JP2619428B2 - Hard conductive carbon film - Google Patents

Hard conductive carbon film

Info

Publication number
JP2619428B2
JP2619428B2 JP62278636A JP27863687A JP2619428B2 JP 2619428 B2 JP2619428 B2 JP 2619428B2 JP 62278636 A JP62278636 A JP 62278636A JP 27863687 A JP27863687 A JP 27863687A JP 2619428 B2 JP2619428 B2 JP 2619428B2
Authority
JP
Japan
Prior art keywords
film
graphite
carbon film
conductive carbon
mixing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62278636A
Other languages
Japanese (ja)
Other versions
JPH01120707A (en
Inventor
克彦 谷
裕治 木村
英一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62278636A priority Critical patent/JP2619428B2/en
Publication of JPH01120707A publication Critical patent/JPH01120707A/en
Application granted granted Critical
Publication of JP2619428B2 publication Critical patent/JP2619428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明はサーマルヘッド用ヒーター、MIM等積層半導
体機能材料電極層等に好適な硬質導電性炭素膜に関す
る。
Description: TECHNICAL FIELD The present invention relates to a hard conductive carbon film suitable for a heater for a thermal head, an electrode layer of a laminated semiconductor functional material such as a MIM, and the like.

〔従来技術〕(Prior art)

一般に、CH4、H2の混合ガスをRFグロー放電等により
分解し、ガラス基板等の上に堆積した薄膜中にはHが若
干(14%以下)含まれており、硬質(Hv〜9500Kg・m
m-2)、高比抵抗(ρ〜109Ω・cm)でダイヤモンドに似
た性質を示す。a−C:H膜のCネットワークの電子状態
はESCA(X線照射による光電子分光法)のC15プラズモ
ン損失、構造はX線回折で評価され、ダイヤモンド的な
sp3結合とグラファイト的なsp2結合が局所的に混在した
非結晶構造、すなわちa−C:H膜(i−カーボン膜)を
なす。
In general, a mixed gas of CH 4 and H 2 is decomposed by RF glow discharge or the like, and a thin film deposited on a glass substrate or the like contains a small amount of H (14% or less), and is hard (Hv-9500 kg · m
m −2 ), high specific resistance (ρ〜10 9 Ω · cm) and exhibit properties similar to diamond. a-C: electronic states of C network H film C 15 plasmon loss ESCA (X-ray photoelectron spectroscopy by irradiation), the structure is evaluated by X-ray diffraction, diamond manner
An amorphous structure in which sp 3 bonds and graphite-like sp 2 bonds are locally mixed, that is, an aC: H film (i-carbon film) is formed.

下記条件で作製したa−C:H膜中に存在するCの未結
合手はESR(電子スピン共鳴)により測定したところ、
g=2.0036に半値幅7GのESR信号が観測され、その積分
強度より求めたスピン密度は6×1019/cm3程度である。
Unbonded C atoms present in the aC: H film prepared under the following conditions were measured by ESR (electron spin resonance).
At g = 2.0036, an ESR signal with a half width of 7 G was observed, and the spin density determined from the integrated intensity was about 6 × 10 19 / cm 3 .

RF出力:20〜100W 圧力:10-3〜1Torr ガス:CH4/H2=100〜20% 基板温度:室温 このように、室温付近で製膜したa−C:H膜は未結合
手を多数含んでいるため、膜構造が不安定である。ま
た、これら未結合手が禁制帯内に作る局在準位により、
電気伝導はホッピングにより支配されており、a−C:H
膜の導電性の向上を困難にしている。それとともに、例
えばa−C:H膜(i−カーボン膜)をMIM等の機能デバイ
スに利用する場合、Al、Ni等の種々の金属材料とCとの
結合ができにくいため、金属との密着性が良くないとい
う問題点を有する。
RF output: 20 to 100 W Pressure: 10 -3 to 1 Torr Gas: CH 4 / H 2 = 100 to 20% Substrate temperature: room temperature As described above, the aC: H film formed near room temperature has unbonded bonds. The film structure is unstable because it contains many. In addition, due to the localized level created by these uncoupled hands in the forbidden band,
Electrical conduction is dominated by hopping, a-C: H
This makes it difficult to improve the conductivity of the film. In addition, for example, when an aC: H film (i-carbon film) is used for a functional device such as a MIM, it is difficult to bond C with various metal materials such as Al and Ni, so that adhesion to a metal is difficult. There is a problem that the property is not good.

〔目的〕〔Purpose〕

本発明は上記したような問題点を解消し、a−C:H膜
中にグラファイトの微結晶を析出させる(マイクロクリ
スタリン状態)とともに、Cの未結合手を減少せしめ、
ダイヤモンド級の硬度を保ったまま、導電性を所望の値
にコントロールし得る硬質導電性炭素膜を提供すること
を目的とするものである。
The present invention solves the above-mentioned problems and precipitates graphite microcrystals in the aC: H film (in a microcrystalline state), reduces the dangling bonds of C,
It is an object of the present invention to provide a hard conductive carbon film capable of controlling conductivity to a desired value while maintaining diamond grade hardness.

〔構成〕〔Constitution〕

本発明の硬質導電性炭素膜は炭素および水素を主成分
とし、炭素のsp3結合およびsp2結合か混在するa−C:H
膜からなり、このa−C:H膜中にグラファイト微結晶が1
0〜75%含まれることを特徴とするものである。
The hard conductive carbon film of the present invention contains carbon and hydrogen as main components, and a-C: H in which sp 3 bonds and sp 2 bonds of carbon are mixed.
The aC: H film contains 1 graphite microcrystal.
It is characterized by being contained in 0 to 75%.

ちなみに、本発明者らは、基板上にプラズマCVD法に
より、炭素および水素を主成分とし、炭素のsp3結合お
よびsp2結合が混在するa−C:H膜を作製するに際し、室
温にて製膜後、150〜450℃でアニールすること、もしく
は150〜450℃の基板温度として製膜することにより、a
−C:H膜中に微結晶グラファイトが10〜70%析出し、C
の未結合手が1020オーダーから1019オーダーにまで減少
させることができることを見い出し、本発明を完成させ
たものである。
Incidentally, the present inventors, by plasma CVD method on the substrate, when producing an aC: H film containing carbon and hydrogen as main components and sp 3 bonds and sp 2 bonds of carbon mixed at room temperature. After forming the film, annealing at 150 to 450 ° C. or forming the film at a substrate temperature of 150 to 450 ° C.
-C: 10-70% of microcrystalline graphite precipitates in the H film,
Can be reduced from the order of 10 20 to the order of 10 19 to complete the present invention.

第1図は、プラズマCVD法により室温で基板上に製膜
したa−C:H膜をアニール温度を変えてそれぞれの場合
にESR測定により未結合手密度を測定した結果を示すも
のである。第1図より、熱処理温度の上昇に伴ってCの
未結合手が減少することがわかる。この未結合手の減少
により膜構造が安定し、電気伝導はホッピング伝導から
活性化型の伝導が支配的となっていくものと考えられ
る。
FIG. 1 shows the results of measuring the unbonded hand density by ESR measurement in each case by changing the annealing temperature of an aC: H film formed on a substrate at room temperature by a plasma CVD method. FIG. 1 shows that the number of dangling bonds of C decreases as the heat treatment temperature increases. It is considered that the membrane structure is stabilized by the reduction of the dangling bonds, and the electrical conduction becomes dominant from hopping conduction to activated conduction.

また、第2図はa−C:H膜をプラズマCVD法により製膜
するに際し、基板温度を変えた場合のアモルファス部分
とグラファイト微結晶部分の混合比を示すものである。
この第2図に示した混合比はラマンスペクトルの1600cm
-1ピーク(a−C:H)と1570cm-1ピーク(グラファイト
ピーク)の比から算出したものである。第2図より、基
板温度を室温〜450℃まで変化させると、グラファイト
微結晶の混合比が75%まで増加することがわかる。グラ
ファイト結晶の比抵抗は小さい〜0.2Ω・cmため、グラ
ファイト微結晶が混在しているa−C:H膜の比抵抗は大
幅に低下し、75%の混在比では103Ω・cmのオーダーと
なる。
FIG. 2 shows the mixing ratio between the amorphous portion and the graphite microcrystal portion when the substrate temperature is changed when the aC: H film is formed by the plasma CVD method.
The mixture ratio shown in FIG.
-1 peak: is calculated from the ratio of (a-C H) and 1570 cm -1 peak (graphite peak). FIG. 2 shows that when the substrate temperature is changed from room temperature to 450 ° C., the mixing ratio of the graphite microcrystals increases to 75%. Since the specific resistance of graphite crystals is small to 0.2 Ω · cm, the specific resistance of the aC: H film in which graphite microcrystals are mixed is greatly reduced, and the mixing ratio of 75% is of the order of 10 3 Ω · cm. Becomes

なお、室温製膜後のアニール温度上昇に伴う未結合手
の減少は膜中に析出するグラファイト微結晶の混合比と
関連するものであって、グラファイト微結晶の析出量が
増大する程、未結合手が減少するようになる。
The decrease in dangling bonds associated with an increase in the annealing temperature after film formation at room temperature is related to the mixing ratio of the graphite microcrystals precipitated in the film. Hands are reduced.

しかして、本発明ではa−C:H膜中に混在するグラフ
ァイト微結晶の混合比を10〜75%とすることを要点とす
るものである。この混合比が10%未満ではグラファイト
微結晶析出による導電性の向上効果が十分でないととも
に未結合手数がそれ程減少せず、膜安定性が劣り、逆に
この混合比が75%を越えるとグラファイト結晶の増大に
伴う膜質が劣化し、硬度が十分でなくなるようになる。
好ましいグラファイトの混合比は20〜50%とする。パー
コレーションの理論によると結晶化率20%以上で微結晶
粒同士が連なり伝導パスが形成されるので、導電性は特
に向上することが予側できる。
In the present invention, the main point is that the mixing ratio of the graphite microcrystals mixed in the aC: H film is 10 to 75%. If this mixing ratio is less than 10%, the effect of improving the conductivity by the precipitation of graphite microcrystals is not sufficient, the number of unbonded atoms does not decrease so much, and the film stability is inferior. The film quality is degraded with the increase in hardness, and the hardness becomes insufficient.
The preferred mixing ratio of graphite is 20 to 50%. According to the theory of percolation, fine crystal grains are connected to each other at a crystallization ratio of 20% or more to form a conduction path, so that it can be expected that the conductivity is particularly improved.

このようなグラファイト混合比とするには、a−C:H
膜を製膜する際の基板温度を150〜450℃とすることによ
り、もしくは室温にて製膜後150〜450℃でアニールする
ことにより得られる。
To achieve such a graphite mixing ratio, a-C: H
It can be obtained by setting the substrate temperature at 150 to 450 ° C. when forming the film, or by annealing at 150 to 450 ° C. after forming the film at room temperature.

このようにして10〜75%のグラファイト微結晶が混入
されたa−C:H膜ではC原子の未結合手数が減少し、膜
安定性に優れるとともに、活性化型の伝導が支配的とな
り、グラファイト結晶混合比に応じた所望の電気伝導性
を有するようにコントロールできるものである。なお、
本発明におけるa−C:H膜はその中に混在している微結
晶グラファイトにアルカリ金属イオンをドナーとした
り、酸素やハロゲンイオンをアクセプターとするインタ
ーカレーションを形成しやすく従って硬質炭素膜の電気
伝導性の一層の向上を図るために、上記の如きドナーあ
るいはアクセプターとなる元素をドープしたものとする
ことができる。
In the aC: H film mixed with 10 to 75% of graphite microcrystals in this way, the number of unbonded atoms of C atoms is reduced, the film stability is excellent, and the activated conduction becomes dominant. It can be controlled to have a desired electrical conductivity according to the graphite crystal mixing ratio. In addition,
The aC: H film according to the present invention is easy to form intercalation using alkali metal ions as donors or oxygen or halogen ions as acceptors in microcrystalline graphite mixed therein, so that the electrical properties of the hard carbon film can be improved. In order to further improve the conductivity, a material doped with an element serving as a donor or an acceptor as described above can be used.

〔効果〕〔effect〕

以上のような本発明によれば、硬質炭素膜の特性を保
ちつつ析出させる微結晶グラファイトの混合比をコント
トールすることにより、所望の電気伝導性をコントロー
ルすることが可能となる。従ってサーマルヘッド等の薄
膜ヒーターが可能となるとともに、i−カーボン膜をMI
M等の機能デバイスに利用する際、i−カーボン膜との
密着性よい安定な電極材料として好適に使用できるとい
う効果を有する。
According to the present invention as described above, desired electrical conductivity can be controlled by controlling the mixing ratio of microcrystalline graphite to be deposited while maintaining the characteristics of the hard carbon film. Therefore, a thin film heater such as a thermal head can be used, and the i-carbon film
When used for a functional device such as M, there is an effect that it can be suitably used as a stable electrode material having good adhesion to an i-carbon film.

【図面の簡単な説明】[Brief description of the drawings]

第1図は室温でプラズマCVD法により製膜したa−C:H膜
のアニール温度と膜中のCの未結合手密度との関係図で
ある。 第2図はa−C:H膜製膜時の基板温度と微結晶グラファ
イトの混合比との関係図である。
FIG. 1 is a diagram showing the relationship between the annealing temperature of an aC: H film formed by a plasma CVD method at room temperature and the density of dangling bonds of C in the film. FIG. 2 is a diagram showing the relationship between the substrate temperature and the mixing ratio of microcrystalline graphite during the formation of the aC: H film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素および水素を主成分とし、炭素のsp3
結合およびsp2結合が混在するa−C:Hからなる硬質炭素
膜において、a/C:H中にグラファイト微結晶が10〜75%
含まれることを特徴とする硬質導電性炭素膜。
1. A mainly composed of carbon and hydrogen, sp 3 carbons
In a hard carbon film composed of aC: H in which a bond and an sp 2 bond are mixed, 10 to 75% of graphite microcrystals are contained in a / C: H.
A hard conductive carbon film characterized by being included.
JP62278636A 1987-11-04 1987-11-04 Hard conductive carbon film Expired - Fee Related JP2619428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278636A JP2619428B2 (en) 1987-11-04 1987-11-04 Hard conductive carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278636A JP2619428B2 (en) 1987-11-04 1987-11-04 Hard conductive carbon film

Publications (2)

Publication Number Publication Date
JPH01120707A JPH01120707A (en) 1989-05-12
JP2619428B2 true JP2619428B2 (en) 1997-06-11

Family

ID=17600036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278636A Expired - Fee Related JP2619428B2 (en) 1987-11-04 1987-11-04 Hard conductive carbon film

Country Status (1)

Country Link
JP (1) JP2619428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440301B2 (en) * 2006-07-13 2013-05-14 Teer Coatings Limited Coating apparatus and method

Also Published As

Publication number Publication date
JPH01120707A (en) 1989-05-12

Similar Documents

Publication Publication Date Title
US4665428A (en) Semiconductor device
CA2490074C (en) Method for making carbon nanotubes
JPS58199564A (en) Semiconductor element
JPH0512315B2 (en)
Zhou et al. Growth of amorphous-layer-free microcrystalline silicon on insulating glass substrates by plasma-enhanced chemical vapor deposition
JP2619428B2 (en) Hard conductive carbon film
US5693581A (en) Method of manufacturing a pyrolytic boron nitride compact
JPH06100396A (en) Production of polycrystal semiconductor thin film
Kobayashi et al. Deposition of hard carbon films by the RF glow discharge method
JPS6261668B2 (en)
TW417301B (en) Method for production of semiconductor device
JPS61128403A (en) Non-crystalline silicon based insulating material
Stiegler et al. Plasma-assisted CVD of diamond films by hollow cathode arc discharge
JPH0534319B2 (en)
JP2566963B2 (en) Novel thin film material
Chen et al. Photoluminescence and Raman studies of hydrogenated amorphous carbon films deposited by the rf plasma-enhanced CVD method
JPH021366B2 (en)
JPH021365B2 (en)
JPH0465145B2 (en)
Fedoseeva et al. GAS-PHASE SYNTHESIS OF NITROGEN-DOPED DIAMOND COATING USING A HIGH-VELOCITY MICROWAVE PLASMA FLOW
TW525228B (en) Method of depositing amorphous silicon based films having controlled conductivity
JP2001226194A (en) Low temperature film deposition method and device for fine crystalline diamond thin film
JPS62154621A (en) Manufacture of amorphous silicon carbide film
JPH01252516A (en) Preparation of ultrathin film of crystanllite silicon
JPH0239117B2 (en) TASOMAKUKONETSUDENDOSEIZETSUENKIBAN

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees