JP2603485B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2603485B2
JP2603485B2 JP62263670A JP26367087A JP2603485B2 JP 2603485 B2 JP2603485 B2 JP 2603485B2 JP 62263670 A JP62263670 A JP 62263670A JP 26367087 A JP26367087 A JP 26367087A JP 2603485 B2 JP2603485 B2 JP 2603485B2
Authority
JP
Japan
Prior art keywords
concentration
barrier layer
potential holding
holding layer
upper barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62263670A
Other languages
Japanese (ja)
Other versions
JPH01107268A (en
Inventor
勝 若田部
修 荻野
満 武井
哲史 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP62263670A priority Critical patent/JP2603485B2/en
Publication of JPH01107268A publication Critical patent/JPH01107268A/en
Application granted granted Critical
Publication of JP2603485B2 publication Critical patent/JP2603485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非晶質シリコンを主体とする電子写真感光
体、特にその使用環境特性の向上に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electrophotographic photoreceptor mainly composed of amorphous silicon, and more particularly to improvement of its use environment characteristics.

(従来技術) 非晶質シリコンを主体とする従来の電子写真感光体、
例えば正帯電型感光体は、第1図に示すように導電性基
体(1)とこの上に順次積層して形成された下部障壁層
(2)と電位保持層(3)及び上部障壁層(4)とから
形成され、導電性基体(1)を除く各層は次のように形
成されるのが一般的である。即ち下部障壁層(2)は第
2図にように厚さ方向における原子濃度分布をそれぞれ
均一とした非晶質のSi,H,B,O,Nから形成されて約50Å〜
10μm厚さの強いP形導電性をもつように作られ、導電
性基体(1)から注入される電子が電位保持層(3)更
にはその上部の障壁層(4)に到達するのを防止する。
また電位保持層(3)は第2図のように厚さ方向におけ
る原子濃度分布をそれぞれ均一とした非晶質SiとH,Bを
主体とする、暗抵抗ρが1011〜1016Ω・cm(光照射時
104〜1010Ω・cm)の光導電性をもち、しかも暗時にお
いて約500〜1500Vの電位を保持できるように作られる。
また上部障壁層(4)は500Å〜5μm厚さを有し、か
つ第2図のように厚さ方向における原子濃度分布がそれ
ぞれ均一である非晶質のSiとC及びHを主体として形成
され、正帯電電荷が電位保持層(3)に注入されるのを
阻止できるように正孔に対して高いエネルギ的障壁をも
つように作られる。
(Prior art) Conventional electrophotographic photoreceptor mainly composed of amorphous silicon,
For example, as shown in FIG. 1, a positively charged photoreceptor has a conductive substrate (1), a lower barrier layer (2), a potential holding layer (3), and an upper barrier layer (3) formed on the conductive substrate (1). 4), and each layer except the conductive substrate (1) is generally formed as follows. That is, the lower barrier layer (2) is formed of amorphous Si, H, B, O, and N, each having a uniform atomic concentration distribution in the thickness direction as shown in FIG.
Prevents electrons injected from the conductive substrate (1) from reaching the potential holding layer (3) and the barrier layer (4) thereover by being made to have a strong P-type conductivity with a thickness of 10 μm. I do.
As shown in FIG. 2, the potential holding layer (3) is mainly composed of amorphous Si and H and B, each having a uniform atomic concentration distribution in the thickness direction, and has a dark resistance ρ D of 10 11 to 10 16 Ω.・ Cm (at the time of light irradiation
It has a photoconductivity of 10 4 to 10 10 Ω · cm, and can be made to hold a potential of about 500 to 1500 V in the dark.
The upper barrier layer (4) has a thickness of 500 ° to 5 μm and is mainly formed of amorphous Si, C and H whose atomic concentration distribution is uniform in the thickness direction as shown in FIG. Are made to have a high energy barrier to holes so that positively charged charges can be prevented from being injected into the potential holding layer (3).

(従来技術とその問題点) しかし上記のような従来の感光体は、一般に使用環境
における湿度が高くなればなる程原画の再現性を悪化し
て鮮明度を欠くようになる。例えば次の第1表のような
感光特性を持たせたものにおけるコピーサイクルテスト
の結果では、室温25℃、相対湿度50%では50万枚コピー
サイクルテスト後においても正常画像が得られる。しか
し室温25℃、相対湿度が95%では50万枚コピーサイクル
テスト後原画の再現性は全くなくなり所謂像流れとな
る。
(Prior Art and Problems Thereof) However, in the above-described conventional photoconductors, generally, the higher the humidity in the use environment, the worse the reproducibility of the original image becomes, and the sharper the image becomes. For example, according to the results of the copy cycle test for those having the photosensitive characteristics shown in Table 1 below, a normal image can be obtained even after the 500,000-sheet copy cycle test at a room temperature of 25 ° C. and a relative humidity of 50%. However, if the room temperature is 25 ° C. and the relative humidity is 95%, the reproducibility of the original image is completely lost after a 500,000 copy cycle test, resulting in a so-called image flow.

しかも従来の感光体においては上部障壁層(4)と電
位保持層(3)を形成するSiとHの濃度は両者の界面に
おいてそれぞれ不連続であり、特にC原子が電位保持層
(3)において5%以下(図では少量であるため図示で
きない)であるのに比べて、上部障壁層側においては界
面から約0〜100Åの層厚内において30〜95%に急激に
濃度が変化する。このことは上部障壁層(4)と電位保
持層(3)との間の光学的エネルギーギャップの差が大
きく、微視的結晶構造の格子不整合が大きい界面構造と
なっていることを示しており、これにもとづく界面準位
の増大によって帯電電位が低くなり、残留電位が大とな
って感光特性を劣化させていることを示し、感光特性に
おいて改善の余地のあることを示している。
Moreover, in the conventional photoreceptor, the concentrations of Si and H forming the upper barrier layer (4) and the potential holding layer (3) are discontinuous at the interface between them, and particularly, C atoms are contained in the potential holding layer (3). On the other hand, on the upper barrier layer side, the concentration rapidly changes to 30 to 95% within a layer thickness of about 0 to 100 ° from the interface, compared to 5% or less (not shown in the figure because the amount is small). This indicates that the difference in optical energy gap between the upper barrier layer (4) and the potential holding layer (3) is large, and the interface structure has a large lattice mismatch of the microscopic crystal structure. This indicates that the charging potential decreases due to the increase in the interface state based on this, and the residual potential increases, deteriorating the photosensitive characteristics, indicating that there is room for improvement in the photosensitive characteristics.

(発明の目的) 本発明は使用環境特性の向上と併せて、帯電電位の上
昇や残留電位の低下など、感光特性をも従来より向上さ
せた非晶質シリコン主体とする電子写真用感光体の提供
を目的としてなされたものである。以下に図面を用いて
本発明の詳細を説明する。
(Object of the Invention) The present invention relates to an electrophotographic photosensitive member mainly composed of amorphous silicon, which has improved photosensitive characteristics such as an increase in a charging potential and a decrease in a residual potential, in addition to an improvement in use environment characteristics. It was made for the purpose of providing. Hereinafter, the present invention will be described in detail with reference to the drawings.

(問題点を解決するための本発明の手段) 本発明者は前記の如き像流れの現像について種々検討
を行ったところ、その原因が次に述べる点にあることを
明らかにした。即ち従来の感光体においては、第2図に
よって前記したように、上部障壁層(4)におけるSi原
子の濃度分布は厚み方向において均一であって表面にSi
原子が露呈している。
(Means of the Invention for Solving the Problems) The inventor of the present invention has conducted various studies on the development of the image flow as described above, and has found that the cause is as follows. That is, in the conventional photoreceptor, as described above with reference to FIG. 2, the concentration distribution of Si atoms in the upper barrier layer (4) is uniform in the thickness direction and the Si
Atoms are exposed.

このためコピーの都度行われる帯電用の正コロナ放電
に曝される表面のSiは吸湿性が高く、しかもトナー接
触,紙接触その他の機械的,化学的,物理的刺激に劣る
SiOx表面に変化させられる。従って前記したように相対
湿度が95%のような高湿度下においては、表面に吸着し
た水分と雰囲気中のNOx等のイオン成分などにより通常1
011〜1016Ω・cmである横方向抵抗を108Ω・cm以下に劣
化させる。このため正コロナ放電による正帯電後の原画
の静電電荷潜像を、表面の低抵抗領域を通し横方向へ拡
がらせることになり、その結果像流れとなり原画の再現
性を失うことが明らかにされた。
For this reason, the surface Si exposed to the positive corona discharge for charging performed every time of copying has high hygroscopicity, and is inferior to mechanical contact with paper, toner, and other mechanical, chemical, and physical stimuli.
Changed to SiOx surface. Therefore, as described above, under a high humidity condition such as a relative humidity of 95%, the moisture content adsorbed on the surface and the ionic components such as NOx in the atmosphere usually cause the humidity to drop to 1%.
The lateral resistance of 0 11 to 10 16 Ω · cm is degraded to 10 8 Ω · cm or less. As a result, the electrostatic charge latent image of the original image after positive charging by positive corona discharge is spread laterally through the low resistance area on the surface, and as a result, the image flow is lost, and it is apparent that the reproducibility of the original image is lost. Was.

本発明は以上の検討結果から使用環境特性の向上のた
めには、水分の影響を受け易い上部障壁層の表面及びそ
の近傍深さにおけるSi原子の濃度を零に低下させればよ
いことを着想してなされたもので、本発明は第3図に示
す断面構造図(第1図,第2図と同一符号部分は同等部
分を示す)のような構成としたことを特徴とするもので
ある。
The present invention has been conceived from the above study results that the concentration of Si atoms in the surface of the upper barrier layer, which is easily affected by moisture, and the depth in the vicinity thereof may be reduced to zero in order to improve the use environment characteristics. The present invention is characterized in that it has a configuration as shown in the sectional structural view of FIG. 3 (the same reference numerals in FIGS. 1 and 2 denote the same parts). .

即ち第1には上部障壁層(4)におけるSi原理の濃度
を、電位保持層(3)との界面から表面方向に向けて漸
減させて、その表面において零にすると共に、C原子の
濃度を電位保持層(3)との界面においては例えば5%
以下、表面において95〜30%となるように表面方向に向
けて濃度を増大した分布とする。しかもこれに加えてC
原子の濃度の増大によって増大するSi−C,C−C結合の
未結合の不対電子(ダングリングボンドDANGLING BON
D)によるトラップセンタの数の増大を防止するため、
H原子の濃度を上部障壁層(4)の表面から例えば500
〜10μm厚内において最高濃度で均一か、または表面に
向かって増し続ける分布状態になるようにして、表面に
おけるHの濃度を例えば15〜50%としてH原子をダング
リングボンドに結合させて電気的に不活化させる。そし
て以上によりC/Si比をH原子によりダングリングボンド
の不活性化を図りながら増大させて光学的エネルギーギ
ャップの増大を図り、これによりSi原子濃度が上記のよ
うに少なくとも表面で零とし、上部障壁層(4)の表面
を非晶質炭素膜としての性質、即ち光学的エネルギーギ
ャップEgがEg2.0eV、暗抵抗ρがρ1013Ω・cm
を呈するようにする。そしてコロナ放電により水分を吸
着し易いSiOxとなるSiが表面に存在しないようにして、
相対湿度が95%のような高湿度の条件下におけるコピー
サイクルテストにおいても、表面横方向抵抗ρがρ
1011Ω・cm以下に劣化(従来構造では108Ω・cm以下
に劣化)しないようにして像流れを生じないようにした
ものである。またこれに加えて表面をSiより機械的,化
学的,物理的刺激に強い非晶質炭素膜とすることによ
り、トナー接触,紙接触などの刺激に強い表面を形成で
きるようにしたものである。
That is, first, the concentration of the Si principle in the upper barrier layer (4) is gradually reduced from the interface with the potential holding layer (3) toward the surface, and is reduced to zero on the surface, and the concentration of C atoms is reduced. At the interface with the potential holding layer (3), for example, 5%
Hereinafter, the distribution is such that the concentration is increased toward the surface so as to be 95 to 30% on the surface. Moreover, in addition to this, C
Unbonded unpaired electrons of Si-C and C-C bonds (dangling bond DANGLING BON
To prevent the increase in the number of trap centers due to D),
The concentration of H atoms is set to, for example, 500 from the surface of the upper barrier layer (4).
The H concentration at the surface is set to, for example, 15 to 50% so that the H atoms are bonded to the dangling bonds by making the distribution state uniform at the highest concentration within the thickness of 1010 μm, or a distribution state that continues to increase toward the surface. To inactivate. As described above, the C / Si ratio is increased while deactivating dangling bonds by H atoms to increase the optical energy gap, thereby reducing the Si atom concentration to at least zero at the surface as described above. The surface of the barrier layer (4) has the property of an amorphous carbon film, that is, the optical energy gap Eg is Eg 2.0 eV, and the dark resistance ρ D is ρ D 10 13 Ω · cm.
To be presented. And, so that there is no Si, which becomes SiOx that easily adsorbs moisture by corona discharge, on the surface,
Even in a copy cycle test under a high humidity condition such as a relative humidity of 95%, the surface lateral resistance ρ D is ρ D
The image flow is prevented from deteriorating to 10 11 Ω · cm or less (deterioration to 10 8 Ω · cm or less in the conventional structure). In addition, by making the surface an amorphous carbon film that is more resistant to mechanical, chemical and physical stimuli than Si, it is possible to form a surface that is more resistant to stimuli such as toner contact and paper contact. .

また第2には上部障壁層(4)におけるSi原子濃度の
減少分布とH原子濃度の増大分布が、電位保持層(3)
の界面における濃度と同一の濃度から緩やかにかつ連続
的に行われるようにした点にある。そしてこれにより界
面準位密度の低下を図って膜中における歪みの発生を少
なくして、第2図によって前記した従来の感光体におけ
るような、電位保持層(3)と上部障壁層(4)の界面
における濃度の不連続にもとづく帯電電位の低下と、残
留電位の増大を小さく押さえて、使用環境特性の向上と
併せて感光特性の向上を図ったものである。
Second, the decreasing distribution of the concentration of Si atoms and the increasing distribution of the concentration of H atoms in the upper barrier layer (4) correspond to the potential holding layer (3).
Is performed gently and continuously from the same concentration as the concentration at the interface. As a result, the interface state density is reduced to reduce the occurrence of distortion in the film, and the potential holding layer (3) and the upper barrier layer (4) as in the conventional photoreceptor described above with reference to FIG. In this case, the reduction of the charging potential due to the discontinuity of the density at the interface of the layer and the increase of the residual potential are suppressed to improve the working environment characteristics and the photosensitive characteristics.

勿論上部障壁層(4)の全体を非晶質炭素膜とするこ
とも考えられるが、これでは界面における電位保持層
(3)のSi原子濃度との大きな不連続を生ずることか
ら、帯電電位の低下など感光特性の劣化を招くので好ま
しくない。また表面を含む一部を非晶質炭素膜とする場
合にも、例えば第3図中の点線のように表面から深い位
置まで非晶質炭素化が行われると、Si原子濃度の変化が
急激となって帯電電位の低下などを生じる結果となるの
で、例えば上部障壁層(4)の厚さを500Å〜5μmと
した場合非晶質炭素膜化は表面から100〜5000Åの範囲
内とするのがよい。
Of course, it is conceivable that the entire upper barrier layer (4) is made of an amorphous carbon film. However, this causes a large discontinuity with the Si atom concentration of the potential holding layer (3) at the interface. It is not preferable because it causes deterioration of photosensitive characteristics such as reduction. Also, when a part including the surface is made of an amorphous carbon film, if the amorphous carbonization is performed from the surface to a deep position as shown by a dotted line in FIG. For example, when the thickness of the upper barrier layer (4) is set to 500 ° to 5 μm, the amorphous carbon film is formed within a range of 100 to 5000 ° from the surface. Is good.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

(実施例) 第2表は第4図に示す高周波グロー放電CVD法による
反応装置を用いて作られた感光体の特性を示すものであ
る。反応チャンバ(5)内にモータ(6)により約10r.
p.mで回転され、かつ内部加熱装置(7)により基体
(1)を300℃±2℃で加熱できるようにした基体ホル
ダ(8)に、外径100mm、長さ300mmのアルミニウム製円
筒状導電性基体(1)を装着する。そして基体(1)と
約5cmの同心的距離を置いて対向配置され、13.5MHzの高
周波電源(9)((9a)は発振器、(9b)はマッチング
調整器)が接続された対向電極(10)の表面に均一に設
けた図示しない多数の吹出穴により、高圧ボンベ(11
a)(11b)(11c)(11d)から減圧され、マスフローコ
ントローラ(12)により流量が精密に調整されSiH4,H2,
B2H6/H2,C2H2などの必要なガスを、圧力調整バルブ(13
a),メカニカルブースターポンプ(13b),回転ポンプ
(13c)により排気されてガス圧力が常に一定に調整さ
れる反応チャンバ(5)内に送り込む。そして第3表に
示す流量,圧力,高周波出力,堆積時間などの条件及び
従来と同一要領により導電性基体(1)上に第3図のよ
うに3μm厚のSi,H,B,O,Nからなる下部障壁層(2)を
形成したのち、更にこの上に20μm厚のSi,H,Bよりなる
電位保持層(3)を形成する。そして最後にその上に最
初電位保持層(3)の原子組成比に一致させてSi,H,C原
子を堆積させ、引続き厚さ方向にSi原子が減少方向,H及
びC原子が増大方向となるように濃度を分布させて3000
Å厚の上部障壁層(4)を形成する。
(Example) Table 2 shows the characteristics of the photoreceptor produced by using the reaction apparatus according to the high frequency glow discharge CVD method shown in FIG. About 10 r. In the reaction chamber (5) by the motor (6).
An aluminum cylindrical conductive material having an outer diameter of 100 mm and a length of 300 mm was placed on a substrate holder (8) rotated at pm and capable of heating the substrate (1) at 300 ° C. ± 2 ° C. by an internal heating device (7). The base (1) is mounted. The counter electrode (10) is opposed to the substrate (1) at a concentric distance of about 5 cm, and is connected to a 13.5 MHz high frequency power supply (9) ((9a) is an oscillator, (9b) is a matching adjuster). ) Are provided on the surface of the high-pressure cylinder (11).
a) The pressure is reduced from (11b), (11c), and (11d), and the flow rate is precisely adjusted by the mass flow controller (12), and SiH 4 , H 2 ,
The required gas such as B 2 H 6 / H 2 , C 2 H 2 is supplied to the pressure regulating valve (13
a), the gas is exhausted by a mechanical booster pump (13b) and a rotary pump (13c) and sent into a reaction chamber (5) in which the gas pressure is constantly regulated. Then, as shown in Table 3, the thickness of Si, H, B, O, N was 3 μm on the conductive substrate (1) according to the conditions such as flow rate, pressure, high frequency output, deposition time, etc. After the lower barrier layer (2) made of is formed, a potential holding layer (3) made of Si, H, and B having a thickness of 20 μm is further formed thereon. Finally, Si, H, and C atoms are deposited thereon in accordance with the atomic composition ratio of the potential holding layer (3). Then, Si atoms decrease in the thickness direction, and H and C atoms increase in the thickness direction. 3000 to distribute the concentration
Å Form a thick upper barrier layer (4).

従来の感光体の感光特性と本発明のそれを示す第1表
と第2表とを対比して明らかなように、本発明による感
光体は帯電電位において従来のものより約40%上昇し、
残留電圧も約50%低下して、感光特性においてすぐれた
ものが得られることを示している。しかも室温25℃相対
湿度95%における50万枚コピーサイクルテストの結果に
よれば従来のものが像流れとなるに対し、本発明では原
画の再現が良好に行われて高解像度の鮮明な画像が得ら
れることが確かめられた。
As is apparent from a comparison between the photosensitive characteristics of the conventional photoreceptor and Tables 1 and 2 showing that of the present invention, the photoreceptor according to the present invention has a charging potential which is increased by about 40% compared with the conventional one.
The residual voltage is also reduced by about 50%, indicating that excellent photosensitive characteristics can be obtained. In addition, according to the result of a 500,000 copy cycle test at room temperature 25 ° C and 95% relative humidity, the conventional one causes an image flow, whereas in the present invention, the original image is reproduced well and a high-resolution clear image is obtained. It was confirmed that it could be obtained.

(発明の効果) 以上から明らかなように本発明によれば、電子写真用
感光体において非常に重要な役割を果たす上部障壁層が
要求される特性、即ち 電位保持層との界面において形成する格子定数の差
を原因とする界面準位はなるべく小さく、界面トラップ
密度が低いこと。
(Effects of the Invention) As is apparent from the above, according to the present invention, the characteristics required of the upper barrier layer which plays a very important role in the electrophotographic photoreceptor, that is, the lattice formed at the interface with the potential holding layer The interface state caused by the difference in the constants is as small as possible and the interface trap density is low.

上部障壁層として表面帯電電荷の伝導性が小さい高
抵抗物質であること(ρ1013Ω・cm)。
The upper barrier layer is a high-resistance substance having low conductivity of surface charge (ρ D 10 13 Ω · cm).

感光体の窓物質として長波長光800nmを吸収しない
大きな光学的エネルギーギャップをもっていること。
It has a large optical energy gap that does not absorb long-wavelength light 800 nm as a photoconductor window material.

表面帯電電荷に対し横方向抵抗が高く(ρ1013
Ω・cm)、しかも使用環境条件においても高い横方向抵
抗を維持しうること。
High lateral resistance to surface charge (ρ D 10 13
Ω · cm) and maintain high lateral resistance even under the use environment conditions.

コロナ放電,トナー接触,紙接触,強い光照射等の
機械的,化学的,物理的刺激にも感光特性の劣化が少な
く長寿命であること。
It has a long life with little deterioration of photosensitive characteristics even under mechanical, chemical and physical stimuli such as corona discharge, toner contact, paper contact and strong light irradiation.

などの要求をほぼ満足させうる上部障壁層をもつ電子写
真用感光体、従って使用環境特性と感光特性などにすぐ
れた非晶質シリコンを主体とする電子写真用感光体を提
供できる。
Thus, it is possible to provide an electrophotographic photosensitive member having an upper barrier layer which can substantially satisfy the requirements such as above, and therefore, an electrophotographic photosensitive member mainly composed of amorphous silicon excellent in use environment characteristics and photosensitive characteristics.

なお以上においては正帯電型感光体を例にとって説明
したが、本発明は負帯電型の感光体にも適用して同様な
効果を得ることができる。また実施例においては高周波
グロー放電CVD法を用いたが、スパッタ法、マイクロ波C
VD法,直流放電CVD法等従来公知の種々の製造方法を用
いることができる。
In the above, the positive charging type photoconductor has been described as an example, but the present invention can be applied to a negative charging type photoconductor to obtain the same effect. In the examples, the high-frequency glow discharge CVD method was used.
Various known production methods such as a VD method and a DC discharge CVD method can be used.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図は従来の感光体の構造断面図、第3図は
本発明の感光体の構造断面図、第4図は感光体の製作に
使用される反応装置例図である。 (1)……導電性基板、(2)……下部障壁層、(3)
……電位保持層、(4)……上部障壁層、(5)……反
応チャンバ、(6)……モータ、(7)……加熱装置、
(8)……基本ホルダ、(9)……高周波電源、(9a)
……発振器、(9b)……マッチング調整器、(10)……
対向電極、(11a)(11b)(11c)(11d)……高圧ガス
ボンベ、(12)……マスフローコントローラ、(13a)
……圧力調整バルブ、(13b)……メカニカルブースタ
ポンプ、(13c)……回転ポンプ。
1 and 2 are cross-sectional views of the structure of a conventional photoreceptor, FIG. 3 is a cross-sectional view of the structure of the photoreceptor of the present invention, and FIG. 4 is a diagram of an example of a reaction apparatus used for manufacturing the photoreceptor. (1) ... conductive substrate, (2) ... lower barrier layer, (3)
... potential holding layer, (4) ... upper barrier layer, (5) ... reaction chamber, (6) ... motor, (7) ... heating device,
(8)… Basic holder, (9)… High frequency power supply, (9a)
…… Oscillator, (9b) …… Matching adjuster, (10) ……
Counter electrode, (11a) (11b) (11c) (11d) ... high-pressure gas cylinder, (12) ... mass flow controller, (13a)
… Pressure adjustment valve, (13b)… Mechanical booster pump, (13c)… Rotary pump.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 満 山梨県甲府市大里町462番地 山梨電子 工業株式会社内 (72)発明者 塩沢 哲史 山梨県甲府市大里町462番地 山梨電子 工業株式会社内 (56)参考文献 特開 昭62−182751(JP,A) 特開 昭61−219962(JP,A) 特開 昭62−170968(JP,A) 特開 昭61−130954(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuru Takei 462 Osato-cho, Kofu-shi, Yamanashi Prefecture Inside Yamanashi Electronics Industry Co., Ltd. 56) References JP-A-62-182751 (JP, A) JP-A-61-219962 (JP, A) JP-A-62-170968 (JP, A) JP-A-61-130954 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性基体上に下部障壁層,電位保持層,
上部障壁層を順次積層して、該上部障壁層の表面に静電
潜像が形成されるようにした非晶質シリコンを主体とす
る電子写真用感光体において、 前記上部障壁層はSi,H及びC原子を含んで形成され、 前記Si原子の濃度は前記電位保持層との界面で該電位保
持層の濃度とほぼ同じ濃度であると共に、前記表面の方
向に減少する分布を有し、かつ少なくとも該表面では零
であり、 前記H原子の濃度は前記電位保持層との界面で該電位保
持層の濃度とほぼ同じ濃度であると共に前記表面の方向
に増大する分布を有し、 前記C原子の濃度は前記電位保持層との界面で5%以下
であると共に前記表面の方向に増大する分布を有する ことを特徴とする電子写真用感光体。
1. A method according to claim 1, wherein a lower barrier layer, a potential holding layer,
An electrophotographic photosensitive member mainly composed of amorphous silicon in which an upper barrier layer is sequentially laminated so that an electrostatic latent image is formed on the surface of the upper barrier layer, wherein the upper barrier layer is formed of Si, H And the concentration of the Si atoms is approximately the same as the concentration of the potential holding layer at the interface with the potential holding layer, and has a distribution that decreases in the direction of the surface, and At least on the surface, the concentration of the H atoms is approximately the same as the concentration of the potential holding layer at the interface with the potential holding layer, and has a distribution that increases in the direction of the surface; The electrophotographic photoreceptor according to claim 1, wherein the concentration at the interface with the potential holding layer is 5% or less and the concentration increases in the direction of the surface.
JP62263670A 1987-10-21 1987-10-21 Electrophotographic photoreceptor Expired - Fee Related JP2603485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263670A JP2603485B2 (en) 1987-10-21 1987-10-21 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263670A JP2603485B2 (en) 1987-10-21 1987-10-21 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01107268A JPH01107268A (en) 1989-04-25
JP2603485B2 true JP2603485B2 (en) 1997-04-23

Family

ID=17392711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263670A Expired - Fee Related JP2603485B2 (en) 1987-10-21 1987-10-21 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2603485B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130954A (en) * 1984-11-30 1986-06-18 Toshiba Corp Photoconductive material
JPS61219962A (en) * 1985-03-26 1986-09-30 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62113155A (en) * 1985-11-13 1987-05-25 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62141564A (en) * 1985-12-16 1987-06-25 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62170968A (en) * 1986-01-23 1987-07-28 Hitachi Ltd Amorphous silicon electrophotographic sensitive body and its production
JPH0713744B2 (en) * 1986-02-06 1995-02-15 キヤノン株式会社 Photoreceptive member for electrophotography
JPS62203164A (en) * 1986-03-03 1987-09-07 Kobe Steel Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH01107268A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
JP2603485B2 (en) Electrophotographic photoreceptor
JPS6083957A (en) Electrophotographic sensitive body
JPH0212157A (en) Electrophotographic sensitive body
JPS6363051A (en) Electrophotographic sensitive body
JPS6161106B2 (en)
JPH0212159A (en) Electrophotographic sensitive body
JPH0233148B2 (en)
JPH0233144B2 (en) DENSHISHASHIN KANKOTAI
JPH0234020B2 (en) DENSHISHASHIN KANKOTAI
JPH0234019B2 (en) DENSHISHASHIN KANKOTAI
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JPS60213021A (en) Formation of amorphous film
JPH0212158A (en) Electrophotographic sensitive body
JPS59212840A (en) Photosensitive body
JPS6048047A (en) Photosensitive body
JPH0233145B2 (en) DENSHISHASHIN KANKOTAI
JPS6314164A (en) Electrophotographic sensitive body
JPS61128252A (en) Photoconductive member
JPS62211660A (en) Photosensitive body
JPH0511305B2 (en)
JPS60235153A (en) Photosensitive body
JPH0458016B2 (en)
JPS6048045A (en) Photosensitive body
JPH0256661B2 (en)
JPS5967552A (en) Recording body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees