JP2602621B2 - Electropolishing method for stainless steel members - Google Patents

Electropolishing method for stainless steel members

Info

Publication number
JP2602621B2
JP2602621B2 JP5329465A JP32946593A JP2602621B2 JP 2602621 B2 JP2602621 B2 JP 2602621B2 JP 5329465 A JP5329465 A JP 5329465A JP 32946593 A JP32946593 A JP 32946593A JP 2602621 B2 JP2602621 B2 JP 2602621B2
Authority
JP
Japan
Prior art keywords
stainless steel
electrolytic
polishing
electrolyte
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5329465A
Other languages
Japanese (ja)
Other versions
JPH07185941A (en
Inventor
重雄 清水
崇晴 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5329465A priority Critical patent/JP2602621B2/en
Publication of JPH07185941A publication Critical patent/JPH07185941A/en
Application granted granted Critical
Publication of JP2602621B2 publication Critical patent/JP2602621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐食性、耐熱性の他、
各種機能性表面が要求される構成部材として用いられる
ステンレス鋼部材の電解表面加工または研磨面の作製方
法に関する。
The present invention relates to corrosion resistance, heat resistance,
The present invention relates to a method for producing an electrolytic surface treatment or a polished surface of a stainless steel member used as a constituent member requiring various functional surfaces.

【0002】[0002]

【従来の技術】電解加工は電気化学反応を利用した加工
方法であり、電気化学反応においては電気的エネルギー
が関与するため、化学反応に比べ反応を制御することが
容易となり、したがって反応速度を速くすることができ
るので、加工速度が早い。
2. Description of the Related Art Electrochemical processing is a processing method utilizing an electrochemical reaction. Since the electrochemical reaction involves electric energy, it is easier to control the reaction than in the case of a chemical reaction. Processing speed is fast.

【0003】この電解加工は、他の特殊加工と同様に、
機械加工が困難な材料の加工に対処するために開発され
たもので、電解加工の利点は、材料の硬さに関係無く殆
どの金属を加工することができ、しかも複雑な形状を一
工程で加工できること、工具の消耗が無いこと、加工変
質層を残さないことなどである。しかし、欠点として
は、装置が大型でかつ高価になることと、腐食作用のあ
る電解液を取り扱わなければならないことである。
[0003] This electrolytic processing, like other special processing,
Developed to deal with difficult-to-machine materials, the advantage of electrolytic machining is that most metals can be processed regardless of the hardness of the material, and complex shapes can be processed in one step. That it can be machined, that there is no wear of the tool, and that no damaged layer is left. The disadvantages, however, are that the device is large and expensive, and that a corrosive electrolyte must be handled.

【0004】この電解加工方法においては、工具電極と
工作物とを接近して対向させ、その間に電解液(NaC
l,NaNO3 水溶液など)を高速で流しながら、工具
電極を陰極に、工作物を陽極にして直流電流を流すと、
工作物の工具電極に対面した部分は電解作用によって溶
出を始める。工作物の溶出量に応じて工具電極を送り込
んで行くことによって、工具電極を雄形とする雌形が工
作物に加工されることになる。なお、溶出した金属イオ
ンは電解液中で酸化されてコロイド状の酸化物または水
酸化物となり、スラッジとして除去される。
In this electrolytic machining method, a tool electrode and a workpiece are brought close to each other, and an electrolytic solution (NaC
1, NaNO 3 aqueous solution) at a high speed, and a DC current is applied with the tool electrode as the cathode and the workpiece as the anode.
The part of the workpiece facing the tool electrode begins to elute due to the electrolytic action. By feeding the tool electrode in accordance with the elution amount of the workpiece, a female shape having the male tool electrode is processed into the workpiece. The eluted metal ions are oxidized in the electrolytic solution to form colloidal oxides or hydroxides, which are removed as sludge.

【0005】また、電解加工においては、通常、加工電
圧を定電圧(電源電圧:5〜20V)に設定し、工具電
極は定速送りによって加工が行われる。正常な加工にお
いては、加工間隔に自己調節作用が働き、加工間隔がほ
ぼ一定に保たれるので、定常状態における工作物の溶出
速度は、工具電極の送り速度に等しくなり、溶出速度は
ファラデーの法則に従って加工電流密度に比例する。実
際には、溶出する成分金属の溶出価数が不明のため、電
気化学当量を確定できない場合が多く、逆に溶出速度か
ら合金成分金属の溶出価数が推定されている。
[0005] In electrolytic machining, usually, the machining voltage is set to a constant voltage (power supply voltage: 5 to 20 V), and the machining of the tool electrode is performed by constant speed feed. In normal machining, a self-adjusting action is applied to the machining interval, and the machining interval is kept almost constant.The elution speed of the workpiece in the steady state is equal to the feed speed of the tool electrode, and the elution speed is the Faraday It is proportional to the machining current density according to the law. Actually, since the elution valence of the eluting component metal is unknown, the electrochemical equivalent cannot be determined in many cases. Conversely, the elution valence of the alloy component metal is estimated from the elution speed.

【0006】ところで、電解加工液として必要な条件
は、適当な大きさの比電導率を有し、工具電極に電着を
起こすこと無く工作物を高い電流効率で加工でき、良好
な加工面性状が得られることである。
[0006] By the way, the conditions required as an electrolytic machining liquid are that the workpiece has an appropriate specific conductivity, can work a workpiece with high current efficiency without causing electrodeposition on a tool electrode, and has good surface properties. Is obtained.

【0007】例えば、鉄系材料に対する電解加工液とし
ては、塩化ナトリウム(NaCl)、硝酸ナトリウム
(NaNO3 )、塩素酸ナトリウム(NaClO3 )な
どの水溶液が知られている。
For example, as an electrolytic processing liquid for an iron-based material, an aqueous solution of sodium chloride (NaCl), sodium nitrate (NaNO 3 ), sodium chlorate (NaClO 3 ) or the like is known.

【0008】[0008]

【発明が解決しようとする課題】上記塩化ナトリウム電
解液は腐食作用が強く、加工精度は劣るが、早い加工速
度が得られ、またクロム含有率の高い合金鋼(ステンレ
ス鋼)を加工する場合でも、クロムは取扱いやすい3価
クロムとして溶出するので、表面粗さがそれ程問題にな
らない分野では一部使用されているが、鏡面は得られな
い。
The above-mentioned sodium chloride electrolyte has a strong corrosive action and is inferior in processing accuracy, but can obtain a high processing speed and can be used even when processing alloy steel (stainless steel) having a high chromium content. Since chromium is eluted as trivalent chromium which is easy to handle, it is partially used in a field where the surface roughness is not so problematic, but a mirror surface cannot be obtained.

【0009】鏡面を得るには、腐食を抑える必要があ
り、塩化物水溶液に対する金属の防食法として、各種防
錆剤(インヒビター)を添加することが考えられ、大き
く無機系と有機系とに分けられる。
In order to obtain a mirror surface, it is necessary to suppress corrosion. As a method of preventing corrosion of a metal to a chloride aqueous solution, it is conceivable to add various rust inhibitors (inhibitors). Can be

【0010】無機系の代表に、酸化剤として金属に防食
酸化被膜を形成するクロム酸があるが、中性溶液では効
果が弱く、有害な6価クロムの問題がある。また、有機
系のものは吸着による防食膜を形成するが、絶縁作用に
より、電流効率が低下するという問題がある。
As a representative of the inorganic type, chromic acid, which forms an anticorrosive oxide film on a metal as an oxidizing agent, is ineffective in a neutral solution and has a problem of harmful hexavalent chromium. In addition, organic materials form an anticorrosive film by adsorption, but have a problem that current efficiency is reduced due to an insulating action.

【0011】また、硝酸ナトリウム電解液は塩化ナトリ
ウム電解液に比べて腐食作用は弱く、良好な加工精度が
得られることから最も多く使用されている。さらに、塩
素酸ナトリウム電解液は加工特性は優れているが、火災
の危険性が大きく現在ほとんど使用されていない。
The sodium nitrate electrolyte is most frequently used because it has a weaker corrosive action than the sodium chloride electrolyte and can provide good processing accuracy. Further, although sodium chlorate electrolyte has excellent processing characteristics, it has a high risk of fire and is hardly used at present.

【0012】ところで、硝酸ナトリウム、塩素酸ナトリ
ウム電解液でステンレス鋼を加工した場合の溶出価数を
調べた結果、クロム含有率の高い合金鋼を加工すると、
スラッジ中に、人体に有害な6価クロムが残留する場合
があり、したがって廃棄などの処理に問題がある。
As a result of examining the elution valence when stainless steel was processed with sodium nitrate and sodium chlorate electrolytes, when an alloy steel having a high chromium content was processed,
Hexavalent chromium which is harmful to the human body may remain in the sludge, and therefore, there is a problem in treatment such as disposal.

【0013】また、上記電解液の電流効率(単位電気量
当りの溶出量)を電流密度の関数で調べると、塩化ナト
リウム電解液では、電流効率は電流密度によらず、鉄が
2価の状態、クロムが3価の状態で溶出する理論電気化
学当量に近い高い効率値が得られる。
When the current efficiency (elution amount per unit amount of electricity) of the electrolytic solution is examined by a function of the current density, the current efficiency of the sodium chloride electrolytic solution does not depend on the current density, and iron is in a divalent state. Thus, a high efficiency value close to the theoretical electrochemical equivalent at which chromium is eluted in a trivalent state is obtained.

【0014】一方、硝酸ナトリウム、塩素酸ナトリウム
電解液では、低電流密度領域において、ステンレス鋼が
不働態化を起こしているため、電流は酸素発生に費やさ
れ、金属溶出の電流効率は低下する。しかし、高電流密
度では強い電場の作用により、不働態膜が破壊されて電
流効率が上昇するため、塩化ナトリウムと同じ程度の効
率となる。しかし、強い電場は3価の状態で溶出したク
ロムを酸化して、有害な6価のクロムに変えてしまうと
いう問題がある。
On the other hand, in the sodium nitrate and sodium chlorate electrolytes, the stainless steel is passivated in the low current density region, so that current is consumed for oxygen generation, and the current efficiency of metal elution decreases. . However, at a high current density, the effect of a strong electric field destroys the passive film and increases the current efficiency, so that the efficiency is about the same as that of sodium chloride. However, there is a problem that a strong electric field oxidizes chromium eluted in a trivalent state and converts it into harmful hexavalent chromium.

【0015】そこで、本発明はこうした技術的課題を解
決するためになされたものであって、その目的は表面平
滑性、耐食性に優れ、電解溶出するステンレス鋼の成分
のうちクロムが3価の無害な状態で溶出し、さらに高い
電流効率で加工できる作業性に優れた電解複合研磨方法
を提供することにある。
The present invention has been made in order to solve such technical problems, and has as its object the purpose of the present invention is to improve the surface smoothness and corrosion resistance, and to make chromium a trivalent harmless component among the stainless steel components which are electrolytically eluted. It is an object of the present invention to provide an electrolytic combined polishing method which can be eluted in a stable state and can be processed with higher current efficiency and excellent in workability.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するた
め、本発明のステンレス鋼部材の電解研磨方法は、1重
量%以上の塩化ナトリウム、塩化カリウム、塩化アンモ
ニウム塩の一種または二種以上を組み合わせたものに、
0.03〜0.5重量%のBTA(C6H4NHN2:ベンゾト
リアゾール)を添加した電解液を使用し、被処理材であ
るステンレス鋼部材を陽極にするとともに、陰極との間
に研磨砥粒を含む通水性不織布に上記電解液を流しなが
ら電解擦過する研磨方法である。
In order to solve the above-mentioned problems, an electropolishing method for a stainless steel member according to the present invention is characterized in that 1% by weight or more of one or more of sodium chloride, potassium chloride and ammonium chloride is combined. To
Using an electrolytic solution to which 0.03 to 0.5% by weight of BTA (C 6 H 4 NHN 2 : benzotriazole) is added, a stainless steel member as a material to be treated is used as an anode and between the cathode and the cathode. This is a polishing method in which electrolytic rubbing is performed while flowing the above-mentioned electrolytic solution through a water-permeable nonwoven fabric containing abrasive grains.

【0017】より詳細には、電解加工時にステンレス鋼
より溶出するクロムイオンを、電解液の組成と有機防錆
剤(BTA)および砥粒による吸着有機防錆剤の擦過除
去を組み合わせることで、クロムを無害な3価状態で溶
出させ、高い電流効率で耐食性、平滑性および表面の清
浄性に優れたステンレス鋼部材の電解複合加工または研
磨方法を提供するものである。
More specifically, chromium ions eluted from stainless steel during electrolytic processing can be combined with the composition of the electrolytic solution and the organic rust inhibitor (BTA) and abrasive particles to remove rubbing of the adsorbed organic rust inhibitor. Is dissolved in a harmless trivalent state, and a method for electrolytically complexing or polishing a stainless steel member having high current efficiency and excellent corrosion resistance, smoothness and surface cleanliness is provided.

【0018】[0018]

【作用】本発明は上記のように構成されるが、要する
に、電解研磨液に電流効率の優れた非酸化性中性塩に有
機防錆剤を添加調整した無公害中性塩溶液を使用するこ
とで、電解液とステンレス鋼の陽分極電流−電位特性か
ら高い電流効率で、しかも溶出した3価クロムを6価に
過剰酸化しないように、砥粒により表面に生成した吸着
有機絶縁膜を除去しながら研磨するものである。
The present invention is constituted as described above. In short, a non-polluting neutral salt solution prepared by adding an organic rust inhibitor to a non-oxidizing neutral salt having excellent current efficiency in an electropolishing liquid is used. This removes the adsorbed organic insulating film formed on the surface by abrasive grains so that the current efficiency is high due to the anodic polarization current-potential characteristics of the electrolyte and stainless steel, and the eluted trivalent chromium is not excessively oxidized to hexavalent. Polishing while polishing.

【0019】そして、本発明で適用する電解複合研磨方
法とは、電解により陽極となる被研磨金属を電解溶出さ
せるとともに、被研磨金属の表面凸部に形成された不働
態酸化被膜を研磨砥粒による擦過作用で研磨除去してそ
の鏡面を加工する方法で、研磨砥粒に一定以上の速度を
与えて研磨面を擦過すると同時に、不働態化型電解液を
介して数A/cm2 以下の電解電流密度で、研磨面に溶
出と酸化の陽極反応を発生させる研磨方法である。
The electrolytic combined polishing method applied in the present invention is to electrolytically elute a metal to be polished to be an anode by electrolysis and to remove the passive oxide film formed on the surface convex portion of the metal to be polished by abrasive grains. Is a method of polishing and removing the polishing surface by the rubbing action of the abrasive grain to process the mirror surface. At the same time, the polishing surface is rubbed by giving a certain speed or more to the abrasive grains, and at the same time, several A / cm 2 or less through the passivation type electrolytic solution. This is a polishing method that generates an anodic reaction of elution and oxidation on a polished surface at an electrolytic current density.

【0020】研磨する一例を述べると、#120〜#1
500のSiC系砥粒で初期表面粗さが5〜10μm
(Rmax)のSUS316L部材を研磨する場合、不
働態型電解液に20重量%のNaNO3 水溶液を使用す
るとともに、電解電流密度を0〜5A/cm2 の範囲で
変化させて研磨した結果、粗さが1μm(Rmax)以
下の部材表面が得られた。
One example of polishing is as follows: # 120- # 1
500 SiC-based abrasives with an initial surface roughness of 5-10 μm
When polishing a SUS316L member of (Rmax), a 20 wt% aqueous solution of NaNO 3 was used as a passive electrolyte and the electrolytic current density was changed in the range of 0 to 5 A / cm 2 , resulting in rough polishing. A member surface having a thickness of 1 μm (Rmax) or less was obtained.

【0021】この電解複合研磨方法によると、部材の平
滑化、局部欠陥の除去に加え、酸化性の中性電解溶液中
で電解溶出と陽極酸化現象が起こり、特定の原子(C
r)が表面に濃縮し、形成された不働態膜の組成変化、
構造の安定化、密度、膜厚が耐食性に優れたものとな
り、従来からの燐酸、硫酸を主とした電解研磨により得
られる表面とは異なっている。
According to this electrolytic combined polishing method, in addition to smoothing of the member and removal of local defects, electrolytic elution and anodic oxidation occur in an oxidizing neutral electrolytic solution, and a specific atom (C
r) is concentrated on the surface and changes the composition of the formed passive film;
The structure stability, density, and film thickness are excellent in corrosion resistance, and are different from the surface obtained by conventional electrolytic polishing mainly using phosphoric acid and sulfuric acid.

【0022】ところで、電解複合研磨に利用されてきた
硝酸ナトりウム電解液は電解液とステンレス鋼の陽分極
電流−電位特性から有害な6価クロムの生成が避け難い
ものであり、また塩化ナトリウム単独では6価クロムが
生成しないものの研磨面性状が悪く、使い難いものであ
った。これらの液の単独使用では、ステンレス鋼の陽分
極特性からだけでは解決できず、不働態膜の生成と破壊
そして6価クロムの生成に関し、新しい電解液の開発と
砥粒による擦過除去とを組み合わせる必要がある。
Meanwhile, the sodium nitrate electrolyte used for electrolytic combined polishing is one in which the generation of harmful hexavalent chromium is unavoidable due to the anodic polarization current-potential characteristics of the electrolyte and stainless steel. When used alone, hexavalent chromium was not generated, but the polished surface properties were poor and it was difficult to use. The use of these solutions alone cannot be solved by the anodic polarization properties of stainless steel alone, but combines the development of a new electrolyte with the removal of abrasive particles by abrasive grains for the formation and destruction of passive films and the formation of hexavalent chromium. There is a need.

【0023】そこで、本発明は、1重量%以上の塩化ナ
トリウム、塩化カリウム、塩化アンモニウム塩の一種ま
たは二種以上を組み合わせたものに、0.03〜0.5
重量%のBTA(C6H4NHN2:ベンゾトリアゾール)を添
加した電解液を使用し、被処理材であるステンレス鋼部
材を陽極にするとともに、陰極との間に研磨砥粒を含む
通水性不織布に上記電解液を流しながら電解擦過するこ
とにより行われる。
Therefore, the present invention relates to a composition containing one or more of 1% by weight or more of sodium chloride, potassium chloride and ammonium chloride in an amount of 0.03 to 0.5%.
Using an electrolyte solution containing BTA (C 6 H 4 NHN 2 : benzotriazole) in a weight percentage, a stainless steel member as a material to be treated is used as an anode, and water-permeable containing abrasive grains between the cathode and the cathode. This is performed by electrolytic rubbing while flowing the above-mentioned electrolytic solution through the nonwoven fabric.

【0024】後述する実施例から明らかなように、塩化
物濃度が1重量%未満であると、電気伝導度が不足し、
電気抵抗の増加、過剰な電圧による研磨特性の低下、品
質の低下がみられる。また、濃度の上限は飽和濃度であ
るが、実際のところ、塩の持ち出し、飽和析出による作
業性の低下があり5〜20重量%の範囲が望ましい。
As will be apparent from the examples described later, when the chloride concentration is less than 1% by weight, the electric conductivity becomes insufficient,
An increase in electric resistance, a decrease in polishing characteristics due to excessive voltage, and a decrease in quality are observed. The upper limit of the concentration is the saturation concentration. However, in practice, the workability is degraded due to the removal of salt and the precipitation of the salt, so that the concentration is preferably in the range of 5 to 20% by weight.

【0025】また、BTAの添加量は0.03重量%未
満であると効果がなく、また0.5重量%を超えると、
電解液に溶けず鹸濁してフイルターなどに目詰まりを起
こす恐れが生じ、あまり好ましくない。しかし、適量の
BTAの添加により、金属面に吸着有機防錆膜が形成さ
れて塩化物による腐食が抑制される。
If the amount of BTA added is less than 0.03% by weight, there is no effect.
This is not preferable because it is not dissolved in the electrolytic solution and becomes turbid due to the possibility of clogging a filter or the like. However, by adding an appropriate amount of BTA, an adsorbed organic rust-preventive film is formed on the metal surface, and corrosion by chloride is suppressed.

【0026】さらに、研磨砥粒を含む通水性不織布に電
解液を流しながら擦過することは、鏡面を得る手段でも
あるが、表面凸部の過剰な吸着有機防錆膜を除去でき、
膜形成による陽分極電位の上昇を抑える効果があり、電
流効率の低下を少なくできる。
Further, rubbing while flowing an electrolytic solution through a water-permeable nonwoven fabric containing abrasive grains is also a means for obtaining a mirror surface, but it is possible to remove an excessively adsorbed organic rust preventive film on the surface convex portion.
This has the effect of suppressing an increase in the anodic polarization potential due to film formation, and can reduce a decrease in current efficiency.

【0027】以下、実施例について説明する。Hereinafter, embodiments will be described.

【0028】[0028]

【実施例】【Example】

[実施例1]図1に示すように、塩化ナトリウムが20
重量%、BTAが0.2重量%、残部水よりなる水溶液
を電解液1とし、研磨すべき被処理材に市販のSUS3
04(JIS規格)ステンレス鋼板の酸洗仕上げ板(酸
洗後にブライトロールで軽度の冷間加工を行って光沢を
出したもの)2を対象に陽極とし、#600のアルミナ
砥粒の付着した通水性不織布12が取り付けられた70
φ回転バフ研磨ヘッド(回転数800RPM、移動速度
0.4mm/sec)11を用い、電解液1を1リット
ル/minの割で流しながら電流密度1A/cm2 の割
合で擦過研磨したところ、90%以上の電流効率で表面
粗さ1μm(Rmax)以下の鏡面が得られた。また、
電解液への6価クロムの溶出は検出されなかった。な
お、図1中、3は不動態膜を示しており、また図2に各
種電解液における電流密度と電流効率との関係を示す。
Example 1 As shown in FIG.
An aqueous solution consisting of 0.2% by weight of BTA, 0.2% by weight of BTA, and the balance of water is used as an electrolytic solution 1. A commercially available SUS3 is used as a material to be polished.
04 (JIS standard) A pickled stainless steel plate (which has been subjected to mild cold working with a bright roll after pickling and has been given a luster) 2 is used as an anode, and is provided with a # 600 alumina abrasive grain adhering. 70 with the aqueous nonwoven fabric 12 attached
Using a φ rotating buffing polishing head (rotational speed 800 RPM, moving speed 0.4 mm / sec) 11, the electrolytic solution 1 was rubbed at a current density of 1 A / cm 2 while flowing the electrolytic solution 1 at a rate of 1 liter / min. % And a mirror surface having a surface roughness of 1 μm (Rmax) or less was obtained. Also,
Elution of hexavalent chromium into the electrolyte was not detected. In FIG. 1, reference numeral 3 denotes a passive film, and FIG. 2 shows the relationship between current density and current efficiency in various electrolytes.

【0029】なお、比較例1として、塩化ナトリウム2
0重量%、クロム酸ナトリウム0.2重量%、残部水よ
りなる水溶液を電解液とし、実施例1と同様にステンレ
ス鋼を研磨したところ、ステンレス鋼に孔食が発生し
た。図2に示す分極特性において、クロム酸ナトリウム
の添加は金属溶出を抑える効果があるが、局部腐食の孔
食が発生した。またクロムの添加は望ましくない。
As Comparative Example 1, sodium chloride 2
When stainless steel was polished in the same manner as in Example 1 using an aqueous solution consisting of 0% by weight, 0.2% by weight of sodium chromate and the balance of water as an electrolyte, pitting occurred on the stainless steel. In the polarization characteristics shown in FIG. 2, although the addition of sodium chromate has the effect of suppressing metal elution, pitting corrosion due to local corrosion occurred. Also, the addition of chromium is undesirable.

【0030】また、比較例2として、塩化ナトリウム2
0重量%、モリブデン酸ナトリウム0.02重量%、残
部水よりなる水溶液を電解液とし、実施例1と同様にス
テンレス鋼を研磨したところ、6価クロムは検出されな
かったが、図3に示すように、顕著な腐食抑制と鏡面効
果を示さなかった。
As Comparative Example 2, sodium chloride 2
When an aqueous solution consisting of 0% by weight, sodium molybdate 0.02% by weight and the balance water was used as an electrolytic solution and stainless steel was polished in the same manner as in Example 1, hexavalent chromium was not detected. As such, it did not exhibit significant corrosion inhibition and mirror effects.

【0031】[実施例2]塩化アンモニウム10重量
%、BTA0.04重量%、残部水よりなる水溶液を電
解液に、実施例1と同様にステンレス鋼を研磨したとこ
ろ、極めて優美な研磨面となった。塩化アンモニウムを
使用することで研磨表面に残留ナトリウム汚染問題がな
くなり、例えば半導体製造装置類における構成部材の表
面研磨に適した電解研磨を行うことができる。なお、こ
の場合にも、電解液への6価クロムの溶出は検出されな
かった。
Example 2 Stainless steel was polished in the same manner as in Example 1 using an aqueous solution consisting of 10% by weight of ammonium chloride, 0.04% by weight of BTA and the balance water as an electrolytic solution. Was. The use of ammonium chloride eliminates the problem of residual sodium contamination on the polished surface, so that, for example, electrolytic polishing suitable for surface polishing of components in semiconductor manufacturing equipment can be performed. In this case as well, no elution of hexavalent chromium into the electrolytic solution was detected.

【0032】上述した電解研磨方法によると、酸化性液
中でステンレス鋼部材の不働態膜が陽極過電圧で破壊し
て電解溶出するときの電位により溶出したクロムが3価
から6価へ酸化する欠点を、非酸化性液と腐食抑制剤の
添加電解液で解決し、また表面凸部の過剰な吸着有機絶
縁膜を、研磨砥粒を含む通水性不織布で擦過することに
より、高い電流効率で加工できる。
According to the above-mentioned electrolytic polishing method, the drawback is that chromium eluted from trivalent to hexavalent by the potential when the passivation film of the stainless steel member is destroyed by anodic overvoltage in the oxidizing liquid and electrolytically eluted. With an electrolytic solution containing a non-oxidizing liquid and a corrosion inhibitor, and processing with high current efficiency by rubbing the excessively adsorbed organic insulating film on the surface protrusions with a water-permeable nonwoven fabric containing abrasive grains. it can.

【0033】[0033]

【発明の効果】以上のように本発明の電解研磨方法によ
ると、酸化性液中でステンレス鋼部材の不働態膜が陽極
過電圧で破壊して電解溶出するときの電位により溶出し
たクロムが3価から6価へ酸化する欠点を、非酸化性液
と腐食抑制剤の添加電解液により解決することができる
とともに、表面凸部の過剰な吸着有機絶縁膜を、研磨砥
粒を含む通水性不織布で擦過することにより、高い電流
効率で加工できるという利点がある。
As described above, according to the electrolytic polishing method of the present invention, the chromium eluted by the potential when the passive film of the stainless steel member breaks down in the oxidizing liquid due to the anode overvoltage and electrolytically elutes is trivalent. Can be solved by the non-oxidizing liquid and the electrolytic solution added with the corrosion inhibitor, and the excessively adsorbed organic insulating film on the surface convex portion is formed by a water-permeable nonwoven fabric containing abrasive grains. By rubbing, there is an advantage that processing can be performed with high current efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電解研磨方法を説明す
る概略側面図である。
FIG. 1 is a schematic side view illustrating an electrolytic polishing method according to an embodiment of the present invention.

【図2】各種電解液における電流密度と溶出の電流効率
を示すグラフである。
FIG. 2 is a graph showing current density and elution current efficiency in various electrolytic solutions.

【図3】各種防錆剤添加液によるステンレス鋼の陽分極
特性を示すグラフである。
FIG. 3 is a graph showing the anodic polarization characteristics of stainless steel with various rust preventive additives.

【符号の説明】[Explanation of symbols]

1 電解液 2 仕上げ板 11 バフ研磨ヘッド 12 通水性不織布 DESCRIPTION OF SYMBOLS 1 Electrolyte 2 Finish plate 11 Buffing head 12 Water-permeable nonwoven fabric

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1重量%以上の塩化ナトリウム、塩化カリ
ウム、塩化アンモニウム塩の一種または二種以上を組み
合わせたものに、0.03〜0.5重量%のBTA(C6
H4NHN2:ベンゾトリアゾール)を添加した電解液を使用
し、被処理材であるステンレス鋼部材を陽極にするとと
もに、陰極との間に研磨砥粒を含む通水性不織布に上記
電解液を流しながら電解擦過することを特徴とするステ
ンレス鋼部材の電解研磨方法。
1. One or more of 1% by weight or more of sodium chloride, potassium chloride and ammonium chloride are combined with 0.03 to 0.5% by weight of BTA (C 6
H 4 NHN 2 : Benzotriazole) was added to the electrolyte, and the stainless steel member as the material to be treated was used as the anode, and the electrolyte was passed through a water-permeable nonwoven fabric containing abrasive grains between the cathode and the cathode. A method for electrolytic polishing a stainless steel member, wherein the material is subjected to electrolytic rubbing.
JP5329465A 1993-12-27 1993-12-27 Electropolishing method for stainless steel members Expired - Lifetime JP2602621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329465A JP2602621B2 (en) 1993-12-27 1993-12-27 Electropolishing method for stainless steel members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329465A JP2602621B2 (en) 1993-12-27 1993-12-27 Electropolishing method for stainless steel members

Publications (2)

Publication Number Publication Date
JPH07185941A JPH07185941A (en) 1995-07-25
JP2602621B2 true JP2602621B2 (en) 1997-04-23

Family

ID=18221687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329465A Expired - Lifetime JP2602621B2 (en) 1993-12-27 1993-12-27 Electropolishing method for stainless steel members

Country Status (1)

Country Link
JP (1) JP2602621B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097331B2 (en) * 2004-07-27 2012-12-12 株式会社アルバック Surface treatment method
JP6694693B2 (en) * 2015-10-22 2020-05-20 株式会社Ihi How to treat stainless steel parts
JP7010264B2 (en) * 2019-03-29 2022-02-10 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN115198255B (en) * 2022-07-21 2023-05-23 江苏科技大学 Titanium surface electrolytic hydrogen charging activation chemical nickel plating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598715B2 (en) * 1990-11-28 1997-04-09 ユシロ化学工業株式会社 Improved aqueous EDM fluid
JP3079226U (en) * 2000-12-08 2001-08-10 株式会社シフト・コミュニケーションズ Heated food transportation system

Also Published As

Publication number Publication date
JPH07185941A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
Lee Machining characteristics of the electropolishing of stainless steel (STS316L)
JP4419905B2 (en) Electrolytic phosphate chemical treatment method
US3537895A (en) Copper and aluminum pickling
CN1451058A (en) Continuous electrolytic pickling method for metallic products using alternate current suplied cells
JPS634100A (en) Electrolyte for electrochemical polishing of metal surface
US4363708A (en) Process for exposing silicon crystals on the surface of a component of an aluminum alloy of high silicon content
JP2602621B2 (en) Electropolishing method for stainless steel members
JPS63262500A (en) Treatment of titanium for titanium alloy to improve lubricity
EP0517234B1 (en) Method of regenerating aluminium surface cleaning agent
Snyder Decorative chromium plating
Hazzazi et al. Passivation and cl induced depassivation of Cu-Ag alloys in borate buffer solutions
JPH07185940A (en) Method for electrolytic polishing of member made of stainless steel
JP4895440B2 (en) Method and apparatus for improving surface function of workpiece
JP4508602B2 (en) Chemical polishing agent for iron-based alloy and surface treatment method for iron-based alloy using the same
JP3300673B2 (en) Method and apparatus for quickly forming a phosphate coating on steel wire
JP3687314B2 (en) Pickling solution for stainless steel
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
US3230160A (en) Electrolyte for electrochemical material removal
Yanyushkin et al. Application of protective coatings in combined electric diamond grinding
JP2004156129A5 (en)
Vraciu How Can Electropolishing Help You?
JP2875916B2 (en) Grinding oil for electrolytic dressing
JP2005336563A (en) Etching treatment method
JP3038111B2 (en) Aqueous cleaning aqueous solution of aluminum-based metal and cleaning method
US20070163677A1 (en) Copper cmp slurry composition