JPH01107268A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01107268A
JPH01107268A JP26367087A JP26367087A JPH01107268A JP H01107268 A JPH01107268 A JP H01107268A JP 26367087 A JP26367087 A JP 26367087A JP 26367087 A JP26367087 A JP 26367087A JP H01107268 A JPH01107268 A JP H01107268A
Authority
JP
Japan
Prior art keywords
atoms
concn
barrier layer
upper barrier
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26367087A
Other languages
Japanese (ja)
Other versions
JP2603485B2 (en
Inventor
Masaru Wakatabe
勝 若田部
Osamu Ogino
修 荻野
Mitsuru Takei
満 武井
Tetsushi Shiozawa
塩沢 哲史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, Yamanashi Electronics Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP62263670A priority Critical patent/JP2603485B2/en
Publication of JPH01107268A publication Critical patent/JPH01107268A/en
Application granted granted Critical
Publication of JP2603485B2 publication Critical patent/JP2603485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve durability of characteristics against the change of environment and photosensitive characteristics of an electrophotographic sensitive body by reducing the concn. of Si atoms on an uppermost surface of an upper barrier layer which is susceptible to the influence of water, and at the depth near the uppermost surface to zero concn. or to an allowably low concn. CONSTITUTION:Concentrations of Si atoms and H atoms forming an upper barrier layer 4 are held at an almost same concentration as the concn. of a charge maintaining layer 3 at an interface between the charge maintaining layer 3, and the concn. of C atoms is held at <=0.1%. Also, the Si atoms are distributed to decrease toward the uppermost surface, and H atoms and C atoms are distributed to increase toward the same direction, wherein the atomic concn. of Si atoms is adjusted to <=0.1% at the uppermost surface. Thus, the decrease of charged potential due to discontinuity of concn. at the interface between the charge maintaining layer 3 and the upper barrier layer 4, and the increase of residual potential are kept at small values. By this constitution, the characteristics of an electrophotographic sensitive body against the change of environment, wherein the electrophotographic sensitive body is to be used, and the photosensitive characteristic thereof are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非晶質シリコンを主体とする電子写真感光体、
特にその使用環境特性の向上に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an electrophotographic photoreceptor mainly made of amorphous silicon;
In particular, it relates to improvements in its use environment characteristics.

(従来技術) 非晶質シリコンを主体とする従来の電子写真感光体、例
えば正帯電型感光体は、第1図に示すように導電性基体
(1)とこの上に順次積層して形成された下部障壁層(
2)と電位保持層(3)及び上部障壁層(4)とから形
成され、導電性基体(1)を除く各層は次のように形成
されるのが一般的である。即ち下部障壁層(2)は第2
図のように厚さ方向における原子濃度分布をそれぞれ均
一とした非晶質のSi、 H。
(Prior Art) Conventional electrophotographic photoreceptors mainly made of amorphous silicon, such as positively charged photoreceptors, are formed by sequentially laminating a conductive substrate (1) and a conductive substrate (1) on this as shown in FIG. lower barrier layer (
2), a potential holding layer (3), and an upper barrier layer (4), and each layer except for the conductive substrate (1) is generally formed as follows. That is, the lower barrier layer (2)
As shown in the figure, amorphous Si and H have uniform atomic concentration distribution in the thickness direction.

B、O,Nから形成されて約50人〜10μm厚さの強
いP形導電性をもつように作られ、導電性基体(1)か
ら注入される電子が電位保持層(3)更にはその上部の
障壁層(4)に到達するのを防止する。また電位保持層
(3)は第2図のように厚さ方向における原子濃度分布
をそれぞれ均一とした非晶質StとHlBを主体とする
、暗抵抗ρ。が1011〜1016Ω・Ω(光照射時1
04〜1010Ω・cm)の光導電性をもち、しかも暗
時において約500〜1500Vの電位を保持できるよ
うに作られる。また上部障壁層(4)は500人〜5μ
m厚さを有し、かつ第2図のように厚さ方向における原
子濃度分布がそれぞれ均一である非晶質のStとC及び
Hを主体として形成され、正帯電電荷が電位保持層(3
)に注入されるのを阻止できるように正札に対して高い
エネルギ的障壁をもつように作られる。
It is made of B, O, and N to have a strong P-type conductivity with a thickness of approximately 50 to 10 μm, and electrons injected from the conductive substrate (1) are transferred to the potential holding layer (3) and further to its potential holding layer (3). Preventing it from reaching the upper barrier layer (4). The potential holding layer (3) has a dark resistance ρ mainly composed of amorphous St and HlB with uniform atomic concentration distribution in the thickness direction, as shown in FIG. is 1011 to 1016Ω・Ω (1 when irradiated with light)
It has a photoconductivity of 04 to 1010 Ω·cm) and is made to be able to maintain a potential of about 500 to 1500 V in the dark. In addition, the upper barrier layer (4) has a thickness of 500 to 5μ
m thickness, and is formed mainly of amorphous St, C, and H, each having a uniform atomic concentration distribution in the thickness direction as shown in FIG.
) is made to have a high energy barrier to the genuine bill to prevent it from being injected.

(従来技術とその問題点) しかし上記のような従来の感光体は、一般に使用環境に
おける温度が高くなればなる程原画の再現性を悪化して
鮮明度を欠くようになる。例えば次の第1表のような感
光特性を持たせたものにおけるコピーサイクルテストの
結果では、室温25°C1相対湿度50%では50万枚
コピーサイクルテスト後においても正常画像が得られる
。しかし室温25℃、相対湿度が95%では50万枚コ
ピーサイクルテスト後原画の再現性は全くなくなり所謂
検流れとなる。
(Prior Art and Its Problems) However, in the conventional photoreceptor as described above, the higher the temperature in the environment in which it is used, the worse the reproducibility of the original image becomes and the sharpness becomes less clear. For example, according to the results of a copy cycle test on a product having photosensitive characteristics as shown in Table 1 below, normal images can be obtained even after a 500,000 copy cycle test at a room temperature of 25° C. and a relative humidity of 50%. However, at a room temperature of 25° C. and a relative humidity of 95%, the reproducibility of the original image disappears at all after the 500,000 copy cycle test, resulting in a so-called test failure.

しかも従来の感光体においては上部障壁層(4)と電位
保持層(3)を形成するSiとHの濃度は両者の界面に
おいてそれぞれ不連続であり、特にC原子が電位保持N
(3)において5%以下(図では少量であるため図示で
きない)であるのに比べて、上部障壁層側においては界
面から約0〜100人の層厚内において30〜95%に
急激に濃度が変化する。このことは上部障壁層(4)と
電位保持層(3)との間の光学的エネルギーギャップの
差が大きく、微視的結晶構造の格子不整合が大きい界面
構造となっていることを示しており、これにもとづく界
面準位の増大によって帯電電位が低くなり、残留電位が
大となって感光特性を劣化させていることを示し、感光
特性において改善の余地のあることを示している。
Moreover, in the conventional photoreceptor, the concentrations of Si and H forming the upper barrier layer (4) and the potential holding layer (3) are discontinuous at the interface between the two, and in particular, the concentration of C atoms in the potential holding layer (3) is discontinuous.
In (3), the concentration is less than 5% (not shown in the figure because it is a small amount), but on the upper barrier layer side, the concentration rapidly increases to 30 to 95% within a layer thickness of about 0 to 100 layers from the interface. changes. This indicates that there is a large difference in the optical energy gap between the upper barrier layer (4) and the potential holding layer (3), resulting in an interface structure with a large lattice mismatch in the microscopic crystal structure. This indicates that the charging potential decreases due to the increase in the interface state based on this, and the residual potential increases, deteriorating the photosensitive characteristics, indicating that there is room for improvement in the photosensitive characteristics.

第    1    表 (発明の目的) 本発明は使用環境特性の向上と併せて、帯電電位の上昇
や残留電位の低下など、感光特性をも従来より向上させ
た非晶質シリコン主体とする電子写真用感光体の提供を
目的としてなされたものである。以下に図面を用いて本
発明の詳細な説明する。
Table 1 (Object of the Invention) The present invention provides an electrophotographic product mainly made of amorphous silicon that has improved photosensitive properties such as an increase in charging potential and a decrease in residual potential, as well as improved usage environment characteristics. This was done for the purpose of providing photoreceptors. The present invention will be described in detail below using the drawings.

(問題点を解決するための本発明の手段)本発明者は前
記の如き検流れの現像について種々検討を行ったところ
、その原因が次に述べる点にあることを明らかにした。
(Means of the Invention for Solving the Problems) The inventors of the present invention have conducted various studies on the development of the above-mentioned flow test, and have found that the cause thereof lies in the following points.

即ち従来の感光体においては、第2図によって前記した
ように、上部障壁層(4)におけるSi原子の濃度分布
は厚み方向において均一であって最表面にSi原子が露
呈している。
That is, in the conventional photoreceptor, as described above with reference to FIG. 2, the concentration distribution of Si atoms in the upper barrier layer (4) is uniform in the thickness direction, and Si atoms are exposed at the outermost surface.

このためコピーの都度行われる帯電用の正コロナ放電に
曝される最表面のStは吸湿性が高く、しかもトナー接
触、紙接触その他の機械的、化学的。
Therefore, the outermost surface of St, which is exposed to the positive corona discharge for charging performed each time copying, has high hygroscopicity, and is also susceptible to toner contact, paper contact, and other mechanical and chemical influences.

物理的刺激に劣るSiOx表面に変化させられる。従っ
て前記したように相対湿度が95%のような高湿度下に
おいては、最表面に吸着した水分と雰囲気中のNOx等
のイオン成分などにより通常101〜10′thΩ・1
である横方向抵抗を10”Ω・cm以下に劣化させる。
It is transformed into a SiOx surface which is inferior to physical stimulation. Therefore, as mentioned above, under high humidity conditions such as relative humidity of 95%, the moisture adsorbed on the outermost surface and ionic components such as NOx in the atmosphere will normally cause the
The lateral resistance is reduced to below 10''Ω·cm.

このため正コロナ放電による正帯電後の原画の静電電荷
潜像を、最表面の低抵抗領域を通して横方向へ拡がらせ
ることになり、その結果検流れとなり原画の再現性を失
うことが明らかにされた。
For this reason, it is clear that the electrostatic charge latent image of the original image after being positively charged by positive corona discharge will be spread laterally through the low resistance region on the outermost surface, resulting in counterflow and loss of reproducibility of the original image. was made into

本発明は以上の検討結果から使用環境特性の向上のため
には、水分の影響を受は易い上部障壁層の最表面及びそ
の近傍深さにおけるSi原子の濃度を零または支障のな
い程度に低下させればよいことを着想してなされたもの
で、本発明は第3図に示す断面構造図(第1図、第2図
と同一符号部分は同等部分を示す)のような構成とした
ことを特徴とするものである。
Based on the above study results, the present invention aims to reduce the concentration of Si atoms at the outermost surface of the upper barrier layer, which is easily affected by moisture, and at the depth in the vicinity thereof to zero or to a level that does not cause any problem, in order to improve the usage environment characteristics. The present invention was conceived based on the idea that it would be better to do so, and the present invention has a structure as shown in the cross-sectional structural diagram shown in FIG. 3 (the same reference numerals as in FIGS. It is characterized by:

即ち第1には上部障壁層(4)におけるSi原子の濃度
を、電位保持層(3)との界面から表面方向に向けて漸
減させて、例えば最表面において0.1%以下の低濃度
とすると共に、C原子の濃度を電位保持層(3)との界
面においては例えば5%以下、最表面において95〜3
0%となるように表面方向に向けて濃度を増大した分布
とする。しかもこれに加えてC原子の濃度の増大によっ
て増大する5i−C,C−C結合の未結合の不対電子(
ダングリングボンドDANGLING BOND)によ
るトラップセンタの数の増大を防止するため、H原子の
濃度を上部障壁層(4)の最表面から例えば500〜1
0μm厚内において最高濃度で均一か、または最表面に
向かって増し続ける分布状態になるようにして、最表面
におけるHの濃度を例えば15〜50%としてH原子を
ダングリングボンドに結合させて電気的に不活化させる
That is, first, the concentration of Si atoms in the upper barrier layer (4) is gradually decreased from the interface with the potential holding layer (3) toward the surface, to a low concentration of 0.1% or less at the outermost surface, for example. At the same time, the concentration of C atoms is, for example, 5% or less at the interface with the potential holding layer (3), and 95 to 3% at the outermost surface.
The distribution is such that the concentration increases toward the surface so that it becomes 0%. Moreover, in addition to this, the unbonded unpaired electrons of the 5i-C and C-C bonds (
In order to prevent an increase in the number of trap centers due to dangling bonds (DANGLING BOND), the concentration of H atoms is, for example, 500 to 1 from the outermost surface of the upper barrier layer (4).
Electricity is generated by bonding H atoms to dangling bonds by setting the concentration of H at the outermost surface to, for example, 15 to 50%, so that the concentration is uniform at the highest concentration within a thickness of 0 μm, or the distribution continues to increase toward the outermost surface. inactivate it.

そして以上によりC/Si比をH原子によりダングリン
グボンドの不活性化を図りながら増大させて光学的エネ
ルギーギャップの増大を図り、これによりSi原子濃度
が上記のように0.1%以下となる上部障壁N(4)の
最表面が事実上非晶質炭素膜としての性質、即ち光学的
エネルギーギヤーツブBgがEg≧2、OeV、暗抵抗
ρ。がρ。≧10′3Ω・lを呈するようにする。そし
てコロナ放電により水分を吸着し易いSiOxとなるS
iが表面に存在しないようにして、相対湿度が95%の
ような高湿度の条件下におけるコピーサイクルテストに
おいても、表面横方向抵抗ρDがρn≧1011Ω・c
m以下に劣化(従来構造では10日Ω・1以下に劣化)
しないようにして検流れを生じないようにしたものであ
る。またこれに加えて最表面をStより機械的、化学的
、物理的刺激に強い非晶質炭素膜とすることにより、ト
ナー接触9紙接触などの刺激に強い最表面を形成できる
ようにしたものである。
Then, by increasing the C/Si ratio while inactivating the dangling bonds with H atoms, the optical energy gap is increased, and thereby the Si atom concentration becomes 0.1% or less as described above. The outermost surface of the upper barrier N(4) is essentially an amorphous carbon film, that is, the optical energy gear Bg is Eg≧2, OeV, and the dark resistance ρ. is ρ. ≧10′3Ω·l. Then, due to corona discharge, S becomes SiOx, which easily absorbs moisture.
Even in a copy cycle test under high humidity conditions such as 95% relative humidity with no i present on the surface, the surface lateral resistance ρD was ρn≧1011Ω・c
Degraded to below m (conventional structure deteriorated to below 1Ω in 10 days)
This is to prevent the occurrence of a galvanic flow. In addition, by making the outermost surface an amorphous carbon film that is more resistant to mechanical, chemical, and physical stimuli than St, it is possible to form an outermost surface that is resistant to stimuli such as toner contact 9 paper contact. It is.

また第2には上部障壁層(4)におけるSi原子濃度の
減少分布とH原子濃度の増大分布が、電位保持層(3)
の界面における濃度と同一の濃度から緩やかにかつ連続
的に行われるようにした点にある。そしてこれにより界
面準位密度の低下を図って膜中における歪みの発生を少
なくして、第2図によって前記した従来の感光体におけ
るような、電位保持層(3)と上部障壁層(4)の界面
における濃度の不連続にもとづく帯電電位の低下と、残
留電位の増大を小さく押さえて、使用環境特性の向上と
併せて感光特性の向上を図ったものである。
Secondly, the decreasing distribution of the Si atom concentration in the upper barrier layer (4) and the increasing distribution of the H atom concentration in the potential holding layer (3)
The point is that the concentration is gradually and continuously started from the same concentration as the concentration at the interface. As a result, the interface state density is lowered to reduce the occurrence of distortion in the film, and the potential holding layer (3) and upper barrier layer (4) are reduced as in the conventional photoreceptor described above with reference to FIG. The reduction in charging potential due to discontinuity of concentration at the interface and the increase in residual potential are suppressed to a minimum, thereby improving the use environment characteristics and the photosensitivity characteristics.

勿論上部障壁M(4)の全体を非晶質炭素膜とすること
も考えられるが、これでは界面における電位保持層(3
)のSi原子濃度との大きな不連続を生ずることから、
帯電電位の低下など感光特性の劣化を招くので好ましく
ない。また最表面を含む一部を非晶質炭素膜とする場合
にも、例えば第3図中の点線のように最表面から深い位
置爽で非晶質炭素化が行われると、Si原子濃度の変化
が急激となって帯電電位の低下などを生ずる結果となる
ので、例えば上部障壁層(4)の厚さを500人〜5μ
mとした場合非晶質炭素膜化は最表面から100〜50
00人の範囲内とするのがよい。
Of course, it is also possible to make the entire upper barrier M (4) an amorphous carbon film, but in this case, the potential holding layer (3) at the interface
), which causes a large discontinuity with the Si atom concentration.
This is not preferable because it causes deterioration of photosensitive characteristics such as a decrease in charging potential. Furthermore, even when a portion including the outermost surface is formed into an amorphous carbon film, if amorphous carbonization is performed at a deep position from the outermost surface as shown by the dotted line in Fig. 3, the Si atomic concentration will decrease. Since the change becomes rapid and results in a drop in the charging potential, for example, the thickness of the upper barrier layer (4) should be set to 500 to 5 μm.
m, the formation of an amorphous carbon film is from 100 to 50 m from the outermost surface.
It is recommended that the number be within the range of 00 people.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例) 第2表は第4図に示す高周波グロー放電CVD法による
反応装置を用いて作られた感光体の特性を示すものであ
る。反応チャンバ(5)内にモータ(6)により約1O
r、p、mで回転され、かつ内部加熱装置(7)により
基体(1)を300″C±2°Cで加熱できるようにし
た基体ホルダ(8)に、外径100 vm、長さ300
 mmのアルミニウム製円筒状導電性基体(1)を装着
する。
(Example) Table 2 shows the characteristics of a photoreceptor produced using the reaction apparatus according to the high frequency glow discharge CVD method shown in FIG. Approximately 1O is placed in the reaction chamber (5) by the motor (6).
A substrate holder (8) rotated at r, p, m and capable of heating the substrate (1) to 300"C ± 2°C by means of an internal heating device (7) has an outer diameter of 100 vm and a length of 300".
A cylindrical conductive substrate (1) made of aluminum and having a diameter of 1 mm is attached.

そして基体(1)と約5cmの同心的距離を置いて対向
配置され、13.5MHzの高周波電源(9)((9a
)は発振器、(9b)はマツチング調整器)が接続され
た対向電極0ωの表面に均一に設けた図示しない多数の
吹出穴により、高圧ボンベ(11a011b)(llb
) (llc) (lid)から減圧され、マスフロー
コントローラQ21 ニよす流量が精密に調整された5
iHa、 Ih+ BzHb/l(z + CJzなど
の必要なガスを、圧力調整バルブ(13a) 、メカニ
カルブースターポンプ(13b) 、回転ポンプ(13
c)により排気されてガス圧力が常に一定に調整される
反応チャンバ(5)内に送り込む。そして第3表に示す
流量、圧力、高周波出力、堆積時間などの条件及び従来
と同一要領により導電性基体(1)上に第3図のように
3pm厚のSi、H,B、0゜Nからなる下部障壁層(
2)を形成したのち、更にこの上に20μm厚のSi、
 H,Bよりなる電位保持層(3)を形成する。そして
最後にその上に最初電位保持層(3)の原子組成比に一
致させてSi、 H,C原子を堆積させ、引続き厚さ方
向にSi原子が減少方向。
A 13.5 MHz high frequency power source (9) ((9a
) is an oscillator and (9b) is a matching adjuster) is connected to a high pressure cylinder (11a011b) (llb
) (llc) (lid), and the mass flow controller Q21 Niyosu flow rate is precisely adjusted 5
Necessary gases such as iHa, Ih+ BzHb/l (z + CJz) are supplied using the pressure adjustment valve (13a), mechanical booster pump (13b), and rotary pump (13
c) into a reaction chamber (5) which is evacuated and whose gas pressure is constantly regulated. Then, under the conditions such as flow rate, pressure, high frequency output, deposition time, etc. shown in Table 3 and in the same manner as before, Si, H, B, 0°N with a thickness of 3 pm was deposited on the conductive substrate (1) as shown in Fig. 3. A lower barrier layer consisting of (
After forming 2), 20 μm thick Si,
A potential holding layer (3) made of H and B is formed. Finally, Si, H, and C atoms are deposited on top of it in a manner that matches the atomic composition ratio of the potential holding layer (3), and then the Si atoms decrease in the thickness direction.

H及びC原子が増大方向となるように濃度を分布させて
3000人厚の上部障壁層(4)を形成する。
An upper barrier layer (4) having a thickness of 3,000 layers is formed by distributing the concentration of H and C atoms in an increasing direction.

第    3    表 従来の感光体の感光特性と本発明のそれを示す第1表と
第2表とを対比して明らかなように、本発明による感光
体は帯電電位において従来のものより約40%上昇し、
残留電圧も約50%低下して、感光特性においてすぐれ
たものが得られることを示している。しかも室温25°
C相対湿度95%における50万枚コピーサイクルテス
トの結果によれば従来のものが検流れとなるに対し、本
発明では原画の再現が良好に行われて高解像度の鮮明な
画像が得られることが確かめられた。
Table 3: As is clear from a comparison of Tables 1 and 2, which show the photosensitive characteristics of the conventional photoreceptor and those of the present invention, the photoreceptor according to the present invention has a charging potential of approximately 40% higher than that of the conventional photoreceptor. rise,
The residual voltage was also reduced by about 50%, indicating that excellent photosensitivity characteristics could be obtained. Moreover, the room temperature is 25°
According to the results of a 500,000-sheet copy cycle test at 95% relative humidity, the present invention reproduces the original image well and obtains clear images with high resolution, whereas the conventional method results in galvanometric flow. was confirmed.

(発明の効果) 以上から明らかなように本発明によれば、電子写真用感
光体において非常に重要な役割を果たす上部障壁層が要
求される特性、即ち ■ 電位保持層との界面において形成する格子定数の差
を原因とする界面準位はなるべく小さく、界面トラップ
書度が低いこと。
(Effects of the Invention) As is clear from the above, according to the present invention, the upper barrier layer, which plays a very important role in electrophotographic photoreceptors, has the required characteristics, namely: (1) Formation at the interface with the potential holding layer; The interface states caused by the difference in lattice constants should be as small as possible, and the interface trap density should be low.

■ 上部障壁層として表面帯電電荷の伝導性が小さい高
抵抗物質であること(ρゎ≧IQIIΩ・cm)。
■ The upper barrier layer should be a high-resistance material with low surface charge conductivity (ρゎ≧IQIIΩ·cm).

■ 感光体の窓物質として長波長光800nmを吸収し
ない大きな光学的エネルギーギャップをもっていること
■ As a window material for the photoreceptor, it must have a large optical energy gap that does not absorb long wavelength light of 800 nm.

■ 表面帯電電荷に対し横方向抵抗が高く(ρ。■ High lateral resistance to surface charges (ρ).

≧10I3Ω・cm)、シかも使用環境条件においても
高い横方向抵抗を維持しうること。
≧10I3Ω・cm), it is possible to maintain high lateral resistance even under the operating environment conditions.

■ コロナ放電、トナー接触、紙接触9強い光照射等の
機械的、化学的、物理的刺激にも感光特性の劣化が少な
く長寿命であること。
■ It should have a long life with little deterioration in photosensitivity against mechanical, chemical, and physical stimuli such as corona discharge, toner contact, and paper contact.9 Strong light irradiation.

などの要求をほぼ満足させうる上部障壁層をもつ電子写
真用感光体、従って使用環境特性と感光特性などにすぐ
れた非晶質シリコンを主体とする電子写真用感光体を提
供できる。
It is possible to provide an electrophotographic photoreceptor having an upper barrier layer that can substantially satisfy the above requirements, and therefore an electrophotographic photoreceptor mainly made of amorphous silicon that has excellent usage environment characteristics and photosensitive characteristics.

なお以上においては正帯電型感光体を例にとって説明し
たが、本発明は負帯電型の感光体にも適用して同様な効
果を得ることができる。また実施例においては高周波グ
ロー放電CVD法を用いたが、スパッタ法、マイクロ波
CVD法、直流放電CVO法等従来公知の種々の製造方
法を用いることができる。
Although the above description has been made using a positively charged photoreceptor as an example, the present invention can also be applied to a negatively charged photoreceptor to obtain similar effects. Further, in the embodiment, a high frequency glow discharge CVD method was used, but various conventionally known manufacturing methods such as a sputtering method, a microwave CVD method, a direct current discharge CVO method, etc. can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の感光体の構造断面図、第3図は
本発明感光体の構造断面図、第4図は感光体の製作に使
用される反応装置例図である。 (1)・・・導電性基板、(2)・・・下部障壁層、(
3)・・・電位保持層、(4)・・・上部障壁層、(5
)・・・反応チャンバ、(6)・・・モータ、(7)・
・・加熱装置、(8)・・・基体ホルダ、(9)・・・
高周波電源、(9a)・・・発振器、(9b)・・・マ
ツチング調整器、Q(1) ・・・対向電極、(lla
) (llb) (llc)(lid)・・・高圧カス
ボンベ、02)・・・マスフローコン゛トローラ、(1
3a)・・・圧力調整バルブ、(13b)・・・メカニ
カルブースタポンプ、(13c)・・・回転ポンプ。 特許出願人  新電元工業株式会社 外1名
1 and 2 are structural cross-sectional views of a conventional photoreceptor, FIG. 3 is a structural cross-sectional view of the photoreceptor of the present invention, and FIG. 4 is an example of a reaction apparatus used for manufacturing the photoreceptor. (1)... Conductive substrate, (2)... Lower barrier layer, (
3)... Potential holding layer, (4)... Upper barrier layer, (5
)...Reaction chamber, (6)...Motor, (7)...
... Heating device, (8) ... Substrate holder, (9) ...
High frequency power supply, (9a)... Oscillator, (9b)... Matching adjuster, Q(1)... Counter electrode, (lla
) (llb) (llc) (lid)...High pressure gas cylinder, 02)...Mass flow controller, (1
3a)...Pressure adjustment valve, (13b)...Mechanical booster pump, (13c)...Rotary pump. Patent applicant: 1 person other than Shindengen Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性基体上に下部障壁層、電位保持層、上部障
壁層を順次積層してなる非晶質シリコンを主体とする電
子写真用感光体において、上部障壁層を形成するSi及
びH原子の濃度を電位保持層との界面において電位保持
層とほぼ同濃度、C原子を0.1%以下の濃度とすると
共に、Si原子が最表面方向に減少分布、H及びC原子
が増大分布し、かつSi原子が最表面において0.1%
以下の原子濃度となるようにしたことを特徴とする電子
写真用感光体。
(1) In an electrophotographic photoreceptor mainly made of amorphous silicon, in which a lower barrier layer, a potential holding layer, and an upper barrier layer are sequentially laminated on a conductive substrate, Si and H atoms forming the upper barrier layer At the interface with the potential holding layer, the concentration of C atoms is set to be approximately the same concentration as that of the potential holding layer, and the concentration of C atoms is set to 0.1% or less, and the distribution of Si atoms decreases toward the outermost surface, and the distribution of H and C atoms increases. , and Si atoms are 0.1% on the outermost surface.
A photoreceptor for electrophotography, characterized in that the atomic concentration is as follows.
JP62263670A 1987-10-21 1987-10-21 Electrophotographic photoreceptor Expired - Fee Related JP2603485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263670A JP2603485B2 (en) 1987-10-21 1987-10-21 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263670A JP2603485B2 (en) 1987-10-21 1987-10-21 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01107268A true JPH01107268A (en) 1989-04-25
JP2603485B2 JP2603485B2 (en) 1997-04-23

Family

ID=17392711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263670A Expired - Fee Related JP2603485B2 (en) 1987-10-21 1987-10-21 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2603485B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130954A (en) * 1984-11-30 1986-06-18 Toshiba Corp Photoconductive material
JPS61219962A (en) * 1985-03-26 1986-09-30 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62113155A (en) * 1985-11-13 1987-05-25 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62141564A (en) * 1985-12-16 1987-06-25 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62170968A (en) * 1986-01-23 1987-07-28 Hitachi Ltd Amorphous silicon electrophotographic sensitive body and its production
JPS62182751A (en) * 1986-02-06 1987-08-11 Canon Inc Electrophotographic light receptive member
JPS62203164A (en) * 1986-03-03 1987-09-07 Kobe Steel Ltd Electrophotographic sensitive body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130954A (en) * 1984-11-30 1986-06-18 Toshiba Corp Photoconductive material
JPS61219962A (en) * 1985-03-26 1986-09-30 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62113155A (en) * 1985-11-13 1987-05-25 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62141564A (en) * 1985-12-16 1987-06-25 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS62170968A (en) * 1986-01-23 1987-07-28 Hitachi Ltd Amorphous silicon electrophotographic sensitive body and its production
JPS62182751A (en) * 1986-02-06 1987-08-11 Canon Inc Electrophotographic light receptive member
JPS62203164A (en) * 1986-03-03 1987-09-07 Kobe Steel Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JP2603485B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US4489149A (en) Electrophotographic amorphous silicon member
JPH021303B2 (en)
JPS649623B2 (en)
JPH0212157A (en) Electrophotographic sensitive body
JPH01107268A (en) Electrophotographic sensitive body
JPS6363051A (en) Electrophotographic sensitive body
JPS585749A (en) Photoreceptor
JPH0212159A (en) Electrophotographic sensitive body
JP2508654B2 (en) Electrophotographic photoreceptor
JPH0233144B2 (en) DENSHISHASHIN KANKOTAI
JPH0810332B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH0212158A (en) Electrophotographic sensitive body
JPH0241023B2 (en)
JPH0234020B2 (en) DENSHISHASHIN KANKOTAI
JPH0234019B2 (en) DENSHISHASHIN KANKOTAI
JPH021302B2 (en)
JPS60144751A (en) Electrophotographic sensitive body
JPS61128252A (en) Photoconductive member
JPS61182052A (en) Photosensitive body and copying method using it
JPS60213021A (en) Formation of amorphous film
JPS60112047A (en) Photoconductive member
JPH0334060B2 (en)
JPH0350264B2 (en)
JPH0256661B2 (en)
JPS5828751A (en) Manufacture of photoconductive material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees