JP2622683B2 - Manufacturing equipment for magnetic recording media - Google Patents

Manufacturing equipment for magnetic recording media

Info

Publication number
JP2622683B2
JP2622683B2 JP62093385A JP9338587A JP2622683B2 JP 2622683 B2 JP2622683 B2 JP 2622683B2 JP 62093385 A JP62093385 A JP 62093385A JP 9338587 A JP9338587 A JP 9338587A JP 2622683 B2 JP2622683 B2 JP 2622683B2
Authority
JP
Japan
Prior art keywords
evaporation source
vapor
flow control
control wall
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62093385A
Other languages
Japanese (ja)
Other versions
JPS63259835A (en
Inventor
直毅 楠木
基晴 黒木
英明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62093385A priority Critical patent/JP2622683B2/en
Publication of JPS63259835A publication Critical patent/JPS63259835A/en
Application granted granted Critical
Publication of JP2622683B2 publication Critical patent/JP2622683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空蒸着等に使用する蒸着装置,特に基体と
強磁性材料蒸発源との間に蒸気流制御壁面を備えてなる
磁気記録媒体の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor deposition apparatus used for vacuum vapor deposition and the like, and more particularly to a magnetic recording medium having a vapor flow control wall between a substrate and a ferromagnetic material evaporation source. The present invention relates to a manufacturing apparatus.

〔従来の技術〕[Conventional technology]

近年、記録密度が一段と優れたものとして、強磁性材
料を薄膜として基体上に被着してなる、所謂、金属薄膜
型記録媒体が注目を集めている。この様な金属薄型記録
媒体は、通常真空状態で、蒸着・スパッタ等によって製
造されるものであるが、蒸着物質の蒸着効率(材料使用
効率)が非常に低く、実用化の大きな障害となってい
た。これに対して、蒸着効率を高めるために、強磁性材
料を高周波誘導加熱で蒸発させる蒸発源と被蒸着基体と
の間に、蒸発源の上側に蒸発蒸気流を制御する蒸気流制
御壁面を配置させる真空蒸着方法が提案されていた。
In recent years, so-called metal thin-film type recording media, in which a ferromagnetic material is applied as a thin film on a substrate, have attracted attention as recording media having a much higher recording density. Such a thin metal recording medium is usually produced by vapor deposition / sputtering in a vacuum state, but the vapor deposition efficiency (material use efficiency) of a vapor deposition substance is extremely low, which is a major obstacle to practical use. Was. On the other hand, in order to increase the vapor deposition efficiency, a vapor flow control wall for controlling the vapor flow is disposed above the vapor source between the vapor source for vaporizing the ferromagnetic material by high frequency induction heating and the substrate to be vapor deposited. A vacuum deposition method has been proposed.

〔発明が解決しようとする問題点〕 しかし、強磁性材料として使用されるCo,Ni,Cr等の単
体金属或は合金は、融点が比較的高いため、 蒸発源の加熱に高エネルギーが必要となる。一般に、高
周波誘導加熱で被加熱物に多量の発熱量を与えるため
に、高周波誘導加熱システムの設計上、高周波電源の周
波数を低くする必要性が生じる。ところが、高周波電源
の周波数を低くすると、第一に強磁性材料の蒸発面が電
磁誘導の磁場による力が大きくなるため、蒸発面が凸状
に盛り上がってくる傾向になり、従って、強磁性材料の
蒸発蒸気流指向性が悪化して、蒸着効率が低下するこ
と、第二にコイル電圧を大きくすることが必要となり、
真空中においてコイル・フィーダー間で異常放電が生じ
ることといった問題点があった。
[Problems to be solved by the invention] However, simple metals or alloys such as Co, Ni, and Cr used as ferromagnetic materials have a relatively high melting point, and thus require high energy to heat the evaporation source. Become. Generally, in order to give a large amount of heat to an object to be heated by high-frequency induction heating, it is necessary to lower the frequency of a high-frequency power supply in designing a high-frequency induction heating system. However, when the frequency of the high-frequency power supply is lowered, firstly, the evaporating surface of the ferromagnetic material tends to rise in a convex shape because the force of the magnetic field of the electromagnetic induction increases, and therefore, the evaporating surface tends to be convex. The evaporation vapor flow directivity deteriorates, the deposition efficiency decreases, and second, it is necessary to increase the coil voltage.
There is a problem that abnormal discharge occurs between the coil and the feeder in a vacuum.

本発明は、上述した問題点を解決するためになされた
もので、高エネルギーを蒸発源内の強磁性材料に投入す
るために、周波数を低くしても、強磁性材料の蒸発面の
凸状の盛り上りを抑止することおよび異常放電を防止す
ることのできる磁気記録媒体の製造装置を提供すること
目的とするものである。
The present invention has been made in order to solve the above-mentioned problems, and in order to apply high energy to the ferromagnetic material in the evaporation source, even if the frequency is lowered, the convex shape of the evaporation surface of the ferromagnetic material is obtained. It is an object of the present invention to provide an apparatus for manufacturing a magnetic recording medium capable of suppressing swelling and preventing abnormal discharge.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の上記目的は、真空槽内で、強磁性材料を高周
波誘導加熱で蒸発させる蒸発源と被蒸着基体との間に、
前記蒸発源から前記被蒸着基体に向かって蒸発する蒸発
蒸気流の蒸発蒸気流路を形成する蒸気流制御壁面を備え
た磁気記録媒体の製造装置において、前記蒸発源と前記
蒸気流制御壁面とは略連続した状態で略垂直に延びる規
制面で囲まれる前記蒸発蒸気流路を構成するべく配置さ
れており、前記蒸発源が導電性セラミックにより構成さ
れ、その肉厚が高周波誘導により発生する過電流の浸透
深さより厚くするとともに、前記蒸気流制御壁面は、前
記蒸発源に対して殆ど隙間がないような位置に配置され
ていることを特徴とする磁気記録媒体の製造装置によっ
て達成される。
The object of the present invention is, in a vacuum chamber, between the evaporation source and the substrate to be evaporated to evaporate the ferromagnetic material by high-frequency induction heating,
In a magnetic recording medium manufacturing apparatus having a vapor flow control wall that forms an evaporative vapor flow path of an evaporative vapor flow that evaporates from the evaporation source toward the substrate to be deposited, the evaporation source and the vapor flow control wall are The evaporation source is disposed so as to constitute the evaporation steam flow path which is surrounded by a regulating surface extending substantially vertically in a substantially continuous state, wherein the evaporation source is formed of a conductive ceramic, and the thickness of the evaporation source is caused by high-frequency induction. And the vapor flow control wall surface is disposed at a position where there is almost no gap with respect to the evaporation source.

本発明における導電性セラミックとは1000℃以上の高
温で金属導電性を示し、耐酸化性,耐蝕性,機械的強度
に優れたものをいう。例えばB4C、SiC、ZrB2、TiB2、Ta
B2、TiN、ZrN、TaN、TiC、ZrC、HfC、NbC、VC、WC、Ta
C、MoSi2、LaCrO3等がある。
The conductive ceramic in the present invention refers to a ceramic which exhibits metal conductivity at a high temperature of 1000 ° C. or higher and has excellent oxidation resistance, corrosion resistance, and mechanical strength. For example, B 4 C, SiC, ZrB 2 , TiB 2 , Ta
B 2 , TiN, ZrN, TaN, TiC, ZrC, HfC, NbC, VC, WC, Ta
C, MoSi 2 , LaCrO 3 and the like.

以下に、本発明の装置の一実施例態様を第1図によっ
て説明する。
An embodiment of the apparatus of the present invention will be described below with reference to FIG.

第1図において、真空槽1は、排気ユニット(ポン
プ)14によって真空雰囲気に保たれている。強磁性材料
3は、蒸気源2である坩堝において該蒸発源2の周囲を
加熱コイル4にて巻くようにし、該加熱コイル4に接続
された高周波電源5で高周波誘導加熱によって加熱され
る。尚、蒸発源(坩堝)2の材質は、上述のごとき導電
性セラミックで構成されている。
In FIG. 1, the vacuum chamber 1 is maintained in a vacuum atmosphere by an exhaust unit (pump) 14. The ferromagnetic material 3 is wound around the evaporation source 2 by a heating coil 4 in a crucible that is the vapor source 2, and is heated by a high-frequency power supply 5 connected to the heating coil 4 by high-frequency induction heating. The material of the evaporation source (crucible) 2 is made of a conductive ceramic as described above.

一方、高分子成形物基体9は、送り出しローラ6から
送りだされ、蒸着ドラム7上でマスク10によって入射角
の規制された強磁性材料3の蒸気が蒸着され、巻き取り
ローラ8に巻き取られる。蒸発源2は、高周波誘導加熱
によって加熱されるため、蒸気流制御壁面11は、蒸発源
2の直ぐ上に該蒸発源とはほとんど隙間なく配置され、
且つ蒸気流路の周囲を略垂直に延びた規制面にてほぼ完
全に包囲している。
On the other hand, the polymer molded article substrate 9 is sent out from the feed roller 6, the vapor of the ferromagnetic material 3 whose incident angle is regulated by the mask 10 is deposited on the deposition drum 7, and is taken up by the take-up roller 8. . Since the evaporation source 2 is heated by high-frequency induction heating, the steam flow control wall surface 11 is disposed immediately above the evaporation source 2 with almost no gap from the evaporation source,
In addition, the steam flow path is almost completely surrounded by a regulating surface extending substantially vertically.

尚、蒸気流制御壁面11は、蒸発蒸気の付着堆積を防止
するため、電源12によって通電加熱され、さらに断熱材
13で囲まれており、温度制御可能な構造となっている。
The steam flow control wall 11 is electrically heated by a power supply 12 in order to prevent adhesion and deposition of vaporized steam.
It is surrounded by 13 and has a temperature controllable structure.

前記蒸気流制御壁面11は例えば、導電性のものとして
B4C、SiC、ZrB2、TiB2、TaB2、TiN、ZrN、TaN、TiC、Zr
C、HfC、NbC、VC、WC、TaC、MoSi2、LaCrO3等や、さら
には絶縁性のものとしてMgO、ZrO2、Al2O3、CaO、Y
2O3、ThO2、BN、BeO、CaO安定化ZrO2(ZrO2が90%〜98
%+CaOが10%〜2%)、Y2O3安定化ZrO2(ZrO2が90%
〜98%+Y2O3が10%〜2%)等を使用して誘導加熱にて
加熱する構成でもよい。
The steam flow control wall 11 is, for example, a conductive one.
B 4 C, SiC, ZrB 2 , TiB 2 , TaB 2 , TiN, ZrN, TaN, TiC, Zr
C, HfC, NbC, VC, WC, TaC, MoSi 2 , LaCrO 3 etc., and also MgO, ZrO 2 , Al 2 O 3 , CaO, Y as insulating materials
2 O 3 , ThO 2 , BN, BeO, CaO stabilized ZrO 2 (ZrO 2 is 90% to 98%
% + CaO is 10% ~2%), Y 2 O 3 stabilized ZrO 2 (ZrO 2 90%
~98% + Y 2 O 3 may be configured to heat at induction heating using 10% to 2%), and the like.

前記断熱材13の材料としては上述した各種セラミック
ス類、アスベスト、炭素繊維、ロックウール等を使用す
ることができる。
As the material of the heat insulating material 13, the above-mentioned various ceramics, asbestos, carbon fiber, rock wool and the like can be used.

次に、本発明の製造装置における蒸着プロセスに関し
て、詳しく説明する。
Next, the vapor deposition process in the manufacturing apparatus of the present invention will be described in detail.

高周波電源5により、加熱コイル4には、高周波電流
が流れ、加熱コイル近傍には、高周波磁界が、発生して
いる。前記高周波磁界内には、導電性物質として、蒸発
源(坩堝)2と強磁性材料3が存在するので、電磁誘導
により、渦電流が発生する。尚、高周波誘導加熱の表皮
効果により、渦電流は、主として、加熱コイル内の外側
に位置する蒸発源2(導電性セラミック)に集中して流
れる。従って、発熱は、主として蒸発源2で起こり、そ
の熱は、熱伝導によって強磁性材料3に伝わり蒸発す
る。
The high-frequency power supply 5 causes a high-frequency current to flow through the heating coil 4, and a high-frequency magnetic field is generated near the heating coil. Since the evaporation source (crucible) 2 and the ferromagnetic material 3 exist as conductive substances in the high-frequency magnetic field, an eddy current is generated by electromagnetic induction. In addition, due to the skin effect of the high-frequency induction heating, the eddy current mainly flows to the evaporation source 2 (conductive ceramic) located outside the heating coil. Accordingly, heat is mainly generated in the evaporation source 2, and the heat is transmitted to the ferromagnetic material 3 by heat conduction and evaporates.

よって、蒸発面は磁場力で盛り上がることもなく、且
つ、蒸発源2は導電性セラミックであるため強磁性材料
3と反応する事もない。またコイル電圧を低くできるた
め、コイル・フィーダー間での異常放電も発生しない。
Therefore, the evaporation surface does not rise due to the magnetic field, and does not react with the ferromagnetic material 3 because the evaporation source 2 is a conductive ceramic. Further, since the coil voltage can be lowered, abnormal discharge between the coil and the feeder does not occur.

次に、本発明の具体的な実施例について説明する。蒸
発源として内径80mm,外径90mmの導電性セラミック坩堝
(材質:窒化チタン=TiN),高周波誘導加熱電源とし
て周波数20(KHz),高分子成形物基体としてポリエチ
レンテレフタレートフイルム(100mm幅・13μm厚),
蒸着ドラムとして直径300mm(表面温度約0℃)蒸気流
制御壁面としてタングステン(W)(内径80mm・高さ40
mm)を用いた。蒸気流制御壁面は、蒸発源坩堝の直上に
隙間をあけずに配置させた。高周波電源の出力を40(K
W),高分子成形物基体の搬送速度を40(m/min)となる
よう、約1500(Å)膜厚でCoを蒸着させた結果、蒸着効
率が、13(%)を得た。また、この場合、蒸発面の磁場
力による盛り上りは、ほぼなかった。
Next, specific examples of the present invention will be described. Conductive ceramic crucible with 80 mm inner diameter and 90 mm outer diameter (material: titanium nitride = TiN) as evaporation source, frequency 20 (KHz) as high-frequency induction heating power supply, polyethylene terephthalate film (100 mm width, 13 μm thickness) as polymer molded substrate ,
300mm in diameter as a deposition drum (surface temperature about 0 ° C) Tungsten (W) as a steam flow control wall (80mm inside diameter, 40 height)
mm) was used. The steam flow control wall was disposed immediately above the evaporation source crucible without leaving a gap. The output of the high-frequency power supply is 40 (K
W), Co was deposited at a thickness of about 1500 (Å) so that the transport speed of the polymer molded article substrate was 40 (m / min), and as a result, a deposition efficiency of 13 (%) was obtained. In this case, there was almost no swelling due to the magnetic field force on the evaporation surface.

ここで、蒸発源2で使用した窒化チタンの比抵抗は、
ρ=30μΩcmで、高周波誘導加熱の周波数は、f=20KH
zであるので、高温時の加熱浸透深さは、δ=2mmとな
る。窒化チタンの肉厚は、5mmであるので、渦電流は、
蒸発源坩堝である窒化チタンに集中的に流れるので、蒸
発面の磁場力による盛り上がりを抑止する事が可能とな
り、この意味からして窒化チタン等の導電性セラミック
は蒸発源坩堝として非常に優れていることが判る一方、
比較として蒸発源として内径80mm絶縁性セラミック坩堝
(材質:マグネシア=MgO)を用いて、その他の条件
は、上記と同じにして蒸着させた結果、蒸着効率が、9
(%)を得た。また、この場合、蒸発面の磁場力による
盛り上りは、約10mmであった。
Here, the specific resistance of the titanium nitride used in the evaporation source 2 is
ρ = 30μΩcm, frequency of high frequency induction heating is f = 20KH
Since it is z, the heat penetration depth at a high temperature is δ = 2 mm. Since the thickness of titanium nitride is 5 mm, the eddy current is
Since it flows intensively in the titanium crucible, which is the evaporation source crucible, it is possible to suppress the swelling due to the magnetic field force on the evaporation surface, and in this sense, conductive ceramics such as titanium nitride are extremely excellent as the evaporation source crucible. While you know
As a comparison, an 80 mm inner diameter insulating ceramic crucible (material: magnesia = MgO) was used as an evaporation source, and the other conditions were the same as above. As a result, the evaporation efficiency was 9%.
(%). In this case, the swelling of the evaporation surface due to the magnetic field force was about 10 mm.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明は真空槽内で、強磁性材料
を高周波誘導加熱で蒸発源側から被蒸着基体に向かって
蒸発する蒸発蒸気流の蒸発蒸気流路を形成する蒸気制御
壁面を備えており、蒸発源と前記蒸気流制御壁面とは略
連続した状態で略垂直に延びる規制面で囲まれる前記蒸
発蒸気流路を構成するべく配置し、前記蒸発源が導電性
セラミックにより構成されている。
As described above, the present invention includes a vapor control wall that forms an evaporation steam flow path of an evaporation steam flow that evaporates a ferromagnetic material from an evaporation source side toward a substrate to be evaporated by a high-frequency induction heating in a vacuum chamber. The evaporation source and the steam flow control wall surface are arranged to constitute the evaporation steam flow path surrounded by a regulating surface extending substantially vertically in a substantially continuous state, and the evaporation source is formed of a conductive ceramic. I have.

したがって、このように蒸発源(坩堝)として導電性
セラミックをもちいることにより、渦電流を導電性セラ
ミックに集中して流すことが可能なため、蒸発面の磁場
力による盛り上りを抑止し、従って、低い周波数領域
(1〜50(KHz))でエネルギ効率及び蒸着効率の良い
加熱を行う事が出来、またコイル電圧を低く設定できる
ので、コイル・フィーダー間での異常放電の生じない安
定な加熱が可能となる。又、導電性セラミックと強磁性
材料とと反応がないため、良質な磁気記録媒体を成膜す
ることが可能である。
Therefore, by using the conductive ceramic as the evaporation source (crucible) in this way, the eddy current can be made to flow intensively into the conductive ceramic, so that the swelling due to the magnetic field force on the evaporation surface is suppressed, and accordingly, Heating with good energy efficiency and vapor deposition efficiency can be performed in a low frequency range (1 to 50 (KHz)), and the coil voltage can be set low. Becomes possible. In addition, since there is no reaction between the conductive ceramic and the ferromagnetic material, a high-quality magnetic recording medium can be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の製造装置の一実施態様の縦断面図で
ある。 1……真空槽、2……蒸発源 3……強磁性材料、4……加熱コイル 5……高周波誘導加熱電源 6……送り出しローラ 7……蒸着ドラム、8……巻き取りローラ、9……高分
子成形物基体 10……入射角規制用マスク 11……蒸気流制御壁面 12……電源、13……断熱材 14……真空ポンプ
FIG. 1 is a longitudinal sectional view of an embodiment of the manufacturing apparatus of the present invention. DESCRIPTION OF SYMBOLS 1 ... Vacuum tank, 2 ... Evaporation source 3 ... Ferromagnetic material 4, ... Heating coil 5 ... High frequency induction heating power supply 6 ... Delivery roller 7 ... Vapor deposition drum, 8 ... Take-up roller, 9 ... … Polymer molded product base 10… Mask for controlling incident angle 11 …… Wall flow control wall surface 12 …… Power supply 13 …… Insulation material 14 …… Vacuum pump

フロントページの続き (56)参考文献 特開 昭57−155369(JP,A) 特開 昭50−158606(JP,A) 特開 昭55−122870(JP,A) 特開 昭61−130437(JP,A) 実開 昭58−26733(JP,U)Continuation of front page (56) References JP-A-57-155369 (JP, A) JP-A-50-158606 (JP, A) JP-A-55-122870 (JP, A) JP-A-61-130437 (JP, A) , A) Japanese Utility Model Showa 58-26733 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空槽内で、強磁性材料を高周波誘導加熱
で蒸発させる蒸発源と被蒸着基体との間に、前記蒸発源
から前記被蒸着基体に向かって蒸発する蒸発蒸気流の蒸
発蒸気流路を形成する蒸気流制御壁面を備えた磁気記録
媒体の製造装置において、前記蒸発源と前記蒸発流制御
壁面とは略連続した状態で略垂直に延びる規制面で囲ま
れる前記蒸発蒸気流を構成すべく配置されており、前記
蒸発源が導電性セラミックにより構成され、その肉厚が
高周波誘導により発生する過電流の浸透深さより厚くす
るとともに、前記蒸気流制御壁面は、前記蒸発源に対し
て殆ど隙間がないような位置に配置されていることを特
徴とする磁気記録媒体の製造装置。
An evaporating vapor of an evaporating vapor stream evaporating from said evaporation source toward said substrate in a vacuum chamber between an evaporation source for evaporating a ferromagnetic material by high-frequency induction heating and said substrate. In the apparatus for manufacturing a magnetic recording medium having a vapor flow control wall forming a flow path, the evaporation source and the evaporative flow control wall are substantially continuous with each other. The evaporation source is made of a conductive ceramic, the thickness of which is greater than the penetration depth of the overcurrent generated by high-frequency induction, and the vapor flow control wall surface is arranged with respect to the evaporation source. An apparatus for manufacturing a magnetic recording medium, wherein the apparatus is arranged at a position where there is almost no gap.
JP62093385A 1987-04-17 1987-04-17 Manufacturing equipment for magnetic recording media Expired - Fee Related JP2622683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62093385A JP2622683B2 (en) 1987-04-17 1987-04-17 Manufacturing equipment for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62093385A JP2622683B2 (en) 1987-04-17 1987-04-17 Manufacturing equipment for magnetic recording media

Publications (2)

Publication Number Publication Date
JPS63259835A JPS63259835A (en) 1988-10-26
JP2622683B2 true JP2622683B2 (en) 1997-06-18

Family

ID=14080843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62093385A Expired - Fee Related JP2622683B2 (en) 1987-04-17 1987-04-17 Manufacturing equipment for magnetic recording media

Country Status (1)

Country Link
JP (1) JP2622683B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738658B2 (en) * 1974-06-13 1982-08-17
JPS55122870A (en) * 1979-03-12 1980-09-20 Fujitsu Ltd Vacuum vapor deposition method
JPS57155369A (en) * 1981-03-20 1982-09-25 Fuji Photo Film Co Ltd High vacuum ion plating method and apparatus
JPS5826733U (en) * 1981-08-12 1983-02-21 ソニー株式会社 Manufacturing equipment for metal thin film magnetic recording media

Also Published As

Publication number Publication date
JPS63259835A (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US4951604A (en) System and method for vacuum deposition of thin films
EP1935000A1 (en) A method to deposit a coating by sputtering
SE458205B (en) PROCEDURE AND DEVICE FOR COATING A SUBSTRATE OF MATERIAL THAT WAS TRANSFERRED ON THE ELECTRICAL ROAD
US20050064110A1 (en) Method and device for coating a substrate
US3216710A (en) Aluminum vaporizer
JP2622683B2 (en) Manufacturing equipment for magnetic recording media
JP2554489B2 (en) Magnetic recording medium manufacturing equipment
JP2554488B2 (en) Magnetic recording medium manufacturing equipment
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
RU2676719C1 (en) Method of low-temperature application of nanocrystalline coating from alpha-oxide aluminum
JP2019178370A (en) Vapor deposition apparatus
JPH01263265A (en) Vacuum arc deposition method
JP2001279430A (en) Film deposition method and system
JPH09165674A (en) Vacuum coating apparatus
JPH0673154U (en) Ion plating device
JPH07331415A (en) Vacuum deposition device
EP0043644B2 (en) Method of making a magnetic recording medium and a ceramic crucible for such a method
Beilis et al. Chromium and titanium film deposition using a hot refractory anode vacuum arc plasma source
JP4975583B2 (en) Manufacturing method of fiber reinforced composite material
JPS63277752A (en) Vacuum deposition device
TW200404103A (en) Sputtering cathode, production method and cathode hereto
JPS63259833A (en) Apparatus for producing magnetic recording medium
JP3453190B2 (en) Vacuum evaporation method and vacuum evaporation apparatus
JP2618695B2 (en) Manufacturing method of magnetic recording medium
JP2021042466A (en) Apparatus, method and system for coating substrate, in particular, superconducting tape conductor and coated superconducting tape conductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees