0.05〜1.0
%およびSiO,05〜1.0%、(b)sno、01
〜0.5’%。 CdO,01〜0.5%またはIn0.01〜0.54
のうち1種以上、(c)MnO,o5〜1.5%、Cr
O,05〜0.3%、ZrO,05〜0.3%、VO,
02〜0.3%のうち1種以上を含み、残部Alおよび
不可避的不純物より成る成形加工性にすぐれた高力アル
ミニウム合金。 4(a)Cu1.0〜4.0%、Mg0.05〜1.0
%およびSi0.05〜1.0%、(b)Sn0.01
〜0.5%、Cd0001〜0.5係またはIn0.0
1〜0.5係のうち1種以上、(c)Mn0.05〜1
.5%、Cr0.05〜0.3係、ZrO,05〜0.
3%またはVo、02〜0.3係のうち1種以上、(d
)Tio、o1〜0.2係または80.001〜0.1
係のうち1種以上を含み、残部A/および不可避的不純
物より成る成形加工性にすぐれた高力アルミニウム合金
[Claims] 1(a) Cu2.0-5.0%, (b) Sn0.01-5.0%
0.5% CdO, 01~0.5% or In0.01~
One or more types among 0.5%, (c) Mn0.05-1.5
%, Cr0.05-0.3%, Zr0.05-0.3%
, or Vo, containing one or more types from 02 to 0.3%,
A high-strength aluminum alloy with excellent formability, consisting of the balance A and unavoidable impurities. 2(a) Cn2.0-5.0%, (b) sno, 01-
0.5%cd0.01~0.5% or In0.01~
One or more types among 0.5%, (c) Mn0.05-1.5
'%, CrO, 05~0.3 ratio, ZrO, 05~0.3
% or Vo, one or more types from 02 to 0.3 section, (a)
Ti0.01-0.2 or Bo, 001-0.1%
A high-strength aluminum alloy with excellent formability, comprising one or more of the following, and the balance A [and unavoidable impurities]. 3(a) Cu1.0-4.0%, Mg0.05-1.0
% and SiO, 05-1.0%, (b) sno, 01
~0.5'%. CdO, 01-0.5% or In0.01-0.54
One or more of the following, (c) MnO, o5~1.5%, Cr
O, 05-0.3%, ZrO, 05-0.3%, VO,
A high-strength aluminum alloy having excellent formability and comprising one or more of 02 to 0.3% and the remainder being Al and unavoidable impurities. 4(a) Cu1.0-4.0%, Mg0.05-1.0
% and Si0.05-1.0%, (b) Sn0.01
~0.5%, Cd0001~0.5 or In0.0
One or more types among ratios 1 to 0.5, (c) Mn0.05 to 1
.. 5%, Cr0.05-0.3, ZrO, 05-0.
3% or Vo, one or more types from 02 to 0.3 section, (d
) Tio, o1-0.2 section or 80.001-0.1
A high-strength aluminum alloy with excellent formability, comprising one or more of the following, and the balance A/and unavoidable impurities.
JP9390077A 1977-08-04 1977-08-04 High-strength aluminum alloy with excellent formability Expired JPS585980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9390077A JPS585980B2 (en) 1977-08-04 1977-08-04 High-strength aluminum alloy with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9390077A JPS585980B2 (en) 1977-08-04 1977-08-04 High-strength aluminum alloy with excellent formability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP18402381A Division JPS6039144B2 (en) 1981-11-16 1981-11-16 High-strength aluminum alloy with excellent formability

Publications (2)

Publication Number Publication Date
JPS5428216A JPS5428216A (en) 1979-03-02
JPS585980B2 true JPS585980B2 (en) 1983-02-02

Family

ID=14095346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9390077A Expired JPS585980B2 (en) 1977-08-04 1977-08-04 High-strength aluminum alloy with excellent formability

Country Status (1)

Country Link
JP (1) JPS585980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273153U (en) * 1988-11-22 1990-06-04

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138040A (en) * 1983-12-26 1985-07-22 Kobe Steel Ltd Al-cu type delayed age hardening aluminum alloy for forging
JPS62126917A (en) * 1985-11-28 1987-06-09 有限会社 永伸企業 Soil heat insulating system
JP3810855B2 (en) * 1996-05-13 2006-08-16 アルミナム カンパニー オブ アメリカ Method for producing improved elongated Al alloy product and product produced by the method
US20110176957A1 (en) * 2008-07-09 2011-07-21 Yun Che High strength casting aluminum alloy material
CN101805851B (en) * 2009-09-18 2011-06-01 贵州华科铝材料工程技术研究有限公司 W-RE high-strength heat-resisting aluminium alloy material and preparation method thereof
CN101805852B (en) * 2009-09-18 2011-06-29 贵州华科铝材料工程技术研究有限公司 Mo-RE high-strength heat-resistance aluminum alloy material and preparation method thereof
CN101805853B (en) * 2009-09-21 2011-08-10 贵州华科铝材料工程技术研究有限公司 Cr-RE high-strength heat resistant aluminum alloy material modified with C and preparation method thereof
CN101805856B (en) * 2009-09-23 2011-06-29 贵州华科铝材料工程技术研究有限公司 Ni-RE high-strength heat-resistance aluminum alloy material and preparation method thereof
CN101805855B (en) * 2009-09-23 2011-07-27 贵州华科铝材料工程技术研究有限公司 Co-RE high-strength heat-resisting aluminum alloy material and production method thereof
CN101805858B (en) * 2009-09-23 2011-11-09 贵州华科铝材料工程技术研究有限公司 Li-RE high-strength heat-resistance aluminum alloy material and preparation method thereof
CN101805857B (en) * 2009-09-23 2011-06-29 贵州华科铝材料工程技术研究有限公司 Be-RE high-strength heat-resisting aluminum alloy material and production method thereof
CN101805859B (en) * 2009-09-23 2011-08-10 贵州华科铝材料工程技术研究有限公司 Nb-RE high-strength heat-resistance aluminum alloy material and preparation method thereof
CN110885944B (en) * 2019-09-12 2021-06-04 抚顺东工冶金材料技术有限公司 Aluminum-copper alloy welding wire suitable for wire material additive manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273153U (en) * 1988-11-22 1990-06-04

Also Published As

Publication number Publication date
JPS5428216A (en) 1979-03-02

Similar Documents

Publication Publication Date Title
US5389165A (en) Low density, high strength Al-Li alloy having high toughness at elevated temperatures
JPS585980B2 (en) High-strength aluminum alloy with excellent formability
CA2731669A1 (en) Clad automotive sheet product
JPH02298229A (en) Oxidation-resisting titanium alloy
JPS59159961A (en) Superplastic al alloy
CA3109173A1 (en) Creep resistant titanium alloys
US3880678A (en) Processing copper base alloy
US3146096A (en) Weldable high strength magnesium base alloy
JPS61163233A (en) Non-heat treatment type free-cutting aluminum alloy
JP3356281B2 (en) Aluminum alloy material and method of manufacturing the same
JPS6152345A (en) Superplastic al alloy
JPS6410584B2 (en)
JPS58224156A (en) Manufacture of thin aluminum alloy plate for sag resistant fin
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JPS63169353A (en) Aluminum alloy for forming and its production
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
JPH04246148A (en) Rolled aluminum alloy sheet excellent in formability and its manufacture
JPS6039144B2 (en) High-strength aluminum alloy with excellent formability
JPS594494B2 (en) Medium-strength aluminum alloy with excellent extrudability
JPH0717981B2 (en) Heat treatment type aluminum alloy rolled plate for forming and manufacturing method thereof
JPS5827947A (en) Medium-strength aluminum alloy for extrusion with superior hardenability and toughness