JP2605396B2 - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JP2605396B2
JP2605396B2 JP1100646A JP10064689A JP2605396B2 JP 2605396 B2 JP2605396 B2 JP 2605396B2 JP 1100646 A JP1100646 A JP 1100646A JP 10064689 A JP10064689 A JP 10064689A JP 2605396 B2 JP2605396 B2 JP 2605396B2
Authority
JP
Japan
Prior art keywords
ultrasonic
attachment
round bar
steel
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1100646A
Other languages
Japanese (ja)
Other versions
JPH02280049A (en
Inventor
徳孝 森田
博 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1100646A priority Critical patent/JP2605396B2/en
Publication of JPH02280049A publication Critical patent/JPH02280049A/en
Application granted granted Critical
Publication of JP2605396B2 publication Critical patent/JP2605396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えばパルス反射法を利用し,水浸法によ
り丸棒及び管材の垂直探傷を行なう超音波探触子に関す
るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe for performing a vertical flaw detection of a round bar and a pipe by a water immersion method using, for example, a pulse reflection method.

〔従来の技術〕[Conventional technology]

第6図は例えば超音波探傷法(昭和49年日刊工業新聞
社発行)に示された従来の超音波探触子を利用した超音
波探傷装置の図である。第6図(a)は丸棒鋼又は鋼管
材の軸方向から見た図であり,第6図(b)は丸棒鋼又
は鋼管材の周方向から見た図である。図において(11)
は超音波探触子,(12)は上記超音波探触子(11)内部
の音響レンズ,(2)は音響結合材である水,(3)は
丸棒鋼又は鋼管材,(4)は丸棒鋼又は鋼管材(3)内
部の欠陥,(5)は超音波ビーム,(6)は超音波ビー
ム(5)の有効幅,Sは丸棒鋼又は鋼管材(3)の表面反
射波,Fは丸棒鋼又は鋼管材(3)内部の欠陥反射波,Bは
丸棒鋼又は鋼管材(3)の底面反射波である。
FIG. 6 is a diagram of an ultrasonic flaw detector using a conventional ultrasonic probe disclosed in, for example, an ultrasonic flaw detection method (published by Nikkan Kogyo Shimbun, 1974). FIG. 6 (a) is a view of the round bar or the steel tube viewed from the axial direction, and FIG. 6 (b) is a view of the round bar or the steel tube viewed from the circumferential direction. In the figure (11)
Is an ultrasonic probe, (12) is an acoustic lens inside the ultrasonic probe (11), (2) is water as an acoustic coupling material, (3) is a round bar steel or steel pipe material, and (4) is Defects in the round bar or steel pipe (3), (5) is the ultrasonic beam, (6) is the effective width of the ultrasonic beam (5), S is the surface reflected wave of the round bar or steel pipe (3), F Is a defect reflected wave inside the round steel bar or the steel pipe (3), and B is a bottom reflected wave of the round steel bar or the steel pipe (3).

従来の超音波探触子を利用した超音波探傷装置は,上
記のように構成され,超音波探触子(11)内部で発生し
た超音波は音響レンズ(12)により収束され音響結合材
である水(2)を通過し丸棒鋼又は鋼管材(3)内部へ
伝播して行く。
An ultrasonic flaw detector using a conventional ultrasonic probe is configured as described above, and the ultrasonic waves generated inside the ultrasonic probe (11) are converged by an acoustic lens (12) and are condensed by an acoustic coupling material. The water passes through a certain water (2) and propagates inside the round bar or the steel pipe (3).

第7図は従来の超音波探触子(11)を利用した超音波
探傷装置による探傷図形である。図において(10)は丸
棒鋼又は鋼管材(3)を探傷する探傷ゲート,T1は第1
回目の送信パルス,T2は第2回目の送信パルス,Tnは第n
回目の送信パルス,tは送信パルスの繰り返し時間,S1は
送信パルスT1に対する丸棒鋼又は鋼管材(3)の第1回
目の表面反射波で,以下S2,S3,S4,S5,…Snはそれぞれ第
2回目,第3回目,第4回目,第5回目,……第n回目
の表面反射波,B1−S1は表面反射波S1に対する丸棒鋼又
は鋼管材(3)の第1回目の底面反射波,以下B2−S1,
……Bn−S1は表面反射波S1に対する丸棒鋼又は鋼管材
(3)の第2回目,…第n回目の底面反射波,B1−S2,B2
−S2,…Bn−S2,B1−S3,……Bn−S3,B1−S4,…Bn−S4,Bn
−S5,……Bn−Snはそれぞれ第n回目の表面反射波Snに
対する丸棒鋼又は鋼管材(3)の第n回目の底面反射
波,Fは第1回目の表面反射波S1に対する丸棒鋼又は鋼管
材(3)の内部の欠陥反射波,F′は第2回目の表面反射
波S2に対する丸棒鋼又は鋼管材(3)の内部の欠陥反射
波である。図に示すように第1回目の送信パルスT1にお
いて丸棒鋼又は鋼管材(3)の表面反射波の多重エコー
S1,S2,……Sn,および丸棒鋼又は鋼管材(3)内部の欠
陥反射波F,F′およびそれぞれの表面反射波S1,S2,……S
nに対する丸棒鋼又は鋼管材(3)の底面反射波の多重
エコーB1,S1,B2−S1,……Bn−Snなど数多くの反射波が
現われる。又、上記多重エコーS1,……Bn,B1−S1,……B
n−Snが送信パルスT1,T2,……Tnごとに繰り返し時間t
の間隔で同じように現われる。
FIG. 7 shows a flaw detection pattern by an ultrasonic flaw detector using a conventional ultrasonic probe (11). In the figure, (10) is a flaw detection gate for flaw detection of round bar steel or steel pipe (3), and T1 is the first flaw detection gate.
The second transmission pulse, T2 is the second transmission pulse, and Tn is the nth transmission pulse.
The first transmission pulse, t is the repetition time of the transmission pulse, S1 is the first surface reflected wave of round bar steel or steel pipe (3) with respect to the transmission pulse T1, and S2, S3, S4, S5,. 2nd, 3rd, 4th, 5th,..., Nth surface reflected wave, B1-S1 is the first bottom surface reflection of round bar steel or steel pipe (3) to surface reflected wave S1 Wave, B2−S1,
... Bn-S1 is the second, n-th bottom reflected wave of the round bar steel or steel pipe (3) with respect to the surface reflected wave S1, B1-S2, B2
-S2, ... Bn-S2, B1-S3, ... Bn-S3, B1-S4, ... Bn-S4, Bn
-S5,... Bn-Sn are the round bar steel for the nth surface reflected wave Sn or the nth bottom surface reflected wave of the steel pipe material (3), F is the round bar steel for the first surface reflected wave S1 or The defect reflected wave inside the steel pipe material (3), F ', is a defect reflected wave inside the round bar steel or the steel pipe material (3) with respect to the second surface reflected wave S2. As shown in the figure, multiple echoes of the surface reflected wave of the round bar steel or the steel pipe (3) in the first transmission pulse T1
S1, S2,... Sn, and defect reflected waves F, F ′ inside round bar steel or steel pipe (3) and their respective surface reflected waves S1, S2,.
Many reflected waves such as multiple echoes B1, S1, B2-S1,... Bn-Sn of the bottom reflected wave of the round bar steel or the steel pipe material (3) with respect to n appear. The multiple echoes S1,... Bn, B1−S1,.
n−Sn is the repetition time t for each transmission pulse T1, T2,.
Appear at the same interval.

従来の超音波探触子(11)を利用した超音波探傷装置
は上記のように構成され,自動化する場合に送信パルス
Tを繰り返し送信し,丸棒鋼又は鋼管材(3)あるいは
超音波探触子(11)を操作することにより丸棒鋼又は鋼
管材(3)の全面にわたり超音波探傷を行なつている。
又,超音波探触子(11)と丸棒鋼又は鋼管材(3)との
相対的な移動速度に応じて,送信パルスTの繰り返し時
間tが決定されている。すなわち,丸棒鋼又は鋼管材
(3)の探傷処理能力を高くする場合には,送信パルス
Tの繰り返し時間tを短くしなければならないため,第
1回目の送信パルスT1で生じた表面反射波S1からSn,お
よび底面反射波B1−S1からBn−Snが完全に消滅しないう
ちに第2回目以降の送信パルスT2からTnによる表面反射
波Snおよび底面反射波BnSnが現われる。このため,上記
表面反射波Snおよび底面反射波Bn−Snを欠陥反射波Fと
して誤つて検出することになる。
The ultrasonic flaw detector using the conventional ultrasonic probe (11) is configured as described above, and repeatedly transmits a transmission pulse T when it is automated, and uses a round bar or a steel pipe (3) or an ultrasonic probe. By operating the child (11), ultrasonic flaw detection is performed over the entire surface of the round bar steel or the steel pipe (3).
Further, the repetition time t of the transmission pulse T is determined according to the relative moving speed of the ultrasonic probe (11) and the round bar or the steel pipe (3). That is, in order to increase the flaw detection processing capability of the round bar steel or the steel pipe material (3), the repetition time t of the transmission pulse T must be shortened, so that the surface reflected wave S1 generated by the first transmission pulse T1 is generated. Before the second and subsequent transmission pulses T2 to Tn appear, the surface reflected wave Sn and the bottom surface reflected wave BnSn appear before to Sn and the bottom reflected waves B1-S1 to Bn-Sn do not completely disappear. Therefore, the surface reflected wave Sn and the bottom surface reflected wave Bn-Sn are erroneously detected as the defective reflected waves F.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のように従来の超音波探触子(11)を利用し,水
浸法により丸棒鋼又は鋼管材(3)の垂直探傷を行なう
超音波探傷装置では,丸棒鋼又は鋼管材(3)表面での
反射波Sは約95%反射し,超音波探触子(11)の表面で
は約60%反射するため超音波探触子(11)と丸棒鋼又は
鋼管材(3)との間を1往復する毎に約5〜6dB程度し
か減衰しない。このため通常要求される欠陥検出能(例
えばφ1横穴欠陥をS/N≧20dB)から第1回目の表面反
射波S1に対する残響エコーSn,Bn−Snの低下量を求める
と,約−60dB以下とする必要がある。すなわち超音波探
触子(11)と丸棒鋼又は鋼管材(3)との間の距離を10
〜12回往復するまでの時間が経過しないうちに第2回目
の送信パルスT2を発生させると残響エコーとしてSn,Bn
−Sn疑似欠陥エコーFとして現われる課題が生じる。特
にこの課題は,探傷処理速度の速い自動探傷装置におい
ては致命的な欠点となる。
As described above, in the ultrasonic flaw detector using the conventional ultrasonic probe (11) to perform vertical flaw detection of a round bar steel or a steel pipe material (3) by a water immersion method, the surface of the round bar steel or the steel pipe material (3) The reflected wave S at the probe is about 95% reflected, and about 60% reflected at the surface of the ultrasonic probe (11), so that there is a gap between the ultrasonic probe (11) and the round bar or steel pipe (3). Only about 5 to 6 dB is attenuated for each round trip. For this reason, when the amount of decrease in the reverberation echoes Sn and Bn-Sn with respect to the first surface reflected wave S1 is calculated from the defect detection capability normally required (for example, S / N ≧ 20 dB for a φ1 side hole defect), it is about -60 dB or less. There is a need to. That is, the distance between the ultrasonic probe (11) and the round bar or the steel pipe (3) is set to 10
If the second transmission pulse T2 is generated before the time to reciprocate up to 12 times elapses, Sn and Bn
A problem appears as a -Sn pseudo defect echo F. In particular, this problem is a fatal defect in an automatic flaw detection apparatus having a high flaw detection processing speed.

この発明は,かかる課題を解決するためになされたも
ので,残響エコーを防止し送信パルスの繰り返し時間を
短くすることを目的とする。
The present invention has been made to solve such a problem, and has as its object to prevent reverberation echo and shorten the repetition time of a transmission pulse.

〔課題を解決するための手段〕[Means for solving the problem]

この発明による超音波探触子は,超音波の送・受信を
行なう超音波振動子が丸棒鋼又は鋼管材の周方向に曲率
を有し,超音波振動子と音響結合材である水との間にあ
るアタッチメント外表面が丸棒鋼又は鋼管材の軸方向外
表面に平行でないアタッチメントを具備したものであ
る。
According to the ultrasonic probe of the present invention, the ultrasonic transducer for transmitting and receiving the ultrasonic wave has a curvature in the circumferential direction of the round bar steel or the steel pipe material, and the ultrasonic transducer and the water as the acoustic coupling material are connected to each other. An attachment having an attachment whose outer surface is not parallel to the axial outer surface of the round bar or the steel tube material.

またこの発明の別の発明の超音波探触子は,超音波の
送・受信を行なう超音波振動子と音響結合材である水と
の間にあるアタッチメント外表面が、丸棒鋼又は鋼管材
の軸方向外表面に平行でなく、周方向に曲率をもつアタ
ッチメントを具備したものである。
An ultrasonic probe according to another aspect of the present invention has an attachment outer surface between an ultrasonic transducer for transmitting and receiving ultrasonic waves and water as an acoustic coupling material, which is made of round bar steel or steel pipe material. It has an attachment that is not parallel to the outer surface in the axial direction but has a curvature in the circumferential direction.

〔作用〕[Action]

この発明においては,超音波探触子内部で超音波の送
・受信を行なう超音波振動子が丸棒鋼又は鋼管材の周方
向に曲率を有し、超音波振動子と音響結合材である水と
の間にあるアタッチメント外表面が丸棒鋼又は鋼管材の
軸方向外表面に平行でないアタッチメントを具備するこ
とにより,上記アタツチメントを通過する超音波の減衰
量を利用し,送信パルスの繰り返し時間を短くすること
を可能とするものである。この発明の別の発明において
は超音波超触子内部で超音波の送・受信を行なう超音波
振動子と音響結合材である水との間にあるアタッチメン
ト外表面が、丸棒鋼又は鋼管材の軸方向外表面に平行で
なく、周方向に曲率をもつアタッチメントを具備するこ
とにより,上記アタツチメントを通過する超音波の減衰
量を利用し,送信パルスの繰り返し時間を短くすること
を可能とするものである。
In the present invention, the ultrasonic transducer for transmitting and receiving the ultrasonic wave inside the ultrasonic probe has a curvature in the circumferential direction of the round bar steel or the steel pipe material, and the ultrasonic transducer and the water which is an acoustic coupling material. By using an attachment whose outer surface is not parallel to the axial outer surface of the round bar or the steel pipe, the attenuation of the ultrasonic wave passing through the attachment is used to shorten the repetition time of the transmission pulse. It is possible to do. In another aspect of the present invention, the outer surface of the attachment between the ultrasonic transducer for transmitting and receiving the ultrasonic wave inside the ultrasonic ultrasonic probe and the water as the acoustic coupling material has a round bar steel or steel pipe material. By providing an attachment having a curvature in the circumferential direction, not parallel to the outer surface in the axial direction, it is possible to shorten the repetition time of a transmission pulse by using the attenuation of the ultrasonic wave passing through the attachment. It is.

〔実施例〕〔Example〕

第1図はこの発明による超音波探触子を利用した超音
波探傷装置の一実施例を示す図である。第1図(a)は
丸棒鋼又は鋼管材の軸方向から見た図であり第1図
(b)は丸棒鋼又は鋼管材の周方向から見た図である。
図において(1)はこの発明による超音波探触子,
(2)〜(6)および図における記号S,B,Fは第6図に
示したものと全く同一のものである。第2図はこの発明
による上記超音波探触子(1)の詳細図である。第2図
(a)は丸棒鋼又は鋼管材の軸方向から見た図であり,
第2図(b)は丸棒鋼又は鋼管材の周方向から見た図で
ある。図において(7)はアタツチメント,(8)はア
タツチメント(7)の外表面,(9)は超音波振動子,X
1は超音波振動子(9)とアタツチメント外表面(8)
との間を伝播するアタツチメント(7)内部の超音波ビ
ーム,x2はアタツチメント外表面(8)と丸棒鋼又は鋼
管材(3)との間を伝播する音響結合材(2)内の超音
波ビーム,x3は超音波ビームx1がアタツチメント外表面
(8)において反射される超音波ビーム,x4は超音波ビ
ームx2がアタツチメント外表面(8)において反射され
る超音波ビーム,αは超音波ビームx1とアタツチメント
外表面(8)とのなす角,βは超音波ビームx2とアタツ
チメント外表面(8)とのなす角,θは丸棒鋼又は鋼管
材(3)表面のアタツチメント外表面(8)とのなす角
である。第3図は,上記のように構成された超音波探触
子(1)を利用した超音波探傷装置において,パルス反
射法を利用し水浸法により丸棒鋼又は鋼管材(3)の垂
直探傷を行なつた場合の探傷図形である。図において、
(10)および図における記号S1,S2,B1−S1,……は第7
図に示したものと全く同一のものである。上記のように
構成された超音波探触子(1)において,超音波探触子
(1)内部で超音波の送・受信を行なう超音波振動子
(9)が丸棒鋼又は鋼管材(3)の周方向に曲率を有
し,超音波振動子(9)と音響結合材(2)である水と
の間にあるアタツチメント外表面(8)が、丸棒鋼又は
鋼管材(3)の軸方向外表面に平行でないアタッチメン
ト(7),つまり丸棒鋼又は鋼管材(3)の軸方向外表
面とアチツチメント外表面(8)とのなす角θとなるよ
うなアタツチメント(7)を具備した場合,丸棒鋼又は
鋼管材(3)の軸方向において,超音波振動子(6)で
発生させられた超音波ビーム(5)は,x1,x2,x3,x4とに
区別することができる。ここで音響結合材(2)である
水の音速v1,アタツチメント(7)の音速v2とすると,
丸棒鋼又は鋼管材(3)の表面に超音波ビームX2を垂直
に入射させるためには,α,β,θとの間に次の
(1),(2)式が成り立つ。
FIG. 1 is a view showing one embodiment of an ultrasonic flaw detector using an ultrasonic probe according to the present invention. FIG. 1 (a) is a view of the round bar or the steel tube viewed from the axial direction, and FIG. 1 (b) is a view of the round bar or the steel tube viewed from the circumferential direction.
In the figure, (1) is an ultrasonic probe according to the present invention,
Symbols S, B, and F in (2) to (6) and in the figure are exactly the same as those shown in FIG. FIG. 2 is a detailed view of the ultrasonic probe (1) according to the present invention. FIG. 2 (a) is a view of the round bar steel or the steel tube material viewed from the axial direction,
FIG. 2 (b) is a view of the round bar steel or the steel pipe material as viewed from the circumferential direction. In the figure, (7) is an attachment, (8) is an outer surface of the attachment (7), (9) is an ultrasonic vibrator, and X
1 is an ultrasonic transducer (9) and the outer surface of the attachment (8)
The ultrasonic beam inside the attachment (7) propagating between the attachment and (7), x2 is the ultrasonic beam in the acoustic coupling material (2) propagating between the outside surface of the attachment (8) and the round bar or steel pipe (3). , x3 are the ultrasonic beams where the ultrasonic beam x1 is reflected on the outer surface of the attachment (8), x4 is the ultrasonic beam where the ultrasonic beam x2 is reflected on the outer surface of the attachment (8), α is the ultrasonic beam x1 The angle between the attachment outer surface (8), β is the angle between the ultrasonic beam x2 and the attachment outer surface (8), and θ is the round bar steel or the outer surface of the attachment (8) of the steel pipe (3). Is the corner. FIG. 3 shows a vertical flaw detection of a round bar steel or a steel pipe material (3) by a water immersion method using a pulse reflection method in an ultrasonic flaw detector using the ultrasonic probe (1) configured as described above. Is a flaw detection figure in the case where is performed. In the figure,
(10) and the symbols S1, S2, B1-S1,...
It is exactly the same as that shown in the figure. In the ultrasonic probe (1) configured as described above, the ultrasonic vibrator (9) that transmits and receives ultrasonic waves inside the ultrasonic probe (1) is a round bar steel or a steel pipe (3). ) Has a curvature in the circumferential direction, and the attachment outer surface (8) between the ultrasonic vibrator (9) and the water as the acoustic coupling material (2) is formed of a round bar steel or steel pipe material (3). The attachment (7) which is not parallel to the outer surface in the direction, that is, the attachment (7) which forms the angle θ between the axial outer surface of the round bar steel or the steel pipe (3) and the attachment outer surface (8); The ultrasonic beam (5) generated by the ultrasonic transducer (6) in the axial direction of the round bar steel or the steel pipe (3) can be distinguished into x1, x2, x3, and x4. Here, assuming that the sound velocity v 1 of water as the acoustic coupling material (2) and the sound velocity v 2 of the attachment (7),
In order for the ultrasonic beam X2 to be perpendicularly incident on the surface of the round bar steel or the steel pipe material (3), the following equations (1) and (2) hold between α, β, and θ.

β=θ ……(2) つまり,(1)式と(2)式が成り立つようにすれ
ば,アタツチメント(7)の材料がなにであれ丸棒鋼又
は鋼管材(3)に対して超音波を垂直に入射することが
できる。
β = θ (2) That is, if the equations (1) and (2) are satisfied, the ultrasonic wave is applied to the round bar steel or the steel pipe (3) regardless of the material of the attachment (7). Can be incident perpendicularly.

次に,アタツチメント外表面(8)における反射波で
あるx3,x4のレベルについては,水の音響インピーダン
スをZ1,アタッチメント(7)の音響インピーダンスをZ
2とすると(3)式により反射率rが求められる。
Next, regarding the levels of x3 and x4, which are reflected waves on the outer surface of the attachment (8), the acoustic impedance of water is Z1, and the acoustic impedance of the attachment (7) is Z2.
Assuming that 2, the reflectance r is obtained from the equation (3).

例えば,アタツチメント(7)の材料としてアクリル
樹脂を使用し、θ=10゜とすると,(3)式によりx3,x
4の反射率は約15%となる。つまり超音波ビームx1の約8
5%が超音波ビームx2となつて進行していく。又,丸棒
鋼又は鋼管材(3)からの反射波の超音波ビームx1,x2
との関係も上記と同様となる。
For example, if an acrylic resin is used as the material of the attachment (7) and θ = 10 °, x3, x
The reflectance of 4 is about 15%. In other words, about 8 of the ultrasonic beam x1
5% travels along with two ultrasonic beams. Ultrasonic beams x1, x2 of reflected waves from round bar steel or steel pipe material (3)
Is also the same as above.

又,丸棒鋼又は鋼管材(3)の周方向の超音波ビーム
(5)は,超音波振動子(9)が丸棒鋼又は鋼管材
(3)の周方向に曲率を有することにより,超音波ビー
ム(5)の有効幅(6)を収束することができる。
The ultrasonic beam (5) in the circumferential direction of the round bar or the steel pipe (3) is generated by the ultrasonic vibrator (9) having a curvature in the circumferential direction of the round bar or the steel pipe (3). The effective width (6) of the beam (5) can be converged.

次に超音波ビーム(5)の減衰について記載する。超
音波ビームx1はアタツチメント(7)内部を伝播してい
る。このため,水中を伝播する超音波の減衰とアタツチ
メント(7)内部を伝播する超音波の減衰とを比較する
と,当然ながらアタツチメント(7)の材料の減衰定数
とアタツチメント(7)内部を伝播する超音波ビームx1
の伝播距離により変化する。例えば,アタツチメント
(7)の材料としてアクリル樹脂を使用し,アタツチメ
ンテ(7)内部を伝播する超音波ビームx1の伝播距離を
約10mmとすると約10dB程度,アクリル材内を伝播する場
合の方が減衰が大きくなる。
Next, the attenuation of the ultrasonic beam (5) will be described. The ultrasonic beam x1 is propagating inside the attachment (7). Therefore, when the attenuation of the ultrasonic wave propagating in water and the attenuation of the ultrasonic wave propagating inside the attachment (7) are compared, the attenuation constant of the material of the attachment (7) and the ultrasonic wave propagating inside the attachment (7) are naturally determined. Sound beam x1
Varies depending on the propagation distance. For example, if acrylic resin is used as the material of the attachment (7), and the propagation distance of the ultrasonic beam x1 propagating inside the attachment (7) is about 10 mm, the attenuation is about 10 dB, and the propagation in the acrylic material is attenuated. Becomes larger.

上記の説明により,超音波振動子(9)が丸棒鋼又は
鋼管材(3)の周方向に曲率を有し,超音波振動子
(9)と音響結合材(2)である水との間にあるアタッ
チメント外表面(8)が、丸棒鋼又は鋼管材(3)の軸
方向外表面に平行でないアタッチメント(7)を具備す
ることにより以下のことが可能となる。
According to the above description, the ultrasonic vibrator (9) has a curvature in the circumferential direction of the round bar steel or the steel pipe material (3), and the ultrasonic vibrator (9) and the water as the acoustic coupling material (2) have a curvature. Has an attachment (7) that is not parallel to the axially outer surface of the round bar or steel pipe (3), the following is possible.

(I) 超音波ビーム(5)は,丸棒鋼又は鋼管材
(3)の表面に対して垂直に入射する。
(I) The ultrasonic beam (5) is perpendicularly incident on the surface of the round bar or the steel pipe (3).

(II) アタツチメント(7)の材料やアタツチメント
(7)内部を伝播する超音波ビームx1の伝播距離を変化
させることにより,アタツチメント(7)を一回通過す
るたびに音圧レベルを約2〜20dB程度低下させることが
可能となる。
(II) By changing the material of the attachment (7) and the propagation distance of the ultrasonic beam x1 propagating inside the attachment (7), the sound pressure level is reduced by about 2 to 20 dB each time the attachment (7) is passed once. It is possible to lower the degree.

(III) 超音波振動子(9)が丸棒鋼又は鋼管材
(3)の周方向に曲率を有することにより丸棒鋼又は鋼
管材(3)の内部における超音波ビーム(5)を収束さ
せることができる。これは,丸棒鋼又は鋼管材(3)の
探傷性能向上につながる。
(III) Since the ultrasonic vibrator (9) has a curvature in the circumferential direction of the round bar or the steel tube (3), it is possible to converge the ultrasonic beam (5) inside the round bar or the steel tube (3). it can. This leads to an improvement in the flaw detection performance of the round bar steel or the steel pipe material (3).

上記(I),(II),(III)によりこの発明は,従
来の探傷性能を低下させることなく,第3図に示すよう
に第1回目の送信パルスT1による被検材(3)の反射波
の多重エコーの数を減少させ,送信パルスTの繰り返し
時間tを短くすることを可能とした。
According to the above (I), (II), and (III), the present invention does not lower the conventional flaw detection performance, and reflects the test material (3) by the first transmission pulse T1 as shown in FIG. This makes it possible to reduce the number of multiple echoes of the wave and shorten the repetition time t of the transmission pulse T.

尚,本実施例はアタツチメント(7)の材料をアクリ
ル樹脂製の例で示したが,他の樹脂やプラスチツク等で
も同様の効果が得られるので本発明の適用はまぬがれな
い。
In this embodiment, the attachment (7) is made of an acrylic resin. However, the same effects can be obtained with other resins and plastics, so that the present invention is inevitably applied.

第4図は,この発明である超音波探触子を利用した超
音波探傷装置の他の実施例を示す図である。第4図
(a)は丸棒鋼又は鋼管材の軸方向から見た図であり,
第4図(b)は丸棒鋼又は鋼管材の周方向から見た図で
ある。
FIG. 4 is a diagram showing another embodiment of the ultrasonic flaw detector using the ultrasonic probe according to the present invention. FIG. 4 (a) is a view of the round bar steel or the steel tube material as viewed from the axial direction.
FIG. 4 (b) is a view of the round bar steel or the steel pipe material as viewed from the circumferential direction.

図において(1)はこの発明である超音波探触子,
(2)〜(6)および図における記号S,B,Fは第6図に
示したものと全く同一のものである。第5図は第4図に
示した超音波探触子(1)の詳細図である。第5図
(a)は丸棒鋼又は鋼管材の軸方向から見た図であり,
第5図(b)は丸棒鋼又は鋼管材の周方向から見た図で
ある。図において,(7)はアタツチメント,(8)は
アタツチメント(7)の外表面,(9)は超音波探触子
(1)内部で超音波の送・受信を行なう超音波振動子,x
1は超音波振動子(9)とアタツチメント外表面(8)
との間を伝播するアタツチメント(7)内部の超音波ビ
ーム,x2はアタツチメント外表面(8)と丸棒鋼又は鋼
管材(3)との間を伝播する音響結合材(2)内の超音
波ビーム,x3は超音波ビームx1がアタツチメント外表面
(8)において反射される超音波ビーム,x4は超音波ビ
ームx2がアタツチメント外表面(8)において反射され
る超音波ビーム,αは超音波ビームx1とアタツチメント
外表面(8)とのなす角,βは超音波ビームx2とアタツ
チメント外表面(8)とのなす角,θは丸棒鋼又は鋼管
材(3)表面とアタツチメント外表面(8)とのなす角
である。
In the figure, (1) is an ultrasonic probe according to the present invention,
Symbols S, B, and F in (2) to (6) and in the figure are exactly the same as those shown in FIG. FIG. 5 is a detailed view of the ultrasonic probe (1) shown in FIG. FIG. 5 (a) is a view of the round bar steel or the steel tube material viewed from the axial direction,
FIG. 5 (b) is a view of the round bar steel or the steel pipe material as viewed from the circumferential direction. In the figure, (7) is an attachment, (8) is an outer surface of the attachment (7), (9) is an ultrasonic transducer for transmitting and receiving ultrasonic waves inside the ultrasonic probe (1), x
1 is an ultrasonic transducer (9) and the outer surface of the attachment (8)
The ultrasonic beam inside the attachment (7) propagating between the attachment and (7), x2 is the ultrasonic beam in the acoustic coupling material (2) propagating between the outside surface of the attachment (8) and the round bar or steel pipe (3). , x3 are the ultrasonic beams where the ultrasonic beam x1 is reflected on the outer surface of the attachment (8), x4 is the ultrasonic beam where the ultrasonic beam x2 is reflected on the outer surface of the attachment (8), α is the ultrasonic beam x1 The angle between the attachment outer surface (8), β is the angle between the ultrasonic beam x2 and the attachment outer surface (8), and θ is the round bar steel or steel pipe material (3) surface and the attachment outer surface (8). Is the corner.

上記のように構成された超音波探触子(1)におい
て,超音波探触子(1)内部で超音波の送・受信を行な
う超音波振動子(9)と音響結合材(2)である水との
間にあるアタッチメント外表面(8)が、丸棒鋼又は鋼
管材(3)の軸方向外表面に平行でなく、周方向に曲率
をもつアタッチメント(7),つまり丸棒鋼又は鋼管材
(3)の軸方向外表面とアタツチメント外表面(8)と
のなる角θとなす,周方向に曲率を持ち超音波ビーム
(5)を収束させるようなアタツチメント(7)を具備
した場合,丸棒鋼又は鋼管材(3)の軸方向において,
超音波振動子(6)で発生させられた超音波ビーム
(5)は,x1,x2,x3,x4とに区別することができる。ここ
で音響結合材(2)である水の音速v1,アタツチメント
(7)の音速v2とすると,丸棒鋼又は鋼管材(3)の表
面に超音波ビームx2を垂直に入射させるためには,α,
β,θとの間に上記(1),(2)式が成り立つ。
In the ultrasonic probe (1) configured as described above, an ultrasonic transducer (9) for transmitting and receiving ultrasonic waves inside the ultrasonic probe (1) and an acoustic coupling material (2). An attachment (7) whose outer surface (8) between a certain water is not parallel to the axial outer surface of the round bar or steel tube (3) but has a curvature in the circumferential direction, that is, a round bar or steel tube When an attachment (7) having a curvature in the circumferential direction and converging the ultrasonic beam (5) is formed at an angle θ between the outer surface in the axial direction of (3) and the outer surface of the attachment (8), In the axial direction of the steel bar or steel pipe (3),
The ultrasonic beam (5) generated by the ultrasonic transducer (6) can be distinguished into x1, x2, x3, and x4. Assuming that the sound velocity of water as the acoustic coupling material (2) is v 1 and the sound velocity of the attachment (7) is v 2 , in order to make the ultrasonic beam x2 perpendicularly incident on the surface of the round bar steel or the steel pipe (3) , Α,
Equations (1) and (2) hold between β and θ.

つまり,(1)式と(2)式が成り立つようにすれ
ば,アタツチメント(7)の材料がなにであれ丸棒鋼又
は鋼管材(3)に対して超音波を垂直に入射することが
できる。
That is, if the expressions (1) and (2) are satisfied, the ultrasonic wave can be vertically incident on the round bar steel or the steel pipe material (3) whatever the material of the attachment (7). .

次に,アタツチメント外表面(8)における反射波で
あるx3,x4のレベルについては,水の音響インピーダン
スをZ1,アタツチメント(7)の音響インピーダンスをZ
2とすると上記(3)式により反射率rが求められる。
Next, regarding the levels of x3 and x4, which are reflected waves on the outer surface of the attachment (8), the acoustic impedance of water is Z1, and the acoustic impedance of the attachment (7) is Z
Assuming that 2, the reflectance r is obtained from the above equation (3).

例えば,アタツチメント(7)の材料としてアクリル
樹脂を使用し,θ=10゜とすると,(3)式によりx3,x
4の反射率は約15%となる。つまり超音波ビームx1の約8
5%が超音波ビームx2となつて進行していく。又、丸棒
鋼又は鋼管材(3)からの反射波の超音波ビームx1,x2
との関係も上記と同様となる。
For example, if an acrylic resin is used as the material of the attachment (7) and θ = 10 °, x3, x
The reflectance of 4 is about 15%. In other words, about 8 of the ultrasonic beam x1
5% travels along with two ultrasonic beams. Ultrasonic beams x1, x2 of reflected waves from round bar steel or steel pipe material (3)
Is also the same as above.

次に超音波ビーム(5)の減衰について記載する。超
音波ビームx1はアタツチメント(7)内部を伝播してい
る。このため,水中を伝播する超音波の減衰とアタツチ
メント(7)内部を伝播する超音波の減衰とを比較する
と,当然ながらアタツチメント(7)の材料の減衰定数
とアタツチメント(7)内部を伝播する超音波ビームx1
の伝播距離により変化する。例えば,アタツチメント
(7)の材料としてアクリル樹脂を使用し,アタツチメ
ント(7)内部を伝播する超音波ビームx1の伝播距離を
約10mmとすると約10dB程度,アクリル材内を伝播する場
合の方が減衰が大きくなる。
Next, the attenuation of the ultrasonic beam (5) will be described. The ultrasonic beam x1 is propagating inside the attachment (7). Therefore, when the attenuation of the ultrasonic wave propagating in water and the attenuation of the ultrasonic wave propagating inside the attachment (7) are compared, the attenuation constant of the material of the attachment (7) and the ultrasonic wave propagating inside the attachment (7) are naturally determined. Sound beam x1
Varies depending on the propagation distance. For example, if an acrylic resin is used as the material of the attachment (7) and the propagation distance of the ultrasonic beam x1 propagating inside the attachment (7) is about 10 mm, it is about 10 dB, and attenuation when propagating in the acrylic material is attenuated. Becomes larger.

上記の説明により,超音波振動子(9)と音響結合材
(2)である水との間にあるアタッチメント外表面
(8)が、丸棒鋼又は鋼管材(3)の軸方向外表面に平
行でなく、周方向に曲率をもつアタッチメント(7)を
具備することにより以下のことが可能となる。
According to the above description, the attachment outer surface (8) between the ultrasonic transducer (9) and the water as the acoustic coupling material (2) is parallel to the axial outer surface of the round bar steel or the steel pipe (3). Instead, the following can be achieved by providing an attachment (7) having a curvature in the circumferential direction.

(I) 超音波ビーム(5)は,丸棒鋼又は鋼管材
(3)の表面に対して垂直に入射する。
(I) The ultrasonic beam (5) is perpendicularly incident on the surface of the round bar or the steel pipe (3).

(II) アタツチメント(7)の材料やアタツチメント
(7)内部を伝播する超音波ビームx1の伝播距離を変化
させることにより,アタツチメント(7)を一回通過す
るたびに音圧レベルを約2〜20dB程度低下させることが
可能となる。
(II) By changing the material of the attachment (7) and the propagation distance of the ultrasonic beam x1 propagating inside the attachment (7), the sound pressure level is reduced by about 2 to 20 dB each time the attachment (7) is passed once. It is possible to lower the degree.

(III) アタッチメント外表面(8)が、丸棒鋼又は
鋼管材(3)周方向に曲率をもつことにより丸棒鋼又は
鋼管材(3)の内部における超音波ビーム(5)を収束
させることができる。これは,丸棒鋼又は鋼管材(3)
の探傷性能向上につながる。
(III) The outer beam (8) of the attachment has a curvature in the circumferential direction of the round bar or the steel pipe (3), so that the ultrasonic beam (5) inside the round bar or the steel pipe (3) can be focused. . This is a round bar or steel pipe (3)
This leads to improved flaw detection performance.

上記(I),(II),(III)によりこの発明は,従
来の探傷性能を低下させることなく,第3図に示すよう
に第1回目の送信パルスT1による被検材(3)の反射波
の多重エコーの数を減少させ,送信パルスTの繰り返し
時間tを短くすることを可能とした。
According to the above (I), (II), and (III), the present invention does not lower the conventional flaw detection performance, and reflects the test material (3) by the first transmission pulse T1 as shown in FIG. This makes it possible to reduce the number of multiple echoes of the wave and shorten the repetition time t of the transmission pulse T.

尚,上記他の実施例はアタツチメント(7)の材料を
アクリル樹脂製の例で示したが,他の樹脂やプラスチツ
ク等でも同様の効果が得られるので本発明の適用はまぬ
がれない。
In the above other embodiments, the material of the attachment (7) is made of acrylic resin. However, the same effects can be obtained with other resins and plastics, so that the application of the present invention is inevitable.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり,超音波振動子が丸棒
又は管材の周方向に曲率を有し、超音波振動子と音響結
合材である水との間にあるアタッチメント外表面が、丸
棒又は管材の軸方向外表面に平行でないアタッチメント
を具備することにより,従来の探傷性能を低下させるこ
となく送信パルスTの繰り返し時間tを短くすることを
可能とし,被検材に対する処理時間の短縮,および探傷
密度を増加させるという効果がある。
As described above, according to the present invention, the ultrasonic vibrator has a curvature in the circumferential direction of the round bar or the pipe material, and the outer surface of the attachment between the ultrasonic vibrator and the water as the acoustic coupling material has a round bar or a round bar. By providing an attachment that is not parallel to the axial outer surface of the tube, it is possible to shorten the repetition time t of the transmission pulse T without lowering the conventional flaw detection performance, shorten the processing time for the test material, and This has the effect of increasing the flaw detection density.

また,この発明の別の発明は以上説明したとおり,超
音波振動子と音響結合材である水との間にあるアタッチ
メント外表面が、丸棒又は管材の軸方向外表面に平行で
なく、しかも丸棒又は管材の周方向に曲率を有するアタ
ッチメントを具備することにより,従来の探傷性能を低
下させることなく送信パルスTの繰り返し時間tを短く
することを可能とし,被検材に対する処理時間の短縮,
および探傷密度を増加させ,高速度探傷および密度探傷
を可能とする効果がある。
According to another aspect of the present invention, as described above, the outer surface of the attachment between the ultrasonic vibrator and the water as the acoustic coupling material is not parallel to the axially outer surface of the round bar or the tube, and Equipped with an attachment having a curvature in the circumferential direction of the round bar or the tube material, it is possible to shorten the repetition time t of the transmission pulse T without lowering the conventional flaw detection performance, and to shorten the processing time for the test material. ,
This also has the effect of increasing the flaw detection density and enabling high-speed flaw detection and density flaw detection.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の超音波探触子を利用した超音波探傷
装置の一実施例を示す図,第2図はこの発明の超音波探
触子の拡大図,第3図はこの発明における探傷図形,第
4図はこの発明の他の実施例を示す図,第5図は第4図
の超音波探触子の拡大図,第6図は従来の超音波探触子
を利用した超音波探傷装置を示す図,第7図は従来の超
音波探触子を利用した超音波探傷装置における探傷図形
である。 図において,(1)は超音波速触子,(2)は音響結合
材,(3)は丸棒鋼又は鋼管材,(4)は被検材内部の
欠陥,(5)は超音波ビーム,(6)は超音波ビーム
(5)の有効幅,(7)はアタツチメント,(8)はア
タツチメント外表面,(9)は超音波振動子,(10)は
探傷ゲートである。 尚,各図中同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of an ultrasonic flaw detector using the ultrasonic probe of the present invention, FIG. 2 is an enlarged view of the ultrasonic probe of the present invention, and FIG. FIG. 4 is a diagram showing another embodiment of the present invention, FIG. 5 is an enlarged view of the ultrasonic probe of FIG. 4, and FIG. 6 is an ultrasonic probe using a conventional ultrasonic probe. FIG. 7 shows an ultrasonic flaw detector, and FIG. 7 shows a flaw detection pattern in an ultrasonic flaw detector using a conventional ultrasonic probe. In the figure, (1) is an ultrasonic stylus, (2) is an acoustic coupling material, (3) is a round bar steel or steel pipe material, (4) is a defect inside the test material, (5) is an ultrasonic beam, (6) is an effective width of the ultrasonic beam (5), (7) is an attachment, (8) is an outer surface of the attachment, (9) is an ultrasonic oscillator, and (10) is a flaw detection gate. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水浸法により丸棒又は管材を垂直に探傷す
る超音波探触子において、上記超音波探触子内部で超音
波の送・受信を行なう超音波振動子が上記丸棒又は管材
の周方向に曲率を有し、上記超音波振動子と水浸法にお
ける音響結合材である水との間にあるアタッチメント外
表面が上記丸棒又は管材の軸方向外表面に平行でないア
タッチメントを具備させたこをと特徴とする超音波探触
子。
An ultrasonic probe for vertically flaw detecting a round bar or a tube by a water immersion method, wherein the ultrasonic transducer for transmitting and receiving ultrasonic waves inside the ultrasonic probe is the round bar or the ultrasonic probe. Attachment having a curvature in the circumferential direction of the pipe material, the attachment outer surface of which is not parallel to the axial outer surface of the round bar or the pipe material, between the ultrasonic vibrator and water which is an acoustic coupling material in the water immersion method. An ultrasonic probe characterized by having an equipped octopus.
【請求項2】水浸法により丸棒又は管材を垂直に探傷す
る超音波探触子において、上記超音波探触子内部で超音
波の送・受信を行なう超音波振動子と水浸法における音
響結合材である水との間にあるアタッチメント外表面
が、上記丸棒又は管材の軸方向外表面に平行でなく、し
かも上記丸棒又は管材の周方向に曲率を有するアタッチ
メントを具備させたことを特徴とする超音波探触子。
2. An ultrasonic probe for detecting flaws on a round bar or a pipe vertically by a water immersion method, comprising: an ultrasonic transducer for transmitting and receiving ultrasonic waves inside the ultrasonic probe; The outer surface of the attachment between the water and the acoustic coupling material is not parallel to the outer surface of the round bar or the tube in the axial direction, and has an attachment having a curvature in the circumferential direction of the round bar or the tube. An ultrasonic probe characterized by the following.
JP1100646A 1989-04-20 1989-04-20 Ultrasonic probe Expired - Fee Related JP2605396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100646A JP2605396B2 (en) 1989-04-20 1989-04-20 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100646A JP2605396B2 (en) 1989-04-20 1989-04-20 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPH02280049A JPH02280049A (en) 1990-11-16
JP2605396B2 true JP2605396B2 (en) 1997-04-30

Family

ID=14279590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100646A Expired - Fee Related JP2605396B2 (en) 1989-04-20 1989-04-20 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP2605396B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177290B2 (en) * 2015-09-04 2017-08-09 菱電湘南エレクトロニクス株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
FR3104719B1 (en) * 2019-12-13 2022-04-29 Airbus Operations Sas Device for non-destructive testing of a part by ultrasound configured to emit at least one test beam of an orientable part and at least one test beam of a coupling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327748A (en) * 1986-07-21 1988-02-05 Mitsubishi Electric Corp Ultrasonic probe
JPH0664018B2 (en) * 1987-04-09 1994-08-22 三菱電機株式会社 Ultrasonic flaw detector
JPS63295959A (en) * 1987-05-28 1988-12-02 Mitsubishi Electric Corp Ultrasonic probe

Also Published As

Publication number Publication date
JPH02280049A (en) 1990-11-16

Similar Documents

Publication Publication Date Title
US6105431A (en) Ultrasonic inspection
US4435984A (en) Ultrasonic multiple-beam technique for detecting cracks in bimetallic or coarse-grained materials
US5431054A (en) Ultrasonic flaw detection device
Cawley et al. The use of Lamb waves for the long range inspection of large structures
JP2727298B2 (en) Method for detecting corrosion fatigue cracks in boiler tubes with membrane
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JPH01114749A (en) Skew angle ultrasonic flaw detecting method and probe
JP2605396B2 (en) Ultrasonic probe
JP6992678B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel manufacturing equipment line, steel manufacturing method, and steel quality assurance method
JP5115024B2 (en) Coupling check method for ultrasonic oblique angle flaw detector
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
US3218845A (en) Ultrasonic inspection method for inaccessible pipe and tubing
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
CA1194979A (en) Method for distinguishing between interfering signals and signals indicating defects of workpieces during ultrasonic testing
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
JPH0664018B2 (en) Ultrasonic flaw detector
SU1290157A1 (en) Device for performing ultrasonic checking of articles
JP2552178B2 (en) Ultrasonic flaw detection method for steel pipe welds
JP3457191B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2922508B1 (en) Automatic ultrasonic flaw detector
JPH0244246A (en) Ultrasonic probe apparatus
JPH0545346A (en) Ultrasonic probe
JPH09304357A (en) Method for examining filling state of filler using ultrasonic wave
JPH06258294A (en) Ultrasonic flaw detector
JP2002257800A (en) Ultrasonic flaw detection method and device for square billet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees