JP3453190B2 - Vacuum evaporation method and vacuum evaporation apparatus - Google Patents

Vacuum evaporation method and vacuum evaporation apparatus

Info

Publication number
JP3453190B2
JP3453190B2 JP12231694A JP12231694A JP3453190B2 JP 3453190 B2 JP3453190 B2 JP 3453190B2 JP 12231694 A JP12231694 A JP 12231694A JP 12231694 A JP12231694 A JP 12231694A JP 3453190 B2 JP3453190 B2 JP 3453190B2
Authority
JP
Japan
Prior art keywords
evaporation
raw material
vacuum
temperature
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12231694A
Other languages
Japanese (ja)
Other versions
JPH07331420A (en
Inventor
邦彦 尾崎
敏則 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP12231694A priority Critical patent/JP3453190B2/en
Publication of JPH07331420A publication Critical patent/JPH07331420A/en
Application granted granted Critical
Publication of JP3453190B2 publication Critical patent/JP3453190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品包装,医薬品包
装,電子機器部品包装,たばこ包装,写真製版,感光性
写真材料などの分野に利用可能な各種機能を有したフレ
キシブルプラスチックフィルムの真空蒸着加工に好適に
用いられる真空蒸着方法および真空蒸着装置に関する。
FIELD OF THE INVENTION The present invention relates to a vacuum deposition of a flexible plastic film having various functions, which can be used in the fields of food packaging, pharmaceutical packaging, electronic device component packaging, tobacco packaging, photoengraving, photosensitive photographic materials and the like. TECHNICAL FIELD The present invention relates to a vacuum vapor deposition method and a vacuum vapor deposition apparatus suitably used for processing.

【0002】[0002]

【従来の技術】近年、真空蒸着法によりフレキシブルプ
ラスチックフィルムの表面に金属または金属酸化物をコ
ーティングし、装飾性、ガスバリヤ性、耐薬品性、濡れ
特性、磁気特性、電導性、寸法安定性などの機能性を付
与し、食品包装,医薬品包装,電子機器部品包装,たば
こ包装,写真製版及び感光性写真材料などの分野に利用
されるようになった。特にアルミニウム蒸着フィルム
は、装飾、包装用途に広くに利用されるようになってい
る。また、最近では環境汚染の少ない透明ハイバリヤー
素材として珪素酸化物蒸着フィルムの研究開発も盛んに
行われ広く、普及することも期待されるなど金属酸化物
の蒸着技術の開発に対する要求も日増しに強くなってい
る。
2. Description of the Related Art In recent years, the surface of a flexible plastic film is coated with a metal or a metal oxide by a vacuum vapor deposition method to improve decorative properties, gas barrier properties, chemical resistance, wetting properties, magnetic properties, electrical conductivity, dimensional stability, etc. With added functionality, it has come to be used in fields such as food packaging, pharmaceutical packaging, electronic device component packaging, tobacco packaging, photoengraving and photosensitive photographic materials. In particular, aluminum vapor-deposited films have come to be widely used for decoration and packaging. Recently, silicon oxide vapor deposition film has been actively researched and developed as a transparent high barrier material with little environmental pollution, and it is expected that it will be widely spread, and demand for the development of metal oxide vapor deposition technology will increase day by day. It's getting stronger.

【0003】これらの用途の広がりに対応し、大量生産
および加工コストの低減が必要となった。そのため、蒸
発温度を高温にして加工速度を高速化することによる加
工時間の短縮、装着するフィルム幅を広くすることによ
る1回の加工工程で生産可能な面積の拡大、加工長の延
長などが実用化され、結果として蒸着機が大型化してき
た。加工長を延長するためには、蒸発原料を1回に大量
に仕込めるように蒸発原料るつぼの大型化をはかった
り、真空槽内に蒸発原料の保存スペースを設けてそれを
連続供給できるよう工夫されてきた。アルミニウムのよ
うな溶融性蒸発原料を連続供給する場合には、図4に示
すように抵抗加熱方式により蒸発原料が蒸発する温度以
上に加熱されたボート状の蒸発源(蒸発原料を蒸発させ
る加熱部)にワイヤー状に加工された蒸発原料を連続供
給する方法が欧米では広く普及している。また、珪素酸
化物のような昇華性蒸発原料を使用する場合には、図5
に示すように電子線加熱方式により昇華温度以上に加熱
された蒸発原料をゆっくりと移動させることにより連続
供給する方法や、図6に示すような装置(特開平1−2
52768号、特開平2−277774号に開示)を用
い蒸発原料を連続供給する方法がとられてきた。
In response to the spread of these applications, it has become necessary to reduce mass production and processing costs. Therefore, it is practical to reduce the processing time by increasing the evaporation temperature to increase the processing speed, widen the width of the film to be mounted to increase the area that can be produced in one processing step, and extend the processing length. As a result, vapor deposition machines have become larger. In order to extend the processing length, the evaporation material crucible must be enlarged so that a large amount of evaporation material can be charged at one time, or a storage space for evaporation material can be provided in the vacuum chamber so that it can be continuously supplied. It has been. In the case of continuously supplying a meltable evaporation material such as aluminum, as shown in FIG. 4, a boat-shaped evaporation source (heating unit for evaporating the evaporation material is heated by a resistance heating method to a temperature at which the evaporation material is evaporated or more). The method of continuously supplying the evaporation raw material processed into a wire is widely used in Europe and America. Further, when a sublimable evaporation material such as silicon oxide is used, as shown in FIG.
As shown in FIG. 6, a method for continuously supplying an evaporating raw material heated to a sublimation temperature or higher by an electron beam heating method to continuously supply it, or an apparatus as shown in FIG.
No. 52768, disclosed in JP-A-2-277774), a method of continuously supplying an evaporation raw material has been adopted.

【0004】しかしながら、どの方法も蒸発原料を予め
加熱することなく蒸発源(蒸発原料を蒸発させる加熱
部)である原料加熱ヒーターに供給しているため、蒸発
原料は室温に近い温度から蒸発温度まで急激に加熱され
る。そのため蒸発原料の加熱が不十分となり、十分な蒸
発速度(蒸着加工速度)を得ることが難しい。蒸発原料
が複合組成物の場合はその組成物自体が破損したりす
る。また、不足した蒸発速度を補うため蒸発源のヒータ
ーや電子線に投入するパワーを大きくすると、蒸発原料
の温度分布に大きな偏差が生じる。この結果、アルミニ
ウムのような溶融性原料の場合、突沸によるスプラッシ
ュ(蒸発飛沫)の発生を招く。このスプラッシュは、蒸
着フィルムに到達し蒸着膜の欠陥、基材フィルムの損
傷、異物の混入現象等のトラブルの原因となる問題点が
あった。また、珪素酸化物のような昇華性原料の複合組
成物(特に粉体成形物)の場合、やはりスプラッシュの
発生や急激なガス放出(粉体成形原料の場合または低蒸
発温度の不純物を含む場合)、さらには蒸発原料である
複合組成物(特に成形原料)が割れ、真空槽内圧力の上
昇,不純物の混入や蒸発速度の変動を招いていた。
However, in any of the methods, the evaporation raw material is supplied to the raw material heater which is the evaporation source (heating part for evaporating the evaporation raw material) without preheating it, so that the evaporation raw material is heated from a temperature close to room temperature to an evaporation temperature. It is heated rapidly. Therefore, heating of the evaporation raw material becomes insufficient, and it is difficult to obtain a sufficient evaporation rate (vapor deposition processing rate). When the evaporation raw material is a composite composition, the composition itself may be damaged. Further, if the power supplied to the heater of the evaporation source or the electron beam is increased in order to compensate for the insufficient evaporation rate, a large deviation will occur in the temperature distribution of the evaporation raw material. As a result, in the case of a fusible raw material such as aluminum, splash (evaporative splash) is caused by bumping. This splash has a problem that it reaches the vapor deposition film and causes troubles such as defects of the vapor deposition film, damage of the base film, and a phenomenon of mixing of foreign matter. Moreover, in the case of a composite composition of sublimable raw materials such as silicon oxide (particularly powder molding), the occurrence of splash and rapid gas release (in the case of powder molding raw materials or when impurities of low evaporation temperature are included) ), And further, the composite composition (particularly the forming raw material) which is the evaporation raw material is cracked, which causes rise in the pressure in the vacuum chamber, mixing of impurities and fluctuations in the evaporation rate.

【0005】その結果として、真空槽内圧力が上昇する
と、珪素酸化物蒸着フィルムの品質は低下し、蒸発速度
(結果として蒸着加工速度)も低下する。また、スプラ
ッシュの発生は、前述のように蒸着膜の欠陥、基材フィ
ルムの損傷や異物の混入現象としてトラブルの原因とな
り、蒸発原料である複合組成物の割れは、連続供給蒸着
用ヒーターの中で「詰まり」現象を発生し、蒸発原料の
連続供給による長時間蒸着加工の妨げとなる。蒸発速度
の変動は、複数並ぶ蒸発源の加熱ヒーター毎に不規則に
生じるため、蒸着膜厚等の制御を不安定にし、結果とし
て蒸着フィルムの品質が低下する。前述のように、従来
の蒸発原料を連続供給可能な蒸着方式には、生産性と蒸
着フィルムの品質の両立が難しいという問題点があっ
た。
As a result, when the pressure in the vacuum chamber rises, the quality of the silicon oxide vapor deposition film deteriorates, and the evaporation rate (as a result, the vapor deposition processing rate) also decreases. Further, the occurrence of splash causes troubles such as defects in the vapor deposition film, damage to the base film and the phenomenon of mixing of foreign matter as described above, and cracking of the composite composition, which is the evaporation raw material, occurs in the heater for continuous supply vapor deposition. In this case, a "clogging" phenomenon occurs, which hinders long-time vapor deposition processing due to continuous supply of evaporation raw materials. Fluctuations in the evaporation rate occur irregularly for each heater of the evaporation sources arranged in a line, which makes control of the vapor deposition film thickness and the like unstable, resulting in deterioration of the quality of the vapor deposition film. As described above, the conventional vapor deposition method capable of continuously supplying the evaporation raw material has a problem that it is difficult to achieve both productivity and vapor deposition film quality.

【0006】[0006]

【発明が解決しようとする課題】本発明は、大量生産を
実現するために珪素酸化物を含む昇華性蒸発原料を連続
供給する真空蒸着方法において、高い蒸発速度(結果と
して蒸着加工速度)と安定した品質の両立を実現する真
空蒸着方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention is a vacuum vapor deposition method for continuously supplying a sublimable evaporation raw material containing silicon oxide in order to realize mass production, and has a high evaporation rate (as a result, vapor deposition processing speed) and a stable evaporation rate. It is to provide a vacuum deposition method that achieves both of the above qualities.

【0007】[0007]

【課題を解決するための手段】本発明の目的は、珪素酸
化物を含む昇華性蒸発原料を実質的に連続供給する真空
蒸着方法において、蒸発原料を蒸発させる前に、100
〜300℃/分の昇温速度で予め加熱することを特徴と
する真空蒸着方法によって達成することができる。本発
明の目的は更に、珪素酸化物を含む昇華性蒸発原料を実
質的に連続供給する真空蒸着装置において、蒸発原料を
蒸発させる前に、100〜300℃/分の昇温速度で予
め加熱する予備加熱部を有することを特徴とする真空蒸
着装置によって達成することができる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sublimation evaporation raw material containing silicon oxide in a vacuum vapor deposition method in which the sublimation evaporation raw material is substantially continuously supplied.
It can be achieved by a vacuum deposition method characterized by preheating at a temperature rising rate of up to 300 ° C / min. It is a further object of the present invention that, in a vacuum vapor deposition apparatus that supplies a sublimable evaporation material containing silicon oxide substantially continuously, it is preheated at a temperature rising rate of 100 to 300 ° C./min before the evaporation material is evaporated. This can be achieved by a vacuum vapor deposition device characterized by having a preheating unit.

【0008】本発明において、蒸発原料を実質的に連続
供給する真空蒸着装置としては、図5に示すように電子
線加熱方式により昇華温度以上に加熱された蒸発原料を
ゆっくりと移動させることにより連続供給する装置や、
図6に示すような特開平1−252768号や特開平2
−277774号公報に記載された装置が挙げられる。
本発明において、連続供給される蒸発原料を予備加熱部
で予め加熱する方法としては、真空状態で使用でき、且
つ蒸発原料を所定の時間内に所定の温度に昇温可能な方
法で有れば特に制限は無く、直接抵抗加熱、間接抵抗加
熱、直接高周波誘導加熱、間接高周波誘導加熱、輻射加
熱、電子線加熱など従来公知の方法を用いることができ
る。
In the present invention, as the vacuum vapor deposition apparatus for substantially continuously supplying the evaporation raw material, as shown in FIG. 5, the evaporation raw material heated to the sublimation temperature or higher by the electron beam heating system is continuously moved to move continuously. Supply device,
As shown in FIG. 6, JP-A-1-252768 and JP-A-2
The device described in Japanese Patent Publication No. 277774 is cited.
In the present invention, as a method of preliminarily heating the continuously supplied evaporation raw material in the preheating unit, if the method can be used in a vacuum state and the evaporation raw material can be heated to a predetermined temperature within a predetermined time There is no particular limitation, and conventionally known methods such as direct resistance heating, indirect resistance heating, direct high frequency induction heating, indirect high frequency induction heating, radiation heating, and electron beam heating can be used.

【0009】予備加熱部については直接的に温度制御し
ても良いが、特にしなくても良い。予備加熱部を直接的
に温度制御する場合、その制御方法はPID制御、比例
制御、ファジィー制御などの方法が挙げられる。そのた
めの温度計測方法も熱電対温度計、放射温度計などの従
来公知の温度計を用いた方法が使用できる。図2に、直
接抵抗加熱の蒸発源(蒸発原料を蒸発させる加熱部)と
直接抵抗加熱の予備加熱部を放射温度計でPID制御し
たシステムの模式図を示す。また、図3に、直接抵抗加
熱の蒸発源(蒸発原料を蒸発させる加熱部)と高周波誘
導加熱の予備加熱部を放射温度計でPID制御したシス
テムの模式図を示す。予備加熱部を直接的に温度制御し
ない場合は、図1に示すように、蒸発源(蒸発原料を蒸
発させる加熱部)と予備加熱部を一体化する方法が挙げ
られる。蒸発源と予備加熱部を一体化する方法は、装置
を簡便かつ安価にできることから好ましい方法である。
この方法を用いた場合でも、蒸発源の温度は制御される
ため、蒸発源の温度と予備加熱部の温度差を正しく把握
することにより、事実上、予備加熱部の温度制御が実現
する。
The temperature of the preheating section may be directly controlled, but it is not necessary to do so. When the temperature of the preheating unit is directly controlled, the control method includes PID control, proportional control, fuzzy control and the like. As a temperature measuring method therefor, a method using a conventionally known thermometer such as a thermocouple thermometer and a radiation thermometer can be used. FIG. 2 shows a schematic diagram of a system in which a direct resistance heating evaporation source (a heating unit for evaporating an evaporation material) and a direct resistance heating preheating unit are PID-controlled by a radiation thermometer. Further, FIG. 3 shows a schematic diagram of a system in which a direct resistance heating evaporation source (a heating unit for evaporating evaporation material) and a preheating unit for high-frequency induction heating are PID-controlled by a radiation thermometer. When the temperature of the preheating unit is not directly controlled, a method of integrating the evaporation source (heating unit for evaporating the evaporation raw material) and the preheating unit as shown in FIG. 1 can be mentioned. The method of integrating the evaporation source and the preheating unit is a preferable method because the apparatus can be simple and inexpensive.
Even when this method is used, the temperature of the evaporation source is controlled. Therefore, the temperature difference between the evaporation source and the temperature of the preheating unit can be grasped correctly, so that the temperature of the preheating unit can be effectively controlled.

【0010】本発明においては、蒸発原料を円滑にかつ
連続的に供給することは必須条件であり、それを妨げな
いよう蒸発原料を予め加熱しなければならない。つま
り、予備加熱部の温度は、蒸発原料の特性(昇華性),
蒸発原料の熱容量,熱伝導度及び蒸発原料の供給速度等
を考慮し、設定するべきである。具体的には、蒸発原料
が珪素酸化物のような熱伝導度の低い昇華性原料の場
合、予備加熱部の温度は、原料の昇華温度より200℃
低い温度以上、昇華温度より50℃高い温度以下でなけ
ればならない。予備加熱部の温度がこの範囲より高い場
合、蒸発原料が蒸発源に到達する前に、予備加熱部で大
量に昇華してしまうため、蒸発原料自体が減量し、効率
の良い蒸発が行われなくなる。
In the present invention, it is an essential condition to supply the evaporation raw material smoothly and continuously, and the evaporation raw material must be preheated so as not to disturb it. In other words, the temperature of the preheating section depends on the characteristics of the evaporation raw material (sublimability),
It should be set in consideration of the heat capacity, the thermal conductivity of the evaporation raw material, the feed rate of the evaporation raw material, and the like. Specifically, when the evaporation raw material is a sublimable raw material having low thermal conductivity such as silicon oxide, the temperature of the preheating portion is 200 ° C. higher than the sublimation temperature of the raw material.
It must be above the low temperature and below the temperature 50 ° C above the sublimation temperature. If the temperature of the preheating unit is higher than this range, the evaporation raw material will sublimate in large amounts before reaching the evaporation source, so the evaporation raw material itself will be reduced and efficient evaporation will not be performed. .

【0011】蒸発原料を予め加熱する予備加熱部の温度
は、蒸発源で蒸発する蒸発速度をできるだけ高くし、本
発明が目的とする課題解決の効果をより大きくするため
には、条件範囲内で可能な限り高い温度であることが好
ましい。予備加熱部の温度は、熱伝導度の低い昇華性原
料である一酸化珪素を1×10-2Paの圧力下で真空蒸
着する場合は、673〜923℃、さらには903〜9
23℃が好ましい。また、珪素と熱伝導度の低い二酸化
珪素の混合物を1×10-2Paの圧力下で真空蒸着する
場合は923〜1173℃、さらには1153〜117
3℃が好ましい。蒸発原料として熱伝導度の低い昇華性
原料であるSiO2 のような珪素酸化物を含む場合、予
め加熱する昇温速度が急激であると、結果としてスプラ
ッシュの発生,急激なガス放出,蒸発原料の割れ,真空
槽内圧力の上昇,不純物の混入,蒸発速度の変動等を引
き起こす。そのため、蒸発原料としてSiO2 のような
珪素酸化物を含む場合、蒸発材料を予備加熱する際の昇
温速度は、100〜300℃/分程度とする必要があ
る。
The temperature of the preheating section for preheating the evaporation raw material is within the range of conditions in order to increase the evaporation rate of evaporation by the evaporation source as much as possible and to further enhance the effect of solving the problem to be solved by the present invention. It is preferable that the temperature is as high as possible. The temperature of the preheating section is 673 to 923 ° C., and further 903 to 9 ° C., when silicon monoxide, which is a sublimable raw material having low thermal conductivity, is vacuum-deposited under a pressure of 1 × 10 −2 Pa.
23 ° C is preferred. When a mixture of silicon and silicon dioxide having a low thermal conductivity is vacuum-deposited under a pressure of 1 × 10 -2 Pa, the temperature is 923 to 1173 ° C., and further 1153 to 117.
3 ° C is preferred. When the evaporation raw material contains a silicon oxide such as SiO 2 which is a sublimable raw material having low thermal conductivity, if the temperature rising rate for preheating is rapid, as a result, the occurrence of splash, rapid gas release, and evaporation raw material Cause cracking, increase of pressure in vacuum chamber, mixing of impurities, fluctuation of evaporation rate, etc. Therefore, when the evaporation raw material contains a silicon oxide such as SiO 2 , the temperature rising rate at the time of preheating the evaporation material needs to be about 100 to 300 ° C./min.

【0012】昇華性蒸発原料としては、連続的に原料を
供給する真空蒸着装置に使用される原料であれば特に制
限はなく、Si及びSiO,Si3 4 ,Si2 3
SiO2 を含むSiOx(X=1〜2)等の珪素及び珪
素酸化物から選ばれる1種または2種以上の物質の混合
物や、珪素及びまたは珪素酸化物と金属及びまたは金属
化合物との混合物や化学結合物が挙げられる。この中で
SiO2 等の珪素酸化物は結晶性でも非晶性でも構わな
い。金属化合物としては金属酸化物や金属フッ化物が挙
げられる。金属酸化物としては、マグネシウム酸化物,
カルシウム酸化物,バリウム酸化物,アルミニウム酸化
物,チタン酸化物,ジルコニア酸化物,ナトリウム酸化
物,カリウム酸化物,錫酸化物,インジウム酸化物,酸
化マグネシウム−二酸化珪素共酸化物(フォルステライ
ト,ステアタイト),酸化アルミニュウム−二酸化珪素
共酸化物(ムライト)等が挙げられる。また金属フッ化
物としては、アルカリ土類金属のフッ化物,例えばフッ
化マグネシウムやフッ化カルシウム,フッ化バリウム
や、アルカリ金属のフッ化物,例えばフッ化ナトリウム
やフッ化カリウム等が挙げられる。
The sublimation evaporation raw material is not particularly limited as long as it is a raw material used in a vacuum vapor deposition apparatus for continuously supplying the raw material, and Si and SiO, Si 3 O 4 , Si 2 O 3 ,
A mixture of one or more substances selected from silicon and silicon oxides such as SiOx (X = 1 to 2) containing SiO 2 , a mixture of silicon and / or silicon oxide and a metal and / or a metal compound, Examples include chemical bonds. Among them, silicon oxide such as SiO 2 may be crystalline or amorphous. Examples of the metal compound include metal oxides and metal fluorides. As the metal oxide, magnesium oxide,
Calcium oxide, barium oxide, aluminum oxide, titanium oxide, zirconia oxide, sodium oxide, potassium oxide, tin oxide, indium oxide, magnesium oxide-silicon dioxide co-oxide (forsterite, steatite) ), Aluminum oxide-silicon dioxide co-oxide (mullite) and the like. Examples of the metal fluorides include alkaline earth metal fluorides such as magnesium fluoride, calcium fluoride, and barium fluoride, and alkali metal fluorides such as sodium fluoride and potassium fluoride.

【0013】[0013]

【実施例】以下、実施例に基づいて本発明をさらに詳細
に説明するが、本発明はその要旨をこえない限り、以下
の実施例に限定されるものではない。なお実施例で得ら
れた蒸着フィルムの試験方法は以下のとおりである。 酸素バリヤー性:ASTM D 3985に準拠し、米
国モダンコントロールズ社のOXTRAN−TWINを
用いて酸素ガス透過率を測定した。 外観:得られた蒸着フィルムの蒸着膜の欠陥,異物混入
について、目視にて評価した。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples without departing from the gist thereof. The test method for the vapor-deposited film obtained in the examples is as follows. Oxygen barrier property: According to ASTM D 3985, the oxygen gas permeability was measured using OXTRAN-TWIN manufactured by Modern Controls, Inc., USA. Appearance: Defects in the deposited film of the obtained deposited film and inclusion of foreign matter were visually evaluated.

【0014】〔実施例1〕図1に示すように、特開平1
−252768号公報に記載された真空蒸着装置に、蒸
発源と一体となっている予備加熱部(ちっ化ほう素複合
焼結体製)を設けた。予備加熱部の加熱方法は、蒸発源
の加熱方法と同じ抵抗加熱方式である。なお、予備加熱
部の温度制御は独自に行わず、蒸発源の放射温度計によ
る温度制御に依存する方法をとった。次に、珪素と二酸
化珪素(非晶質)との等モル混合物を圧縮成形し、直径
40mm,高さ35mmの円柱状成形物を得た。得られ
た成形物を、蒸発原料供給機構から5mm/分間の供給
速度で、蒸発源と一体となっている予備加熱部に連続供
給し、1×10-2Paの真空下で蒸発源を抵抗加熱によ
り1350℃に加熱し、(その時予備加熱部の温度を放
射温度計を用いて測定したところ、1170℃であっ
た。)厚さ12μmのポリエチレンテレフタレートフィ
ルムに珪素酸化物を真空蒸着した。その条件のまま加工
速度は50m/分で、1時間真空蒸着加工を行った。な
お、1時間の真空蒸着加工中には、スプラッシュの発生
は認められなかった。蒸着膜の厚みは、水晶式膜厚モニ
ターを用いて測定したところ、約1000オングストロ
ームであった。
[Example 1] As shown in FIG.
The vacuum vapor deposition apparatus described in Japanese Patent Publication No. 252768 has a preheating unit (made of a boron nitride composite sintered body) integrated with an evaporation source. The heating method of the preheating unit is the same resistance heating method as the heating method of the evaporation source. Note that the temperature control of the preheating unit was not performed independently, but the method that relied on the temperature control by the radiation thermometer of the evaporation source was adopted. Next, an equimolar mixture of silicon and silicon dioxide (amorphous) was compression molded to obtain a cylindrical molded product having a diameter of 40 mm and a height of 35 mm. The obtained molded product is continuously supplied to the preheating section integrated with the evaporation source at a supply rate of 5 mm / minute from the evaporation source supply mechanism, and the evaporation source is resisted under a vacuum of 1 × 10 -2 Pa. The film was heated to 1350 ° C. by heating (at that time, the temperature of the preheating part was measured by using a radiation thermometer and found to be 1170 ° C.), and silicon oxide was vacuum-deposited on a polyethylene terephthalate film having a thickness of 12 μm. Under the conditions, the processing speed was 50 m / min, and vacuum deposition processing was performed for 1 hour. No splash was observed during the vacuum deposition process for 1 hour. The thickness of the vapor-deposited film was about 1000 Å when measured using a quartz-type film thickness monitor.

【0015】〔実施例2〕図3に示すように、特開平1
−252768号公報に記載される真空蒸着装置に、蒸
発源と別体となっている予備加熱部(グラファイト製)
を設けた。予備加熱部の加熱方法は、高周波誘導加熱方
式である。なお、予備加熱部の温度制御は、蒸発源とは
別に、放射温度計により行った。次に、一酸化珪素と酸
化マグネシウムの混合物(混合比90モル%:10モル
%)圧縮成形し、直径40mm,高さ35mmの円柱状
成形物を得た。得られた成形物を、蒸発原料供給機構か
ら10mm/分間の供給速度で、蒸発源と別体となって
いる予備加熱部に連続供給し、1×10-2Paの真空下
で蒸発源を抵抗加熱方式により1300℃に加熱し、ま
た同時に予備加熱部を920℃に加熱した。厚さ12μ
mのポリエチレンテレフタレートフィルムに珪素−マグ
ネシウム複合酸化物を真空蒸着した。その条件のまま加
工速度は50m/分で、1時間真空蒸着加工を行った。
なお、1時間の真空蒸着加工中には、スプラッシュの発
生は認められなかった。蒸着膜の厚みは、水晶式膜厚モ
ニターを用いて測定したところ、約1000オングスト
ロームであった。
[Embodiment 2] As shown in FIG.
In the vacuum vapor deposition apparatus described in Japanese Patent Publication No. 252768, a preheating unit (made of graphite) that is separate from the evaporation source.
Was set up. The heating method of the preheating section is a high frequency induction heating method. The temperature control of the preheating unit was performed by a radiation thermometer separately from the evaporation source. Next, a mixture of silicon monoxide and magnesium oxide (mixing ratio 90 mol%: 10 mol%) was compression molded to obtain a cylindrical molded product having a diameter of 40 mm and a height of 35 mm. The obtained molded product is continuously supplied from the evaporation material supply mechanism to the preheating section which is a separate body from the evaporation source at a supply rate of 10 mm / minute, and the evaporation source is supplied under a vacuum of 1 × 10 -2 Pa. It was heated to 1300 ° C. by the resistance heating method, and at the same time, the preheating part was heated to 920 ° C. Thickness 12μ
m-polyethylene terephthalate film was vacuum-deposited with a silicon-magnesium composite oxide. Under the conditions, the processing speed was 50 m / min, and vacuum deposition processing was performed for 1 hour.
No splash was observed during the vacuum deposition process for 1 hour. The thickness of the vapor-deposited film was about 1000 Å when measured using a quartz-type film thickness monitor.

【0016】〔実施例3〕珪素と二酸化珪素等モル混合
物を圧縮成形し、直径40mm,高さ35mmの円柱状
成形物を得た。得られた成形物を、実施例2と同様の真
空蒸着装置の蒸発原料供給機構から10mm/分の供給
速度で、蒸発源と別体となっている予備加熱部に連続供
給し、1×10-2Paの真空下で蒸発源を抵抗加熱によ
り1300℃に加熱し、また同時に予備加熱部を116
5℃に加熱した。予備加熱部の温度と蒸発源の温度から
蒸発原料成形物の昇温速度を計算したところ、200℃
/分間であった。厚さ12μmのポリエチレンテレフタ
レートフィルムに珪素酸化物を真空蒸着し、その条件の
まま加工速度は50m/分で、1時間真空蒸着加工を行
った。なお、1時間の真空蒸着加工中には、スプラッシ
ュの発生は認められなかった。蒸着膜の厚みは、水晶式
膜厚モニターを用いて測定したところ、約1000オン
グストロームであった。
Example 3 An equimolar mixture of silicon and silicon dioxide was compression molded to obtain a cylindrical molded product having a diameter of 40 mm and a height of 35 mm. The obtained molded product was continuously supplied from the evaporation source supply mechanism of the vacuum evaporation apparatus similar to that of Example 2 to the preheating unit which was separate from the evaporation source at a supply rate of 10 mm / min, and 1 × 10 5. The evaporation source was heated to 1300 ° C. by resistance heating under a vacuum of −2 Pa, and at the same time, the preheating section was heated to 116 ° C.
Heated to 5 ° C. From the temperature of the preheating part and the temperature of the evaporation source, the temperature rise rate of the evaporation raw material molding was calculated to be 200 ° C.
/ Minute. Silicon oxide was vacuum-deposited on a polyethylene terephthalate film having a thickness of 12 μm, and vacuum deposition was performed for 1 hour at the processing speed of 50 m / min under the conditions. No splash was observed during the vacuum deposition process for 1 hour. The thickness of the vapor-deposited film was about 1000 Å when measured using a quartz-type film thickness monitor.

【0017】〔比較例2〕 予備加熱部を600℃に加熱した以外は実施例3と同様
にして、厚さ12μmのポリエチレンテレフタレートフ
ィルムに珪素酸化物を真空蒸着した。予備加熱部及び蒸
発源の温度から蒸発原料成形物の昇温速度を計算したと
ころ、700℃/分間であった。その条件のまま加工速
度は50m/分で、1時間真空蒸着加工を行った。しか
し、1時間の真空蒸着加工中に、スプラッシュの発生が
認められた。蒸着膜の厚みは、水晶式膜厚モニターを用
いて測定したところ、約1000オングストロームであ
った。
Comparative Example 2 Silicon oxide was vacuum-deposited on a polyethylene terephthalate film having a thickness of 12 μm in the same manner as in Example 3 except that the preheating part was heated to 600 ° C. The temperature rising rate of the evaporation raw material molded product was calculated from the temperatures of the preheating part and the evaporation source, and it was 700 ° C./minute. Under the conditions, the processing speed was 50 m / min, and vacuum deposition processing was performed for 1 hour. However, generation of splash was observed during the vacuum deposition process for 1 hour. The thickness of the vapor-deposited film was about 1000 Å when measured using a quartz-type film thickness monitor.

【0018】〔比較例1〕予備加熱部を加熱しない以外
は実施例2と同様にして、厚さ12μmのポリエチレン
テレフタレートフィルムに珪素−マグネシウム複合酸化
物を真空蒸着した。真空蒸着加工時の蒸発源の温度は実
施例2と同じ1300℃であるが、その時の予備加熱部
は加熱を行っていないため、熱電対温度計で測定したと
ころ、60℃であった。その条件のまま加工速度は50
m/分間で真空蒸着加工を続けたところ、スプラッシュ
の発生が認められ、約30分後に蒸発原料である成形物
が破損して原料の連続供給ができなくなった為、真空蒸
着加工を中止した。
Comparative Example 1 A silicon-magnesium composite oxide was vacuum-deposited on a polyethylene terephthalate film having a thickness of 12 μm in the same manner as in Example 2 except that the preheating section was not heated. The temperature of the evaporation source at the time of vacuum deposition processing was 1300 ° C., which was the same as that in Example 2, but the preheating part at that time did not perform heating, and it was 60 ° C. when measured with a thermocouple thermometer. Machining speed is 50 under that condition
When the vacuum vapor deposition process was continued at m / min, generation of splash was observed, and after about 30 minutes, the molded material as the evaporation raw material was damaged and continuous supply of the raw material was impossible, so the vacuum vapor deposition process was stopped.

【0019】実施例および比較例で得られた蒸着フィル
ムの蒸着加工の最後の部分について、酸素バリヤー性と
外観を評価した。結果を表1に示す。
The oxygen barrier properties and the appearance of the last portion of the vapor deposition process of the vapor deposition films obtained in the examples and comparative examples were evaluated. The results are shown in Table 1.

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明により、蒸発原料の不十分な加
熱,蒸発速度の低下,原料成形物自体が破損,突沸によ
るスプラッシュの発生,急激なガス放出,真空槽内圧力
の上昇,不純物の混入や蒸発速度の変動等のトラブル無
く真空蒸着でき、高品質の蒸着フィルムを得ることがで
きる。
EFFECTS OF THE INVENTION According to the present invention, insufficient heating of the evaporation raw material, decrease in evaporation rate, damage to the raw material molding itself, generation of splash due to bumping, rapid gas release, pressure increase in vacuum chamber, inclusion of impurities Vacuum deposition can be performed without troubles such as fluctuation of evaporation rate and evaporation rate, and a high quality vapor deposition film can be obtained.

【0021】[0021]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸発源と一体となった予備加熱部と蒸
発源の側面図。
FIG. 1 is a side view of a preheating unit and an evaporation source integrated with the evaporation source of the present invention.

【図2】本発明の蒸発源と別体となった予備加熱部と蒸
発源の側面図。
FIG. 2 is a side view of a preheating unit and an evaporation source which are separate from the evaporation source of the present invention.

【図3】本発明の蒸発源と別体となった予備加熱部と蒸
発源の側面図。
FIG. 3 is a side view of a preheating unit and an evaporation source which are separate from the evaporation source of the present invention.

【図4】従来の電子線加熱方式の蒸発源の側面図。FIG. 4 is a side view of a conventional electron beam heating evaporation source.

【図5】従来の蒸発源の側面図。FIG. 5 is a side view of a conventional evaporation source.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−93271(JP,A) 特開 平1−252768(JP,A) 特開 昭49−84930(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 H01L 21/203 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-5-93271 (JP, A) JP-A 1-252768 (JP, A) JP-A-49-84930 (JP, A) (58) Field (Int.Cl. 7 , DB name) C23C 14/00-14/58 H01L 21/203

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】珪素酸化物を含む昇華性蒸発原料を実質的
に連続供給する真空蒸着方法において、蒸発原料を蒸発
させる前に、100〜300℃/分の昇温速度で予め加
熱することを特徴とする真空蒸着方法。
1. A vacuum vapor deposition method for substantially continuously supplying a sublimable evaporation raw material containing silicon oxide, which comprises heating the evaporation raw material at a temperature rising rate of 100 to 300 ° C./min in advance. Characteristic vacuum deposition method.
【請求項2】珪素酸化物を含む昇華性蒸発原料を実質的
に連続供給する真空蒸着装置において、蒸発原料を蒸発
させる前に、100〜300℃/分の昇温速度で予め加
熱する予備加熱部を有することを特徴とする真空蒸着装
置。
2. A vacuum vapor deposition apparatus for substantially continuously supplying a sublimable evaporation raw material containing silicon oxide, and preheating for preliminarily heating at a temperature rising rate of 100 to 300 ° C./min before vaporizing the evaporation raw material. A vacuum deposition apparatus having a portion.
JP12231694A 1994-06-03 1994-06-03 Vacuum evaporation method and vacuum evaporation apparatus Expired - Fee Related JP3453190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12231694A JP3453190B2 (en) 1994-06-03 1994-06-03 Vacuum evaporation method and vacuum evaporation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12231694A JP3453190B2 (en) 1994-06-03 1994-06-03 Vacuum evaporation method and vacuum evaporation apparatus

Publications (2)

Publication Number Publication Date
JPH07331420A JPH07331420A (en) 1995-12-19
JP3453190B2 true JP3453190B2 (en) 2003-10-06

Family

ID=14832943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12231694A Expired - Fee Related JP3453190B2 (en) 1994-06-03 1994-06-03 Vacuum evaporation method and vacuum evaporation apparatus

Country Status (1)

Country Link
JP (1) JP3453190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685800B2 (en) * 2009-03-30 2015-03-18 凸版印刷株式会社 Vapor deposition equipment

Also Published As

Publication number Publication date
JPH07331420A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
US6106610A (en) Quartz glass crucible for producing silicone single crystal and method for producing the crucible
US4201649A (en) Low resistance indium oxide coatings
JP3453190B2 (en) Vacuum evaporation method and vacuum evaporation apparatus
US2665224A (en) Process for vapor coating
CA2004234A1 (en) Optical fiber production method
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
JP2570279B2 (en) Packaging film
JP3237399B2 (en) Vacuum deposition equipment
JP3355148B2 (en) Ceramic evaporating boat with improved initial wetting performance and method of making the same
JP3261864B2 (en) Vacuum evaporation apparatus and vacuum evaporation method
JP3532397B2 (en) Pyrolytic boron nitride conical cylinder and method for producing the same
JP3160309B2 (en) Thin film formation method
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
JP2502653B2 (en) Metal thin film manufacturing equipment
JPH0229745B2 (en)
JPH02104659A (en) Device for producing thin film
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
KR100548904B1 (en) Method and apparatus for producing resistance-heated boat for metal evaporation
JP4022849B2 (en) Method for producing metal oxide film-coated member
JPH02138462A (en) Device for producing thin film
JPS6447850A (en) Manufacture of thermoelement
US6924012B2 (en) Pyrolytic boron nitride double container and manufacture thereof
JPS6362871A (en) Formation of thin metallic chromium film
JP2622683B2 (en) Manufacturing equipment for magnetic recording media
JPH07331436A (en) Vacuum evaporation system and method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees