JP3261864B2 - Vacuum evaporation apparatus and vacuum evaporation method - Google Patents

Vacuum evaporation apparatus and vacuum evaporation method

Info

Publication number
JP3261864B2
JP3261864B2 JP12231994A JP12231994A JP3261864B2 JP 3261864 B2 JP3261864 B2 JP 3261864B2 JP 12231994 A JP12231994 A JP 12231994A JP 12231994 A JP12231994 A JP 12231994A JP 3261864 B2 JP3261864 B2 JP 3261864B2
Authority
JP
Japan
Prior art keywords
evaporation
evaporating
temperature
particles
discharge guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12231994A
Other languages
Japanese (ja)
Other versions
JPH07331418A (en
Inventor
邦彦 尾崎
敏則 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP12231994A priority Critical patent/JP3261864B2/en
Publication of JPH07331418A publication Critical patent/JPH07331418A/en
Application granted granted Critical
Publication of JP3261864B2 publication Critical patent/JP3261864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、食品包装,医薬品包
装,電子機器部品包装,たばこ包装,写真製版,感光性
写真材料などの分野に利用可能な各種機能を有したフレ
キシブルプラスチックフィルムの真空蒸着加工に好適に
用いられる真空蒸着装置および真空蒸着方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to vacuum deposition of a flexible plastic film having various functions which can be used in fields such as food packaging, pharmaceutical packaging, electronic equipment parts packaging, tobacco packaging, photoengraving and photosensitive photographic materials. The present invention relates to a vacuum evaporation apparatus and a vacuum evaporation method suitably used for processing.

【0002】[0002]

【従来の技術】近年、真空蒸着法によりフレキシブルプ
ラスチックフィルムの表面に金属または金属酸化物をコ
ーティングし、装飾性、ガスバリヤ性、耐薬品性、濡れ
特性、磁気特性、電導性、寸法安定性などの機能性を付
与し、食品包装,医薬品包装,電子機器部品包装,たば
こ包装,写真製版及び感光性写真材料などの分野に利用
されるようになった。特にアルミニウム蒸着フィルム
は、装飾、包装用途に広く利用されるようになってい
る。また、最近では環境汚染の少ない透明ハイバリヤー
素材として珪素酸化物蒸着フィルムの研究開発も盛んに
行われ、広く普及することも期待されるなど金属酸化物
の蒸着技術の開発に対する要求も日増しに強くなってい
る。
2. Description of the Related Art In recent years, a metal or metal oxide is coated on the surface of a flexible plastic film by a vacuum vapor deposition method to provide decorativeness, gas barrier properties, chemical resistance, wetting properties, magnetic properties, electrical conductivity, dimensional stability, etc. It has added functionality and has been used in fields such as food packaging, pharmaceutical packaging, electronic device parts packaging, tobacco packaging, photoengraving and photosensitive photographic materials. In particular, aluminum vapor-deposited films have been widely used for decoration and packaging applications. In recent years, research and development of silicon oxide vapor deposition film has been actively conducted as a transparent high barrier material with low environmental pollution, and the demand for the development of metal oxide vapor deposition technology is expected to be widespread. It is getting stronger.

【0003】これらの用途の広がりに対応し、大量生産
および加工コストの低減が必要となった。そのため、蒸
発温度を高温にして加工速度の高速化することによる加
工時間の短縮、装着するフィルム幅を広くすることによ
る1回の加工工程で生産可能な面積の拡大、加工長の延
長などが実用化され、結果として蒸着機が大型化してき
た。加工長を延長するためには、蒸発原料を1回に大量
に仕込めるように蒸発原料るつぼの大型化をはかった
り、真空槽内に蒸発原料の保存スペースを設けてそれを
連続供給できるよう工夫されてきた。珪素酸化物のよう
な昇華性蒸発原料を使用する場合には、図7に示すよう
に電子線加熱方式により昇華温度以上に加熱された蒸発
原料をゆっくりと移動させることにより連続供給する方
法や、図6に示すような装置(特開平1−252768
号公報、特開平2−277774号公報に開示)を用い
蒸発原料を連続供給する方法がとられてきた。
[0003] In response to the expansion of these uses, mass production and reduction of processing costs have become necessary. Therefore, it is practical to shorten the processing time by increasing the processing speed by increasing the evaporation temperature, to increase the area that can be produced in one processing step by extending the width of the film to be mounted, and to increase the processing length. As a result, vapor deposition machines have become larger. In order to extend the processing length, the evaporating material crucible must be enlarged so that a large amount of evaporating material can be charged at one time, or a storage space for the evaporating material can be provided in a vacuum chamber so that it can be supplied continuously. It has been. In the case of using a sublimable evaporation material such as silicon oxide, as shown in FIG. 7, a method of continuously supplying the evaporation material heated to a sublimation temperature or higher by an electron beam heating method by slowly moving the material, An apparatus as shown in FIG.
Japanese Patent Application Laid-Open No. 2-277774), and a method of continuously supplying an evaporating raw material has been adopted.

【0004】特開平1−252768号公報に開示され
た装置は、特に珪素酸化物等の蒸着において、安定した
品質と長時間加工による生産性向上に非常に有効であ
る。しかしながら、図5に示すように蒸発源が管の一部
が開いた構造である場合、この方法にも以下に示す欠点
があった。蒸発源中の連続的に供給される円柱状の蒸発
原料から飛行する蒸発粒子は、基本的にはあらゆる方向
に一様に飛行する。この蒸発粒子は直接または何回か衝
突を繰り返しながら管の開口部を通過し、上方のフィル
ム方向へ飛行、さらにフィルムに付着し蒸着フィルムと
なる。しかし、蒸発源は管の一部が開いた構造であるた
め、蒸発粒子は管の長手方向にも飛行する。この管の長
手方向に飛行した蒸発粒子は、加熱状態の管の内壁部分
に付着,再蒸発,再付着を繰り返しながら、管の内壁の
うち蒸発粒子の昇華温度未満の部分に最終的に付着,堆
積する。その結果、管の内壁の一部分が閉塞し、蒸発原
料の円滑な連続供給/排出が妨げられる。言い換える
と、蒸発源の管内壁に蒸発粒子が付着,堆積してしまう
と、連続供給/排出されている円柱状の蒸発原料がその
堆積した部分と接触することにより、蒸発原料の蛇行も
しくは「詰まり」が発生し、蒸発原料の連続供給を止め
なくてはならなかった。
The apparatus disclosed in Japanese Patent Application Laid-Open No. 1-252768 is very effective in improving productivity by stable quality and long-time processing, especially in the deposition of silicon oxide or the like. However, when the evaporation source has a structure in which a part of the tube is opened as shown in FIG. 5, this method also has the following disadvantages. Evaporated particles flying from a continuously supplied columnar evaporation material in the evaporation source basically fly uniformly in all directions. The vaporized particles pass through the opening of the tube while repeating collisions directly or several times, fly toward the upper film, and adhere to the film to form a vapor-deposited film. However, since the evaporation source has a structure in which a part of the tube is open, the evaporation particles also fly in the longitudinal direction of the tube. The vaporized particles flying in the longitudinal direction of the tube repeatedly adhere to the inner wall portion of the heated tube, re-evaporate and re-adhere, and finally adhere to a portion of the inner wall of the tube below the sublimation temperature of the vaporized particles. accumulate. As a result, a part of the inner wall of the tube is blocked, and a smooth continuous supply / discharge of the vaporized raw material is prevented. In other words, when the evaporated particles adhere to and accumulate on the inner wall of the tube of the evaporation source, the continuously supplied / discharged cylindrical evaporation material comes into contact with the deposited portion, thereby meandering or "clogging" the evaporation material. And the continuous supply of evaporative raw materials had to be stopped.

【0005】蒸発原料の供給が止まることにより、蒸発
原料の割れ,蒸発速度の変動,スプラッシュの発生を招
き、蒸発速度の変動は複数並ぶ蒸発源の加熱ヒーター毎
に不規則さが生じるため蒸着膜厚等の制御を不安定にし
てしまい、またスプラッシュの発生は前述のように蒸着
膜の欠陥、基材フィルムの損傷や異物の混入現象を招
く。以上のように、結果として蒸着フィルムの品質が低
下する。従来の蒸発原料を連続供給/排出する真空蒸着
装置は蒸発原料の供給が止まると、蒸着フィルムの品質
が著しく低下するため、蒸着加工を中止せざるをえず、
生産性が著しく低下するという問題点があった。
[0005] When the supply of the evaporation source is stopped, cracks in the evaporation source, fluctuations in the evaporation speed, and splash are generated. The fluctuations in the evaporation speed are irregular for each of a plurality of heaters of the evaporation sources. The control of the thickness and the like becomes unstable, and the generation of the splash causes the defect of the deposited film, the damage of the base film, and the mixing of foreign matter as described above. As described above, as a result, the quality of the deposited film deteriorates. Conventional vacuum evaporation equipment that continuously supplies / discharges the evaporation raw material, when the supply of the evaporation raw material is stopped, the quality of the evaporated film is remarkably deteriorated.
There is a problem that productivity is remarkably reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高い
生産性と安定した高品質蒸着フィルムを得るための、蒸
発原料を連続供給する真空蒸着装置および真空蒸着方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vacuum vapor deposition apparatus and a vacuum vapor deposition method for continuously supplying an evaporation raw material for obtaining a high productivity and a stable high quality vapor deposition film.

【0007】[0007]

【課題を解決するための手段】本発明の目的は、蒸発原
料を連続供給排出することができる蒸発原料供給排出ガ
イドに、蒸発源以外に、少なくとも1個の蒸発粒子の排
出穴を設け、かつ該排出穴と蒸発源との間の蒸発原料供
給排出ガイドを蒸発粒子の蒸発温度以上に加熱してなる
ことを特徴とする真空蒸着装置により達成することがで
きる。本発明の目的は更に、蒸発原料を連続供給排出す
ることができる蒸発原料供給排出ガイドに、蒸発源以外
に、少なくとも1個の蒸発粒子の排出穴を設け、かつ該
排出穴と蒸発源との間の蒸発原料供給排出ガイドを蒸発
粒子の蒸発温度以上に加熱して、蒸発粒子を排出穴から
排出することを特徴とする真空蒸着方法により達成する
ことができる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an evaporation material supply and discharge guide capable of continuously supplying and discharging the evaporation material, in addition to the evaporation source, at least one discharge hole for evaporating particles, and This can be achieved by a vacuum evaporation apparatus characterized in that an evaporation material supply and discharge guide between the discharge hole and the evaporation source is heated to a temperature equal to or higher than the evaporation temperature of the evaporation particles. Another object of the present invention is to provide an evaporating material supply / discharge guide capable of continuously supplying / ejecting the evaporating material, in addition to the evaporating source, at least one discharging hole for evaporating particles, and connecting the discharging hole to the evaporating source. The evaporating raw material supply / discharge guide is heated to a temperature equal to or higher than the evaporating temperature of the evaporating particles, and the evaporating particles are discharged from the discharge holes.

【0008】本発明において、蒸発原料を連続供給排出
する機構を有する真空蒸着装置としては、図6に示すよ
うな、特開平1−252768号公報及び特開平2−2
77774号公報記載の装置を用いることができる。蒸
発原料を連続的に供給排出することができる蒸発原料供
給排出ガイドとしては、図1に示すような蒸発源が一体
化した構造のものや、図2に示すような蒸発源が別体化
した構造のものが挙げられる。また、蒸発原料供給排出
ガイドの形状は円管状,角管状どちらでも構わない。蒸
発源以外に蒸発粒子を排出する穴は、図4に示すように
円形,楕円形,角形何れでも構わない。また、図2に示
すように、管状の蒸発源が別体化している場合は、蒸発
源との間に隙間を設けることにより、それを排出穴とし
てもよい。
[0008] In the present invention, as a vacuum deposition apparatus having a mechanism for continuously supplying and discharging the evaporation raw material, Japanese Patent Application Laid-Open Nos. 1-252768 and 2-2 as shown in FIG.
No. 77774 can be used. As the evaporation material supply / discharge guide capable of continuously supplying and discharging the evaporation material, an evaporation source having a structure in which the evaporation source is integrated as shown in FIG. 1 or an evaporation source as shown in FIG. And those having a structure. The shape of the evaporation material supply / discharge guide may be either a circular tube or a square tube. The hole for discharging the evaporated particles other than the evaporation source may be circular, elliptical or square as shown in FIG. In addition, as shown in FIG. 2, when the tubular evaporation source is separate, a gap may be provided between the evaporation source and the evaporation source so that it is used as a discharge hole.

【0009】蒸発粒子の排出穴と蒸発源との間は、蒸発
粒子が付着堆積しないように、蒸発粒子の蒸発温度以上
にする必要がある。蒸発粒子の排出穴と蒸発源との間
は、従来公知の方法で加熱してもよいが、蒸発源からの
熱伝導により蒸発粒子の蒸発温度以上にすることもでき
る。蒸発粒子の蒸発温度は、蒸発原料と真空度に依存す
る。例えば、SiOまたはSiとSiO2 の混合物を蒸
着原料として1×10-2Paの圧力下で蒸着する場合は
873℃以上である。蒸発原料供給排出ガイドの加熱方
法としては、真空状態で使用でき、且つ蒸発原料を所定
の時間内に所定の温度に昇温可能な方法で有れば特に制
限は無く、直接抵抗加熱、間接抵抗加熱、直接高周波誘
導加熱、間接高周波誘導加熱、輻射加熱、電子線加熱な
ど従来公知の方法を用いることができる。
The temperature between the discharge hole of the evaporating particles and the evaporation source must be equal to or higher than the evaporating temperature of the evaporating particles so that the evaporating particles do not adhere and accumulate. The space between the evaporating particle discharge hole and the evaporation source may be heated by a conventionally known method, but may be heated to a temperature equal to or higher than the evaporation temperature of the evaporating particles by heat conduction from the evaporation source. The evaporation temperature of the evaporation particles depends on the evaporation source and the degree of vacuum. For example, when vapor deposition is performed under a pressure of 1 × 10 −2 Pa using SiO or a mixture of Si and SiO 2 as a vapor deposition material, the temperature is 873 ° C. or higher. There is no particular limitation on the method of heating the evaporation material supply / discharge guide as long as it can be used in a vacuum state and can raise the temperature of the evaporation material to a predetermined temperature within a predetermined time. Conventionally known methods such as heating, direct high-frequency induction heating, indirect high-frequency induction heating, radiation heating, and electron beam heating can be used.

【0010】蒸発粒子の排出穴と蒸発源との間の温度を
蒸発粒子の蒸発温度以上に直接的に制御する方法として
は、PID制御、比例制御、ファジィー制御などの方法
が挙げられる。そのための温度計測方法も、熱電対温度
計、放射温度計などの従来公知の温度計を用いた方法が
使用できる。図1に示すような蒸発源が一体化した構造
の蒸発原料供給排出ガイドの場合は、蒸発粒子の排出穴
と蒸発源との間の温度を蒸発粒子の蒸発温度以上に間接
的に制御することができる。すなわち、蒸発源自体の温
度は温度制御されることから、蒸発源の温度と蒸発原料
供給排出ガイドの温度差を正しく把握することにより、
事実上、蒸発粒子の排出穴と蒸発源との間の蒸発原料供
給排出ガイドの温度制御が実現する。
As a method of directly controlling the temperature between the discharge hole of the evaporating particles and the evaporation source to be higher than the evaporating temperature of the evaporating particles, there are methods such as PID control, proportional control, and fuzzy control. As a temperature measurement method therefor, a method using a conventionally known thermometer such as a thermocouple thermometer or a radiation thermometer can be used. In the case of an evaporating material supply / discharge guide having an integrated evaporating source as shown in FIG. 1, the temperature between the evaporating particle discharge hole and the evaporating source must be indirectly controlled to be equal to or higher than the evaporating particle evaporation temperature. Can be. That is, since the temperature of the evaporation source itself is temperature-controlled, by correctly grasping the difference between the temperature of the evaporation source and the temperature of the evaporation material supply / discharge guide,
In effect, the temperature control of the evaporating material supply / discharge guide between the evaporating particle discharge hole and the evaporating source is realized.

【0011】蒸発原料としては、Si及びSiO,Si
3 4 ,Si2 3 ,SiO2 を含むSiOx(X=1
〜2)等の珪素及び珪素酸化物の中から選ばれる1種ま
たは2種以上の物質の混合物や、珪素およびまたは珪素
酸化物と金属化合物との混合物や化学結合物が挙げられ
る。金属化合物としては、金属酸化物や金属フッ化物が
挙げられる。金属酸化物としては、マグネシウム酸化
物,カルシウム酸化物,バリウム酸化物,アルミニウム
酸化物,チタン酸化物,ジルコニア酸化物,ナトリウム
酸化物,カリウム酸化物,錫酸化物,インジウム酸化
物,酸化マグネシウム−二酸化珪素共酸化物(フォルス
テライト,ステアタイト),酸化アルミニウム−二酸化
珪素共酸化物(ムライト)等が挙げられる。また金属フ
ッ化物としては、アルカリ土類金属のフッ化物,例えば
フッ化マグネシウムやフッ化カルシウム,フッ化バリウ
ムや、アルカリ金属のフッ化物,例えばフッ化ナトリウ
ムやフッ化カリウム等が挙げられる。
[0011] As evaporation materials, Si and SiO, Si
SiOx containing 3 O 4 , Si 2 O 3 and SiO 2 (X = 1
And mixtures of one or two or more substances selected from silicon and silicon oxide, and mixtures and chemical bonds of silicon and / or silicon oxide with a metal compound. Examples of the metal compound include metal oxides and metal fluorides. Examples of metal oxides include magnesium oxide, calcium oxide, barium oxide, aluminum oxide, titanium oxide, zirconia oxide, sodium oxide, potassium oxide, tin oxide, indium oxide, and magnesium oxide-dioxide. Silicon oxide (forsterite, steatite), aluminum oxide-silicon dioxide cooxide (mullite), and the like can be given. Examples of the metal fluoride include fluorides of alkaline earth metals, such as magnesium fluoride, calcium fluoride, and barium fluoride, and fluorides of alkali metals, such as sodium fluoride and potassium fluoride.

【0012】[0012]

【実施例】以下、実施例に基づいて本発明をさらに詳細
に説明するが、本発明はその要旨をこえない限り、以下
の実施例に限定されるものではない。なお、実施例で得
られた蒸着フィルムの試験方法は以下のとおりである。
酸素バリヤー性:ASTM D 3985に準拠し、米
国モダンコントロールズ社のOXTRAN−TWINを
用いて酸素ガス透過率を測定した。外観:得られた蒸着
フィルムの蒸着膜の欠陥,異物混入について、目視にて
評価した。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples unless it exceeds the gist of the present invention. In addition, the test method of the vapor deposition film obtained in the Example is as follows.
Oxygen barrier property: According to ASTM D3985, oxygen gas permeability was measured using OXTRAN-TWIN manufactured by Modern Controls of the United States. Appearance: Defects in the deposited film of the obtained deposited film and contamination with foreign matter were visually evaluated.

【0013】〔実施例1〕特開平1−252768号公
報に記載される真空蒸着装置の蒸発原料供給排出ガイド
の2箇所に、図3に示すように直径10mmの穴を90
゜間隔で4つずつ、合計して8つ設けた。図1に、蒸発
原料供給排出ガイドの側面図を示す。蒸発源の加熱方法
は抵抗加熱方式であり、放射温度計による温度制御を行
った。また、蒸発原料の排出穴と蒸発源との間の温度
は、放射温度計を用いて測定した。次に、珪素と二酸化
珪素(非晶質)との等モル混合物を圧縮成形し、直径4
0mm,高さ35mmの円柱状成形物を得た。得られた
成形物を、蒸発原料供給排出ガイド(窒化ほう素複合焼
結体製)の供給口から5mm/分の供給速度で連続供給
し、1×10-2Paの真空下で蒸発源を抵抗加熱により
1350℃に加熱し、厚さ12μmのポリエチレンテレ
フタレートフィルムに珪素酸化物を真空蒸着した。蒸発
原料の排出穴と蒸発源との間の温度は、900〜110
0℃であった。その条件のまま加工速度は50m/分
で、1時間真空蒸着加工を行った。蒸着膜の厚みを水晶
式膜厚モニターを用いて測定したところ、約1000オ
ングストロームであった。
[Example 1] A hole having a diameter of 10 mm as shown in FIG.
4Eight in total, four at intervals. FIG. 1 shows a side view of the evaporation material supply / discharge guide. The heating method of the evaporation source was a resistance heating method, and the temperature was controlled by a radiation thermometer. Further, the temperature between the discharge hole of the evaporation raw material and the evaporation source was measured using a radiation thermometer. Next, an equimolar mixture of silicon and silicon dioxide (amorphous) was compression-molded to a diameter of 4 mm.
A cylindrical molded product having a height of 0 mm and a height of 35 mm was obtained. The obtained molded product is continuously supplied at a supply speed of 5 mm / min from a supply port of an evaporation material supply / discharge guide (made of boron nitride composite sintered body), and the evaporation source is supplied under a vacuum of 1 × 10 −2 Pa. Heating was performed to 1350 ° C. by resistance heating, and silicon oxide was vacuum-deposited on a 12 μm-thick polyethylene terephthalate film. The temperature between the discharge hole of the evaporation raw material and the evaporation source is 900-110.
It was 0 ° C. Under these conditions, the processing speed was 50 m / min, and vacuum deposition was performed for 1 hour. When the thickness of the deposited film was measured using a quartz crystal film thickness monitor, it was about 1000 Å.

【0014】〔比較例1〕実施例1で用いた真空蒸着装
置の蒸発原料供給排出ガイドに穴を設けず、それ以外は
実施例と全く同様に行った。蒸着加工しはじめて25分
後に連続供給している蒸発原料の詰まりによるトラブル
が発生したため、原料供給を停止し、その後5分間加工
を続行し、蒸着加工を中止した。
[Comparative Example 1] The same procedure as in Example 1 was carried out except that a hole was not provided in the evaporating material supply / discharge guide of the vacuum evaporation apparatus used in Example 1. 25 minutes after the beginning of the vapor deposition, a trouble occurred due to clogging of the continuously supplied vaporized raw material. Therefore, the supply of the raw material was stopped, and the processing was continued for 5 minutes thereafter, and the vapor deposition was stopped.

【0015】実施例および比較例で得られた蒸着フィル
ムについて、酸素バリヤー性と外観を評価した。結果を
表1に示す。
The vapor-deposited films obtained in Examples and Comparative Examples were evaluated for oxygen barrier properties and appearance. Table 1 shows the results.

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明により、蒸発原料供給排出ガイド
の内壁に蒸発した粒子が付着,堆積することなく蒸発原
料を円滑に供給排出することができるようになった。そ
のため、原料の成形物が破損,突沸によるスプラッシュ
の発生,急激なガス放出,真空槽内圧力の上昇,不純物
の混入や蒸発速度の変動等のトラブルの発生が無く真空
蒸着でき、高品質の蒸着フィルムを高い生産性で製造す
ることができる。
According to the present invention, the evaporated material can be smoothly supplied and discharged without the evaporated particles adhering and accumulating on the inner wall of the evaporated material supply / discharge guide. Therefore, high-quality deposition can be performed without any troubles such as damage to the molded product, generation of splashes due to bumping, rapid release of gas, increase in pressure in the vacuum chamber, mixing of impurities, and fluctuations in the evaporation rate. Films can be produced with high productivity.

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸発源が一体化した本発明の蒸発原料供給排出
ガイドの側面図。
FIG. 1 is a side view of an evaporation source supply / discharge guide of the present invention in which an evaporation source is integrated.

【図2】蒸発源が別体化した本発明の蒸発原料供給排出
ガイドの側面図。
FIG. 2 is a side view of an evaporation material supply / discharge guide of the present invention in which an evaporation source is separated.

【図3】蒸発粒子の排出穴を設けた蒸発原料供給排出ガ
イドの断面図。
FIG. 3 is a cross-sectional view of an evaporation material supply / discharge guide provided with a discharge hole for evaporating particles.

【図4】蒸発粒子の排出穴を設けた蒸発原料供給排出ガ
イドの斜視図。
FIG. 4 is a perspective view of a vaporized material supply / discharge guide provided with a vaporized particle discharge hole.

【図5】管の一部が開いた構造の蒸発源の斜視図。FIG. 5 is a perspective view of an evaporation source having a structure in which a part of a tube is opened.

【図6】従来の蒸発原料供給排出ガイドの側面図。FIG. 6 is a side view of a conventional evaporation material supply / discharge guide.

【図7】従来の電子線加熱方式による真空蒸着装置の側
面図。
FIG. 7 is a side view of a conventional vacuum evaporation apparatus using an electron beam heating method.

【符号の説明】[Explanation of symbols]

1:蒸発源 2:蒸発原料
3:蒸発原料供給機構 4:蒸発粒子の排出穴 5:電子線
6:電極 7:蒸発原料供給排出ガイド
8:放射温度計 9:PID温調計 10:電子銃
1: evaporation source 2: evaporation source
3: Evaporation raw material supply mechanism 4: Evaporation particle discharge hole 5: Electron beam
6: Electrode 7: Evaporation material supply and discharge guide
8: Radiation thermometer 9: PID temperature controller 10: Electron gun

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C23C 14/00-14/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発原料を連続供給排出することができる
蒸発原料供給排出ガイドに、蒸発源以外に、少なくとも
1個の蒸発粒子の排出穴を設け、かつ該排出穴と蒸発源
との間の蒸発原料供給排出ガイドを蒸発粒子の蒸発温度
以上に加熱してなることを特徴とする真空蒸着装置。
An evaporating material supply and discharge guide capable of continuously supplying and discharging the evaporating material is provided with at least one discharging hole for evaporating particles in addition to the evaporating source. A vacuum evaporation apparatus characterized in that an evaporation material supply / discharge guide is heated to a temperature equal to or higher than an evaporation temperature of evaporation particles.
【請求項2】蒸発原料を連続供給排出することができる
蒸発原料供給排出ガイドに、蒸発源以外に、少なくとも
1個の蒸発粒子の排出穴を設け、かつ該排出穴と蒸発源
との間の蒸発原料供給排出ガイドを蒸発粒子の蒸発温度
以上に加熱して、蒸発粒子を排出穴から排出することを
特徴とする真空蒸着方法。
2. An evaporation material supply and discharge guide capable of continuously supplying and discharging the evaporation material, wherein, in addition to the evaporation source, at least one discharge hole for evaporating particles is provided, and between the discharge hole and the evaporation source. A vacuum evaporation method comprising: heating a vaporized material supply / discharge guide to a temperature equal to or higher than the vaporization temperature of vaporized particles and discharging the vaporized particles from a discharge hole.
JP12231994A 1994-06-03 1994-06-03 Vacuum evaporation apparatus and vacuum evaporation method Expired - Fee Related JP3261864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12231994A JP3261864B2 (en) 1994-06-03 1994-06-03 Vacuum evaporation apparatus and vacuum evaporation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12231994A JP3261864B2 (en) 1994-06-03 1994-06-03 Vacuum evaporation apparatus and vacuum evaporation method

Publications (2)

Publication Number Publication Date
JPH07331418A JPH07331418A (en) 1995-12-19
JP3261864B2 true JP3261864B2 (en) 2002-03-04

Family

ID=14833024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12231994A Expired - Fee Related JP3261864B2 (en) 1994-06-03 1994-06-03 Vacuum evaporation apparatus and vacuum evaporation method

Country Status (1)

Country Link
JP (1) JP3261864B2 (en)

Also Published As

Publication number Publication date
JPH07331418A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
EP0570182B1 (en) Evaporation source material and evaporation method of forming transparent barrier film
SE458205B (en) PROCEDURE AND DEVICE FOR COATING A SUBSTRATE OF MATERIAL THAT WAS TRANSFERRED ON THE ELECTRICAL ROAD
JPH0141700B2 (en)
US5849371A (en) Laser and laser-assisted free electron beam deposition apparatus and method
JP2000109076A (en) Inner surface-coated bottle and manufacture thereof
JP3261864B2 (en) Vacuum evaporation apparatus and vacuum evaporation method
EP0444698B1 (en) Method of and apparatus for preparing oxide superconducting film
US4649857A (en) Thin-film forming device
CA1264613A (en) Process and apparatus for metallising foils in a vacuum roll coating machine
JP2008138250A (en) Vacuum vapor-deposition apparatus and vacuum vapor-deposition method
Sung et al. The morphology and mechanical properties of Al2O3, ZrO2 and SiC laser-assisted physically vapour deposited films
JP3584096B2 (en) Method for producing silicon oxide
JP6975972B2 (en) Method for manufacturing YF3 film-forming body
JPH10251844A (en) Production of thin film-coated substrate, its production device and thin film-coated substrate
JP3152548B2 (en) High frequency induction plasma deposition equipment
JP3080096B2 (en) Fabrication method of large area thin film
JPH0798861A (en) Production of magnetic recording medium
JP2687845B2 (en) Method for producing composite material thin film using pulsed laser deposition method
JPH07331420A (en) Vacuum deposition method and device therefor
JPH07331436A (en) Vacuum evaporation system and method therefor
JP2967191B2 (en) Ultrasonic cluster generation method and apparatus
JP2507804B2 (en) Continuous vapor deposition method and apparatus
JPS59203644A (en) Crucible for evaporation source
JP3532397B2 (en) Pyrolytic boron nitride conical cylinder and method for producing the same
JPH04187504A (en) Production equipment for oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees