JPS63295959A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS63295959A
JPS63295959A JP62132706A JP13270687A JPS63295959A JP S63295959 A JPS63295959 A JP S63295959A JP 62132706 A JP62132706 A JP 62132706A JP 13270687 A JP13270687 A JP 13270687A JP S63295959 A JPS63295959 A JP S63295959A
Authority
JP
Japan
Prior art keywords
angle
wedge
temperature
refraction
contact medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62132706A
Other languages
Japanese (ja)
Inventor
Hirotsugu Tanaka
洋次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62132706A priority Critical patent/JPS63295959A/en
Publication of JPS63295959A publication Critical patent/JPS63295959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To keep an angle of refraction almost the same in a material to be inspected regardless of change in temperature, by arranging the surface of a wedge abutting a contact medium to be inclined longitudinally in the direction of propagating ultrasonic waves to include a polystyrene film on the wedge surface. CONSTITUTION:An ultrasonic probe 1 is provided with a wedge 5 made of organic glass o the like and a polystyrene film 6 is included on the surface A to reduce multiple reflected waves. The surface A of the wedge 5 abutting a contact medium 3 is inclined at an angle theta5 f 1-10 deg.C. An ultrasonic wave from a transmitting/receiving vibrator 2 is made incident into material 4 to be inspected through the contact medium 3 from the center point P of the surface of the wedge 5. Here, in the design temperature (for example, 20 deg.C), an angle of incidence into the material 4 being inspected is theta1 while an angle of refraction thereinto 4 is theta2. But when a temperature is higher or lower than the design temperature, angles theta1a and theta1b of incidence and angles theta2a and alpha2b of refraction vary larger or smaller. So, the variations in the angles are brought very close to the angle theta2 of refraction as designed. This minimizes changes in the angle of refraction of the material being inspected owing to temperature changes, thereby improving the S/N ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は鋼管の内外表面や丸棒の表層部に発生する欠
陥を検出するための超音波探触子の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an ultrasonic probe for detecting defects occurring on the inner and outer surfaces of steel pipes and the surface layer of round bars.

〔従来の技術〕[Conventional technology]

第3図は例えば超音波探傷法(昭和49年日刊工業新聞
社発行)に示された従来の超音波探触子及び探傷方式を
示す図である。
FIG. 3 is a diagram showing a conventional ultrasonic probe and flaw detection method, for example, shown in Ultrasonic Flaw Detection Method (published by Nikkan Kogyo Shimbun, 1972).

第3図(a)は従来の超音波探触子と超音波探触子を被
検側中心軸に対して平行移動させて所定の屈折角を田し
、探傷する方法を示す図でるる。第3図(kl)は従来
の超音波探触子を被検側中心軸に対して傾けて所定の屈
折角を出し、探傷する方法を示す図である。
FIG. 3(a) is a diagram showing a conventional method of detecting flaws by moving an ultrasonic probe parallel to the central axis of the test subject side to obtain a predetermined refraction angle. FIG. 3 (kl) is a diagram showing a method of flaw detection by tilting a conventional ultrasonic probe with respect to the central axis of the test subject side to obtain a predetermined refraction angle.

第3図(a)、 (t))において「llは超音波探触
子、(2)は送受信用振動子、(31Fi水、油等の接
触媒体、14)は鋼管や丸棒等の被検相、■は超音波が
被検相14)へ入射する入射点、θ1 は入射角、θ2
 は設計温度(例えば20℃)の屈折角、θ3 は設計
温度よシ高い温度の時の屈折角、θa Fi設計温度よ
り低い温度の時の屈折角、llは被検相14)の中心軸
Y−Y′ から超音波探触子filの中心ビームまでの
距離である。
In Figures 3(a) and (t)), ``11'' is an ultrasonic probe, (2) is a transmitting/receiving transducer, (31Fi is a contact medium such as water or oil, 14) is a steel pipe, round bar, etc. Phase detection, ■ is the incident point where the ultrasonic wave enters the phase to be tested 14), θ1 is the incident angle, θ2
is the refraction angle at the design temperature (for example, 20°C), θ3 is the refraction angle when the temperature is higher than the design temperature, θa Fi is the refraction angle when the temperature is lower than the design temperature, ll is the central axis Y of the tested phase 14) -Y' to the center beam of the ultrasound probe fil.

ところで鋼管の超音波探傷においては被検相14)中の
屈折角θ2 の選定が大変重要なことは今さら言うまで
もないが(肉厚)/(外径)の比によって超音波の中心
ビームが内表面に当たらな(なり。
By the way, in the ultrasonic flaw detection of steel pipes, it goes without saying that the selection of the refraction angle θ2 in the phase to be tested14) is very important. It's not true.

欠陥検出が不可能になる場合が生じる。特に超音波自動
探傷装置で高速で探傷な行なう場合には。
There may be cases where defect detection becomes impossible. Especially when performing flaw detection at high speed using automatic ultrasonic flaw detection equipment.

被検材14)と超音波探触子filの位置関係を常に一
定に保つことは極めて困難でロシ、この位置づれによっ
ても屈折角θ2 が変化することになる。従ってこの屈
折角θ2 の変化を少なくさせるためKは温度変化によ
る屈折角03〜θ4の変化量を少な(させることが重要
になって(る。
It is extremely difficult to always maintain a constant positional relationship between the specimen 14) and the ultrasonic probe fil, and this positional deviation also causes a change in the refraction angle θ2. Therefore, in order to reduce the change in the refraction angle θ2, it is important for K to reduce the amount of change in the refraction angles 03 to θ4 due to temperature changes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図(a)、 (b)に示すような従来の水浸法の超
音波探触子Illにおいては振動子(2)の表面に薄い
整合層(エポキシ樹脂等)が振動子(2)と平行にコー
ティングされているだけであるため1.振動子(2)か
ら放射された超音波は接触媒体(3)中を伝播し、被検
材14)表面の入射点エヘ到達するまでの条件はいかな
る温度においても不変である。
In the conventional water immersion ultrasonic probe Ill as shown in Fig. 3(a) and (b), a thin matching layer (epoxy resin, etc.) is placed on the surface of the transducer (2). Because it is only coated parallel to 1. The ultrasonic waves emitted from the vibrator (2) propagate through the contact medium (3), and the conditions until they reach the incident point on the surface of the specimen 14) remain unchanged at any temperature.

ところが、接触媒体(3)である水と鉄等の固体の被検
材(4)の温度と音速の関係かまった(逆の特性である
。すなわち、接触媒体(3)の水Fi湯温度上昇すると
音速も速(なり、逆に被検材(4)の鉄f′i温度が上
昇すると音速が遅(なってしまうため、スネルの法則に
より、温度が低い時は屈折角θ4 が大きくなり、温度
が高い時は屈折角θ3 が小さくなる。例えば20℃の
温度で屈折角θ2 が38°で設計さねた超音波探触子
f1)の場合には温度が10℃〜35℃に変化するとそ
れぞれの屈折角θ4 。
However, the relationship between the temperature of the contact medium (3), water, and the solid material to be tested (4), such as iron, and the sound speed has changed (the opposite characteristics exist. In other words, the temperature of the contact medium (3) increases Then, the speed of sound becomes faster (and conversely, as the temperature of the iron f'i of the material to be tested (4) increases, the speed of sound becomes slower, so according to Snell's law, when the temperature is low, the angle of refraction θ4 increases, When the temperature is high, the refraction angle θ3 becomes smaller.For example, in the case of an ultrasonic probe f1) that was designed with a refraction angle θ2 of 38° at a temperature of 20°C, when the temperature changes from 10°C to 35°C, Respective refraction angle θ4.

θ5 は39.4°〜36.7°となり実際の設計値と
は異なり超音波探傷上屈折角がばらつ(原因となる。
θ5 is 39.4° to 36.7°, which is different from the actual design value and causes variations in the refraction angle during ultrasonic flaw detection.

この角度ばらつきの原因は液体である接触媒体(3)の
温度特性によるものがほとんどである。
The cause of this angle variation is mostly due to the temperature characteristics of the liquid contact medium (3).

この発明はこの様な従来の欠点を大幅に改善し。This invention greatly improves these conventional drawbacks.

周囲温度が変化してもほぼ同一の屈折角が得られる超音
波探触子を提供するものである。
An object of the present invention is to provide an ultrasonic probe that can obtain substantially the same refraction angle even if the ambient temperature changes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明による超音波探触子は、超音波の伝播方向の前
後方向で、接触媒体と当接する楔の面に1°−10° 
の傾斜を設け、さらに上記楔面上にポリスチロール樹脂
から成る薄いフィルムを具備させたものである。
The ultrasonic probe according to the present invention has an angle of 1° to 10° on the surface of the wedge that comes into contact with the contact medium in the front-rear direction of the ultrasound propagation direction.
A thin film made of polystyrene resin is provided on the wedge surface.

〔作用〕[Effect]

この発明においては振動子と接触媒体との間に喫が設け
られているため、接触媒体の音速値が大きくなったら接
触、媒体中の入射角も太き(なり。
In this invention, since a gap is provided between the vibrator and the contact medium, as the sound velocity value of the contact medium increases, the angle of incidence in the contact medium also increases.

逆に、接触媒体の音速値が小さくなったら接触媒体中の
入射角も小さくなり、これにより、被検劇中の屈折角の
変化を少なくすることが可能となる。
Conversely, if the sound velocity value of the contact medium decreases, the angle of incidence in the contact medium also decreases, thereby making it possible to reduce changes in the refraction angle during the test.

又、上記楔の接触媒体に当接する面上には、有機ガラス
よシ音響インピーダンスの小さいポリスチロール樹脂の
薄いフィルムが装着されているため、楔と被検材表面と
の間で生じる表面エコーの多重反射波のレベルを小さく
することが可能で。
In addition, a thin film of polystyrene resin, which has a lower acoustic impedance than organic glass, is attached to the surface of the wedge that comes into contact with the contact medium, which reduces surface echoes generated between the wedge and the surface of the test material. It is possible to reduce the level of multiple reflected waves.

BlN比の良い超音波接触子と成シ得るう〔実施例〕 第1図はこの発明による超音波探触子の断面図と超音波
ビームの経路を示す図であろう第1図において、 fi
ll−1t超音波探触子、(2)は送受信用振動子、(
3)は水、油等の接触媒体、(4)は癖管や丸棒等の被
検1.151はこの発明による被検材14)との対向面
Aに所定の角度θ5 を設けた有機ガラス等の楔、16
1はポリスチロール樹脂から放る薄いフィルム、Pは喫
(5)のA面における超音波の中心ビームの入射点、θ
6 V′i喫のA面となす法線X−ガに対する入射角、
θ1 は設計温度(例えば20℃)における被検材14
)への入射角、θ1aは設計温度より高い温度での入射
角、θ1bH設計温度より低い温度での入射角、工υ 
は設計温度での入射点。
[Example] Fig. 1 is a cross-sectional view of the ultrasonic probe according to the present invention and a diagram showing the path of the ultrasonic beam.
ll-1t ultrasonic probe, (2) is a transceiver transducer, (
3) is a contact medium such as water or oil, (4) is a specimen 1 such as a twisted pipe or round bar, and 151 is an organic material having a predetermined angle θ5 on the surface A facing the specimen 14) according to the present invention. Glass wedge, 16
1 is a thin film emitted from polystyrene resin, P is the incident point of the central beam of ultrasonic waves on the A plane of cutout (5), θ
6 The angle of incidence with respect to the normal line X-ga made with the A plane of V′i,
θ1 is the test material 14 at the design temperature (e.g. 20°C)
), θ1a is the angle of incidence at a temperature higher than the design temperature, θ1bH is the angle of incidence at a temperature lower than the design temperature, engineering υ
is the incident point at the design temperature.

工1 は設計温度より高い温度での入射点、工2 は設
計温度より低い温度での入射点、θ2 は設計温度での
被検材(4)中の屈折角、θ2aは設計温度より温度が
高い時の屈折角、θ2bは設計温度より温度が低い時の
屈折角であるっ この発明による超音波探触子fi+においては振動子(
2)と接触媒体(3)の間に楔(5)が設けられている
ため、F+51の入射点Pを基準とした法線X−X’I
C対するF! 15)内での超音波の入射する方向が超
音波の進行方向で後方より入射する条件でshば楔(5
)から接触媒体(3)への放射角βと被検材(4)への
接触媒体(3)中の入射角θ1 はそわぞれ第(1)お
よび第(2)式となる。
F1 is the point of incidence at a temperature higher than the design temperature, T2 is the point of incidence at a temperature lower than the design temperature, θ2 is the refraction angle in the test material (4) at the design temperature, and θ2a is the point of incidence at a temperature lower than the design temperature. The refraction angle when the temperature is high, θ2b is the refraction angle when the temperature is lower than the design temperature.In the ultrasonic probe fi+ according to this invention, the transducer (
Since a wedge (5) is provided between 2) and the contact medium (3), the normal X-X'I with respect to the incident point P of F+51
F against C! 15) Under the condition that the direction of incidence of the ultrasonic wave in the wedge is from the rear in the direction of propagation of the ultrasonic wave,
) to the coupling medium (3) and the angle of incidence θ1 in the coupling medium (3) to the specimen (4) are expressed by equations (1) and (2), respectively.

β= sin ’ (: X sinθ6)     
 ・・・・−(1)θ1=β+05 vl:喫の音速 v2:接触媒体の音速 θ5 :楔のA面の角度 θ6 :庚申の入射角度 又、被検41141中の屈折角θ2 は第(3)式とな
る。
β= sin' (: X sinθ6)
....-(1) θ1=β+05 vl: Speed of sound v2: Speed of sound of the contact medium θ5: Angle θ6 of the A surface of the wedge: Incident angle of Koshin, and the angle of refraction θ2 in the test subject 41141 is the (3rd ).

v3:被検相の音速 すなわち第(3)式より明らかなように被検相(4)へ
の入射角θ1 は被検相の音速■3  七接触媒体の音
速v2  の温度特性がまったく逆であることを利用し
て、接触媒体の音速v2  の値が大きくなったら接触
媒体(3)中の入射角θ1 の値が大きくなり、逆に接
触媒体の音速v2  の値が小さくなったら接触媒体(
3)中の入射角θ1 の値も小さくなるようにすること
により被検相14)中の屈折角θ2 の温度変化による
ばらつきを極めて少なくすることが可能となる。楔(5
)が有機ガラスの場合の喫(5)のA面の角度θ5 の
最適値は2°〜4°位に存在する。又、具体的な超音波
の伝播経路は以下の様になる。
v3: The sound velocity of the test phase, that is, as is clear from Equation (3), the angle of incidence θ1 on the test phase (4) is the sound velocity of the test phase. Taking advantage of this fact, when the value of the sound velocity v2 of the contact medium increases, the value of the incident angle θ1 in the contact medium (3) increases, and conversely, when the value of the sound speed v2 of the contact medium decreases, the value of the incidence angle θ1 in the contact medium (3) increases.
By making the value of the incident angle θ1 in phase 3) small, it is possible to extremely reduce variations in the refraction angle θ2 in the phase to be tested 14) due to temperature changes. Wedge (5
) is an organic glass, the optimum value of the angle θ5 of the A-plane of the cutout (5) is around 2° to 4°. Further, the specific propagation path of the ultrasonic wave is as follows.

湿度が常温より低い場合の超音波は喫(5)の入射点P
から被検相14)上の入射点工2へ到達する経路となる
ため被検相14)への入射角θ1bの値は小さくなる。
When the humidity is lower than room temperature, the ultrasonic wave is incident at the point of incidence P at the pipe (5).
The value of the angle of incidence θ1b on the tested phase 14) becomes small because the path is from there to the incident spot 2 on the tested phase 14).

又、温度が常温より高い場合の超音tfLiltfR(
5)の入射点Pから被検相14)上の入射点工1 へ到
達する経路となるため被検相14)への入射角01aの
値は太き(なる。
Also, when the temperature is higher than room temperature, the ultrasonic sound tfLiltfR(
5), the value of the angle of incidence 01a on the tested phase 14) is large (becomes large) because the path is from the incident point P of 5) to the entrance point 1 on the tested phase 14).

第2図にこの発明による超音波探触子の温度と被検相中
の屈折角の関係の実測値と、いくつかの計算例を示す。
FIG. 2 shows actual measured values of the relationship between the temperature of the ultrasonic probe according to the present invention and the refraction angle in the test phase, as well as some calculation examples.

第2図においてイはこの発明による超音波探触子fl)
の楔(5)のA面の角度θ5 が4℃時の実測値。
In Fig. 2, A is the ultrasonic probe fl) according to the present invention.
Actual value when the angle θ5 of the A side of the wedge (5) is 4°C.

口は喫5のA面の角度θ5 が6°の時の計算値。The opening is the calculated value when the angle θ5 of the A side of the pipe 5 is 6°.

ハは喫(5)のA面の角度θ5 が10°の時の計算値
C is the calculated value when the angle θ5 of plane A of cutout (5) is 10°.

二は喫(5)のA面の角度θ5 が13°の時の計算値
The second is the calculated value when the angle θ5 of the A side of the cutout (5) is 13°.

ホは従来の超音波探触子の実測値、θ2!ri被検相1
4)中の屈折角、T(di度でるる。
E is the actual measurement value of the conventional ultrasonic probe, θ2! ri test phase 1
4) The angle of refraction in T (di degrees).

第2図からも明らかなように、この発明による超音波探
触子は例えば温度Tが20℃で屈折角θ2が38°の設
計値の場合でも周囲温度が10℃〜35℃と変化しても
被検相中の屈折角θ2a〜θ2bは楔(5)のA面の角
度が1°〜10°の範囲であれば設計値の屈折角θ2 
に対して+ 0.5°以内の精度に入れることが可能で
アシ、探傷性能の信頼性が大幅に向上する。
As is clear from Fig. 2, the ultrasonic probe according to the present invention is capable of changing the ambient temperature from 10°C to 35°C even when the temperature T is 20°C and the refraction angle θ2 is 38°. The refraction angle θ2a to θ2b in the test phase is the designed value refraction angle θ2 if the angle of the A side of the wedge (5) is in the range of 1° to 10°.
It is possible to achieve an accuracy of within +0.5° relative to the distance, greatly improving the reliability of the reed and flaw detection performance.

又、上記f12! +5)のA面の角度が1°〜10°
程度と小さい値であるため、喫(5)が有機ガラスのま
までは1w触媒体(3)との音響インピーダンスの差が
大きく、上記喫(5)のA面と神検相14)表面との間
で表面エコーの多重反射波が発生し、ノイズの増大につ
ながる。従って、上記ノイズの低減のために。
Also, the above f12! +5) The angle of the A side is 1° to 10°
Therefore, if the cutout (5) is an organic glass, there will be a large difference in acoustic impedance from the 1w catalyst (3), and the difference between the A side of the cutout (5) and the surface of the Shinken phase 14) will be large. Multiple reflected waves of surface echoes occur between the two, leading to an increase in noise. Therefore, for the reduction of the above noise.

喫(5)の入面上に、有機ガラスよシさらに接触媒体(
3)の音響インピーダンスに近いポリスチロールI(脂
の薄いフィルムを具備させることにより1表面エコーの
多重反射波によるノイズエコーな低減すせ、S/N比を
4〜5 dB 向上させることができる。
On the entrance surface of the cutter (5), organic glass and a contact medium (
By providing polystyrene I (thin film) with acoustic impedance close to 3), noise echoes due to multiple reflected waves of one surface echo can be reduced, and the S/N ratio can be improved by 4 to 5 dB.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、超音波の伝播方向の前
後方向で、かつ接触媒体に当接する喫の面に、10〜1
0°の傾斜を設け、さらに、上記換面上にポリスチロー
ル樹脂から成る薄いフィルムを具備させることにより、
温度変化に対する被検相中の屈折角の変化を少なくする
と同時に2表面エコーの多重反射波のレベルを低下させ
たS/N比の良い超音波探傷装置を供給できる効果があ
るう
As explained above, in this invention, 10 to 1
By providing an inclination of 0° and further providing a thin film made of polystyrene resin on the above-mentioned replacement surface,
This has the effect of providing an ultrasonic flaw detection device with a good S/N ratio that reduces the change in the refraction angle during the test phase due to temperature changes and at the same time reduces the level of multiple reflected waves of two surface echoes.

【図面の簡単な説明】[Brief explanation of the drawing]

第3図+a)、 (t))は従来の超音波探触子と探傷
方式を示す図、第1図はこの発明による超音波探触子の
断面図、第2図は各超音波探触子の温度と屈折角の関係
を示す図であるつ 図において(1)は超音波探触子、(2)は振動子、(
3)は接触媒体、(4)は被検相、(5)は楔、161
はズリスチロール樹脂から成るフィルム、θ5 は喫の
A面に設けられた角度でろる。 尚3図中同一あるいは相当部分には同一符号を付して示
しである。
Figures 3+a) and (t)) are diagrams showing conventional ultrasonic probes and flaw detection methods, Figure 1 is a sectional view of the ultrasonic probe according to the present invention, and Figure 2 is a diagram showing each ultrasonic probe. In the figure, (1) is an ultrasonic probe, (2) is a transducer, (
3) is a contact medium, (4) is a test phase, (5) is a wedge, 161
The film is made of tristyrene resin, and θ5 is the angle set on the A side of the cutter. Note that the same or corresponding parts in the three figures are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 有機ガラス製の楔を有する水浸形の超音波斜角探触子に
おいて、超音波の伝播方向の前後方向で、接触媒体と当
接する楔の面に1°〜10°の傾斜を設け、さらに上記
楔面上にポリスチロール樹脂から成る薄いフィルムを具
備させたことを特徴とする超音波探触子。
In a water immersion type ultrasonic angle probe having a wedge made of organic glass, the surface of the wedge that comes into contact with the contact medium is sloped by 1° to 10° in the front-rear direction of the ultrasound propagation direction, and An ultrasonic probe characterized in that a thin film made of polystyrene resin is provided on the wedge surface.
JP62132706A 1987-05-28 1987-05-28 Ultrasonic probe Pending JPS63295959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132706A JPS63295959A (en) 1987-05-28 1987-05-28 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132706A JPS63295959A (en) 1987-05-28 1987-05-28 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS63295959A true JPS63295959A (en) 1988-12-02

Family

ID=15087659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132706A Pending JPS63295959A (en) 1987-05-28 1987-05-28 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS63295959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280049A (en) * 1989-04-20 1990-11-16 Mitsubishi Electric Corp Ultrasonic wave probe
CN103017952A (en) * 2011-09-22 2013-04-03 北京理工大学 Magnetic-type ultrasonic oblique incidence sensor transmitter-receiver device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598153B2 (en) * 1979-01-23 1984-02-23 株式会社東芝 current source inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598153B2 (en) * 1979-01-23 1984-02-23 株式会社東芝 current source inverter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280049A (en) * 1989-04-20 1990-11-16 Mitsubishi Electric Corp Ultrasonic wave probe
CN103017952A (en) * 2011-09-22 2013-04-03 北京理工大学 Magnetic-type ultrasonic oblique incidence sensor transmitter-receiver device
CN103017952B (en) * 2011-09-22 2015-11-25 北京理工大学 Magnetic-type ultrasonic oblique incidence sensor transmitter-receiverdevice device

Similar Documents

Publication Publication Date Title
KR101004267B1 (en) Ultrasonic testing system and ultrasonic testing technique for pipe member
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
EP1271097A2 (en) Method for inspecting clad pipe
KR870001631B1 (en) Near surface inspection system
JPS63295959A (en) Ultrasonic probe
JP2008216125A (en) Ultrasonic probe
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH0336921Y2 (en)
JPH1144675A (en) Ultrasonic measuring method for assembled and welded part in wheel
JPH0225166Y2 (en)
JP2605396B2 (en) Ultrasonic probe
JPS63186143A (en) Ultrasonic wave probe
JPH06341975A (en) Ultrasonic inspection device
JPH01107149A (en) Standard test piece for ultrasonic flaw detector
Lockett Lamb and torsional waves and their use in flaw detection in tubes
JPH0545346A (en) Ultrasonic probe
JP2002257800A (en) Ultrasonic flaw detection method and device for square billet
JPH0550706B2 (en)
JP3650509B2 (en) Ultrasonic probe and its use
JPS62228157A (en) Ultrasonic flaw detection of welded part
SU1364971A1 (en) Specimen for ultrasonic check
RU2055359C1 (en) Prismatic ultrasonic piezoelectric converter
JPH06308097A (en) Ultrasonic flaw detection method
JPS62137561A (en) Ultrasonic flaw detection and instrument therefor