JP3687314B2 - Pickling solution for stainless steel - Google Patents

Pickling solution for stainless steel Download PDF

Info

Publication number
JP3687314B2
JP3687314B2 JP31994197A JP31994197A JP3687314B2 JP 3687314 B2 JP3687314 B2 JP 3687314B2 JP 31994197 A JP31994197 A JP 31994197A JP 31994197 A JP31994197 A JP 31994197A JP 3687314 B2 JP3687314 B2 JP 3687314B2
Authority
JP
Japan
Prior art keywords
pickling
stainless steel
pickling solution
acid
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31994197A
Other languages
Japanese (ja)
Other versions
JPH11152590A (en
Inventor
滋 木谷
透 松橋
孝一 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31994197A priority Critical patent/JP3687314B2/en
Publication of JPH11152590A publication Critical patent/JPH11152590A/en
Application granted granted Critical
Publication of JP3687314B2 publication Critical patent/JP3687314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Description

【0001】
【発明の属する技術分野】
本発明は、ステンレス鋼用酸洗液に関する。
【0002】
【従来の技術】
ステンレス鋼板の製造において、熱間圧延後や冷間圧延後に焼きなまし(焼鈍)すると、表面に酸化スケールが生成するがこれを除去するため酸性水溶液に浸漬する酸洗が行われる。しかし、酸洗によってもスケールそのものはほとんど溶解しないので、あらかじめショットブラスト処理のような機械的方法でスケールに亀裂を付与したり(熱間圧延後の場合)、ソルトバス浸漬処理や中性塩電解処理のような化学的方法で、酸が浸透しやすいスケールに改質した後(冷間圧延後の場合)、酸洗を行う。これにより、酸洗液はスケール直下の地金を溶解できるようになるので、スケールが剥離して脱スケールが促進される。
【0003】
酸洗に用いられる酸洗液としては硝酸とふっ化水素酸の混合水溶液(以下、便宜上硝ふっ酸と呼ぶ)が最も一般的であり、特にオーステナイト系ステンレス鋼の酸洗に多用されている。しかし、硝ふっ酸は酸洗時に硝酸が分解してNOxガスが発生するという問題があるため、近年、NOxを抑制する技術が種々検討されている。
【0004】
例えば、尿素、スルファミン酸あるいは過酸化水素を酸洗液中に添加することによりNOxガスの発生が抑制されることが知られている。例えば。特公昭60−2392号公報にはスルファミン酸と過酸化水素を添加することにより、硝ふっ酸酸洗液からのNOxガス発生を防止する方法が開示されている。
【0005】
また、硝酸を含まない酸洗液を使用してNOxガスの発生を防止する試みも行われており、例えば特開昭60−243289号公報にはふっ化水素酸、過酸化水素および塩酸を主成分とする酸洗液による酸洗方法が開示されている。
【0006】
硝ふっ酸による酸洗方法のもう一つの欠点は粒界侵食もしくは粒界腐食が起こりやすいことである。オーステナイト系ステンレス鋼の場合には結晶粒界が溝状に侵食されて粒界溝が生成し、表面の光沢が低下すると共に、バフ研磨で鏡面に仕上げる場合に長時間を要する。また、フェライト系ステンレス鋼の場合には肌荒れが激しくなり、著しく光沢が低下する。
【0007】
このような粒界侵食や粒界腐食が起こりにくい酸洗方法の検討が行われており、例えば特開平5−86489号公報には塩酸および硝酸イオンを含む水溶液中で浸漬または電解する方法が開示されている。
【0008】
【発明が解決しようとする課題】
上記の酸洗方法のうち、特公昭60−2392号公報、および特開昭60−243289号公報に開示された方法は従来の硝ふっ酸酸洗法と同様に、粒界侵食あるいは粒界腐食が起こりやすいという欠点を有する。また、特開平5−86489号公報に開示された方法ではNOxガスの発生を抑制できない。
【0009】
本発明により解決しようとする課題は次の(1) および(2) にある。
(1) 酸洗時のNOxガスの発生を防止する。
(2) 酸洗による粒界侵食や粒界腐食を防止し、光沢やバフ研磨性を改善する。
【0010】
【課題を解決するための手段】
発明者らは上記の課題(1) と(2) の両方を同時に解決することのできる新しい酸洗法を研究した。
【0011】
まず、NOxガス発生を抑制するために尿素、スルファミン酸および過酸化水素を添加して効果を調べた。その結果、尿素とスルファミン酸はNOxガス抑制の効果が不安定であるだけでなく、酸洗液中にアンモニウムイオンや硫酸が生成して酸洗後の表面の色調や光沢が変化しやすいことがわかった。
【0012】
一方、過酸化水素はNOxガス抑制効果が安定しており、有害物の生成もないので過酸化水素を使用することにした。
【0013】
次に、粒界侵食あるいは粒界腐食を防止するための酸洗方法を研究した結果、塩酸、硝酸、ふっ化水素酸および過酸化水素の濃度を適切な範囲に調節することによって防止することが可能であることを見いだした。これらの成分のうち、塩酸とふっ化水素酸はステンレス鋼の不動態を破壊して金属を陽イオンとして溶出させる働きをするものであり、硝酸は金属の溶出に伴って過剰となる電子を消費することによって溶解を促進する働きをするものである。また、過酸化水素はNOxガスの抑制作用のみでなく、硝酸と同様に電子を消費して溶解を促進する働きもすると考えられる。
【0014】
一般に、酸洗液は使用により液中の金属イオン濃度が増すにつれて酸洗能力が低下するが、本発明による酸洗液はむしろある程度の金属イオンが共存する方が酸洗能力が増すことが判明した。
【0015】
この現象をさらに詳しく調べた結果、ステンレス鋼の酸洗によって溶出した3価の鉄イオンが2価に変化する際に、電子を消費することによって酸洗能力の向上に寄与していることがわかった。また、4価または6価のチタンイオンも同様の作用をすることが判明した。
【0016】
また、3価の鉄イオン、および4価または6価のチタンイオンは本発明の酸洗液中では、一部がふっ素や塩素を含む錯イオンを形成しており、これらの錯イオンも同様に酸洗能力の向上に役立つものと考えられる。
【0017】
次に、酸洗液中の金属イオン濃度が過度に増加した場合に、酸洗速度をできるだけ低下させない方法を研究した結果、硫酸を添加する方法が比較的安価で効果的であることを見いだした。これは、硫酸添加により酸洗液の酸濃度が高まることによる直接的な効果と、金属のふっ化物錯体からふっ化水素酸が遊離する間接的な効果が複合的にあらわれるためと推測される。また、硫酸は金属イオンが共存しない場合にも溶解速度を速め、脱スケール所要時間を短縮するのに役立つことを見いだした。
【0018】
上記の知見に基づき、本発明の要旨は以下の(1) から(4) にある。
(1) 塩酸10〜100g/l、硝酸10〜100g/l、遊離ふっ化水素酸5〜50g/l、全ふっ素量5〜200g/lおよび過酸化水素5〜30g/lを含むことを特徴とするステンレス鋼用酸洗液。
【0019】
(2) 前記(1) 項に記載のステンレス鋼用酸洗液に、さらに3価の鉄イオン、4価のチタンイオンおよび6価のチタンイオンの少なくとも1種のイオンを合計で10〜50モル/m3 含むことを特徴とするステンレス鋼用酸洗液。
【0020】
(3) 前記(1) 項に記載のステンレス鋼用酸洗液に、さらに硫酸10〜100g/lを含むことを特徴とするステンレス鋼用酸洗液。
【0021】
(4) 前記(1) 項に記載のステンレス鋼用酸洗液に、さらに硫酸10〜100g/lと、3価の鉄イオン、4価のチタンイオンおよび6価のチタンイオンの少なくとも1種のイオンを合計で10〜100モル/m3 含むことを特徴とするステンレス鋼用酸洗液。
【0022】
【発明の実施の形態】
本発明による酸洗方法はバッチ方式の酸洗にも連続方式の酸洗にも適用することができる。
【0023】
バッチ方式の場合には、スケールの付いた切り板状や管状のステンレス鋼をショットブラスト処理した後、本発明法による酸洗液に浸漬するか、本発明による酸洗液をスプレー噴射する方法が推奨される。また、板厚が薄い場合や形状が複雑でショットブラスト処理が適用できない場合には、アルカリ溶融塩浸漬処理(これをソルトバス法ともいう)を行った後、本発明による酸洗液に浸漬すればよい。
【0024】
連続方式の場合には連続焼鈍酸洗ラインを使用して脱スケールが行われる。すなわち、ステンレス鋼の熱延鋼帯または冷延鋼帯は最初に燃焼加熱炉を用いて焼鈍される。次に、熱延鋼帯の場合にはショットブラスト処理などの機械的方法でスケールに亀裂を付与したり、スケールの一部を剥離させる。また、冷延鋼帯の場合にはアルカリ溶融塩処理や中性塩電解法のような化学的方法でスケールを改質する。これらの酸洗前処理を行った後、本発明による酸洗液に浸漬するか、本発明による酸洗液をスプレー噴射することにより完全な脱スケールを行う。
【0025】
次に、特許請求の範囲に記載した酸洗液の組成について説明する。
塩酸はステンレス鋼を溶解するために必要な成分であり、濃度が高いほど溶解速度は大きいが100g/lを超えると過酸化水素の分解が激しくなると共に、被処理材の肌荒れが大きくなるので上限を100g/lとした。また、10g/l未満では添加効果が認められないので、下限を10g/lとした。塩酸のさらに好適な範囲は30〜80g/lである。
【0026】
硝酸はステンレス鋼の溶解を促進する成分であるとともに、ステンレス鋼に含まれる炭化物を分解し、スマット(未分解の炭化物粒子を主成分とする付着物)の付着を防止する働きもする成分である。しかし、100g/lを超えるとステンレス鋼を不動態化する作用が強まり、かえって溶解速度が遅くなるので上限を100g/lとした。また、10g/l未満では添加効果が認められないので下限を10g/lとした。硝酸のさらに好適な範囲は30〜80g/lである。
【0027】
遊離ふっ化水素酸は塩酸と同様にステンレス鋼を溶解するのに必要な成分であり、濃度が高いほど溶解速度は大きいが、50g/lを超えると粒界侵食および過酸化水素の分解が激しくなるので上限を50g/lとした。また、5g/l未満では添加効果が認められないので下限を5g/lとした。遊離ふっ化水素酸のさらに好適な範囲は10〜30g/lである。
【0028】
全ふっ素量とは酸洗液中に含まれるHF、HF2 - 、FeF2+、FeF2 + 、FeF3 などのイオンやふっ化物に含まれるふっ素の含有量の合計であり、新しい酸洗液の場合には遊離ふっ化水素酸の量の19/20(遊離ふっ化水素酸のふっ素の比率)である。
【0029】
本酸洗液中に含まれるふっ素のうち、遊離ふっ化水素酸のふっ素以外は直接酸洗に寄与しないが、間接的には酸洗能力を安定化し、酸洗後の鋼板表面粗さや光沢を安定化する機能を有する。以下、この安定化機能を説明する。
【0030】
酸洗によりステンレス鋼中の鉄は2価イオンとして溶解するが、2価の鉄イオンは下記(1) 〜(2) 式の反応によって3価の鉄イオンに変わる。
【0031】
2Fe2++2H+ +NO3 - →2Fe3++H2 O+NO2 - (1)
2Fe2++2H+ +H2 2 →2Fe3++2H2 O (2)
(1) 〜(2) 式の反応で生成した3価の鉄イオンはさらに下記(3) 〜(5) 式のように、ふっ化水素酸と反応して3価の鉄とふっ素の錯イオンまたはふっ化物を生成する。
【0032】
Fe3+ +HF ⇔FeF2++H+ (3)
FeF2++HF ⇔FeF2 + +H+ (4)
FeF2 + +HF ⇔FeF3 +H+ (5)
ただし、(3) 〜(5) 式の記号「⇔」は平衡状態を表す。
【0033】
前記(3) 〜(5) 式のように、3価の鉄イオンにより、遊離ふっ化水素酸が消費されるため、酸洗能力は低下するが、ふっ化水素酸に比べて安価な硝酸や硫酸を酸洗液に補給して水素イオン(H+ )濃度を高めることにより、鉄のふっ化錯イオンおよびふっ化物を元のふっ化水素酸に戻す(すなわち(3) 〜(5) の反応を左側に進める)ことができる。言いかえれば、ふっ素の存在により酸洗能力を安定化することが可能になる。
【0034】
酸洗液中のふっ素濃度を高める方法として、ふっ化ナトリウムのようなふっ化物を添加することも可能であり、その場合には下記(6) 〜(8) 式の反応で3価の鉄とふっ素の錯イオンが生成するので、(3) 〜(5) 式の反応による遊離ふっ化水素酸の消費を少なくすることができる。
【0035】
Fe3+ +NaF ⇔FeF2++Na+ (6)
FeF2++NaF ⇔FeF2 + +Na+ (7)
FeF2 + +NaF ⇔FeF3 +Na+ (8)
また、4価または6価のチタンイオンもふっ化錯イオンを作る。チタン錯イオンの化学構造は十分には解明できていないが、鉄イオンと同様に、硝酸や硫酸の補給によって間接的にふっ化水素酸を供給することができる。
【0036】
上記ふっ素の効果を考慮して、全ふっ素量の下限は遊離ふっ化水素酸とほぼ同じ5g/l(厳密には4.75g/l)とした。ただし、全ふっ素が過剰に存在すると脱スケール不足や肌荒れが生じ易くなるため、上限は酸洗液中の金属と反応したふっ素も含めて、200g/lとした。全ふっ素量のさらに好適な範囲は10〜100g/lである。
【0037】
過酸化水素は亜硝酸を酸化して硝酸に変え、NOxガスの発生を抑制すると同時に、ステンレス鋼の溶解を促進する働きをするが、30g/lを超えると自己分解が激しくなると同時に、ステンレス鋼を不動態化する作用が強くなり、溶解速度が遅くなるので上限を30g/lとした。また、5g/l未満では添加効果が認められないので下限を5g/lとした。過酸化水素のさらに好適な範囲は8〜20g/lである。
【0038】
鉄イオンはFe3+およびFe3+とふっ素または塩素との錯イオンの合計であり、チタンイオンはTi4+またはTi6+のチタンイオン、または前記の4価または6価のチタンイオンとふっ素または塩素との錯イオンの合計であり、本発明は鉄イオンとチタンイオンの合計量を、10〜50モル/m3 (硫酸を添加しない場合)、10〜100モル/m3 (硫酸を添加する場合)と規定する。
【0039】
鉄イオンおよびチタンイオンがふっ化錯イオンとなって酸洗能力を安定化し、酸洗後の表面粗さや光沢を安定化することは前述のとおりであるが、金属イオンとして酸洗反応を促進する働きもある。一般には酸洗液中の金属イオン濃度が増すにつれて酸洗能力が低下するが、本発明による酸洗液は、むしろある程度の金属イオンが共存する方が酸洗能力が増す。この理由の詳細は明らかではないが、これらのイオンが次の(9) 〜(11)式のように反応して、金属の溶出に伴って過剰となった電子を消費するために溶解反応が促進されるものと推測される。
【0040】
Fe3+ + e(電子) → Fe2+ (9)
Ti4+ + e(電子) → Ti3+ (10)
Ti6+ +3e(電子) → Ti3+ (11)
酸洗液中に鉄イオンやチタンイオンの適切な量が含まれる場合には上記のように酸洗能力を速める働きをする。しかし、鉄およびチタンのイオンが合計で50モル/m3 (硫酸を添加しない場合)、または100モル/m3 (硫酸を添加する場合)を超えると逆に溶解速度が遅くなる。一方、10モル/m3 未満では添加効果が認められない。鉄イオンとチタンイオンの合計量のさらに好適な範囲は20〜40モル/m3 (硫酸を添加しない場合)、または20〜80モル/m3 (硫酸を添加する場合)である。
【0041】
硫酸は特に金属イオンが共存する場合に酸洗液の酸濃度を高めて酸洗を促進する働きをする成分であるが、100g/lを超えて添加すると肌荒れが激しくなるので、上限を100g/lとした。また、10g/l未満では添加効果が認められないので下限を10g/lとした。硫酸のさらに好適な範囲は20〜80g/lである。
【0042】
なお、本発明による酸洗液の使用温度は特に限定されるものではなく、温度が高いほど酸洗速度は速まるが、温度が過度に高いと酸洗液中の過酸化水素の自己分解が激しくなるので、50℃以下で使用するのが望ましい。
【0043】
【実施例】
(実施例1)
表1に示す化学組成のステンレス鋼熱延鋼帯を焼鈍後ショットブラスト処理したものを供試材A〜Cとし、70×100mmの試験片を切り出した。
【0044】
【表1】

Figure 0003687314
【0045】
試験に使用した酸洗液を表2に示す。なお、比較のために従来の硝ふっ酸酸洗液(液No.43およびNo.44の場合、10%HNO3 −2%HF)も使用した。
【0046】
【表2】
Figure 0003687314
【0047】
前記の試験片を、表2に示す各種の酸洗液に120秒間浸漬した。ただし、酸洗液の温度は液No.1〜43の場合がすべて50℃であり、液No.44で供試材Cを酸洗する場合は、20%H2 SO4 が80℃で80秒間、10%HNO3 −2%HFが50℃で40秒間とした。
【0048】
酸洗中にNOxガスを測定し、酸洗後のスケール残存程度、酸洗ムラ程度、粒界溝程度、および表面粗度を測定した。
酸洗中のNOxガスは酸洗容器の上部50mmの位置に検知管を置いて測定した。
【0049】
酸洗後の試験片表面の評価は表3に示すように、スケールの残存程度、酸洗ムラおよび粒界溝の発生程度をそれぞれ5段階で評価した。また、表面粗度は表面粗さ計を用いて測定した(JIS B0601−1994で定義されるRy(Rmaxと同じ)により表示)。
表4〜6に試験結果を示す。
【0050】
【表3】
Figure 0003687314
【0051】
【表4】
Figure 0003687314
【0052】
【表5】
Figure 0003687314
【0053】
【表6】
Figure 0003687314
【0054】
表4〜6の試験結果から明らかなように、本発明法の酸洗条件で酸洗した試験片はスケール残存や酸洗ムラおよび粒界溝は全く発生していなかった。また、酸洗後の表面粗度は比較的小さく、酸洗時のNOxガス発生も少なかった(3ppm以下)。
【0055】
これに対して、本発明の酸洗液と同じ成分ではあるが、塩酸濃度が本発明の範囲より低いもの(液No.29)は全面にスケールが残存し、塩酸濃度が高いもの(液No.30)は酸洗による肌荒れ(表面粗度が大きい)が激しかった。
【0056】
また、硝酸濃度が低いもの(液No.31)は供試材AおよびBに太い粒界溝が発生し、高いもの(液No.32)は全面にスケールが残存していた。
【0057】
ふっ化水素酸濃度が低いもの(液No.33および35)は脱スケールが不十分で酸洗ムラが発生し、ふっ化水素酸濃度が高いもの(液No.34および36)は脱スケールは完了したが肌荒れが激しかった。また、酸洗による浸食が比較的多い部分と、少ない部分が生じやすいことに起因する酸洗ムラ(光沢ムラ)が発しした。
【0058】
一方、過酸化水素濃度が低いもの(液No.37および39)はNOxガスの発生が多く、高いもの(液No.38および40)では脱スケールが不十分であった。
【0059】
硫酸の添加が多すぎるもの(液No.41および42)は肌荒れや酸洗ムラが大きかった。
また、従来の硝ふっ酸酸洗(液No.43および44)では酸洗時のNOxガス発生が多く、供試材AおよびBに太い粒界溝が発生した。
【0060】
次に、金属イオンの影響および酸洗方法と時間の影響を調査する試験を行った。供試材Aについて、5種類の酸洗液(液No.2、5、21、24、27。いずれも温度50℃)を用いて浸漬法およびスプレー法で酸洗時間を30、60、90および120秒間に変えて酸洗した。
表7に上記試験における酸洗減量とスケール残存程度を示す。
【0061】
【表7】
Figure 0003687314
【0062】
表7の試験結果より、酸洗液中に金属イオンを含まない場合(液No.2および21)に比べて少量含む場合(液No.5および24)の方が酸洗減量が多く、スケールの残存が少ないことがわかった。また、金属イオンが多量に含まれる場合(液No.27)においても、硫酸を添加することにより酸洗減量はあまり少なくならず、スケール残存も多くならなかった。
【0063】
硫酸添加は酸洗減量を増し、スケール残存を少なくする効果を示し(液No.2、5と液No.21、24、27の比較)、浸漬法よりスプレー法の方が酸洗減量が多く、スケール残存が少ないことがわかった。
【0064】
(実施例2)
表8に示す化学組成のステンレス鋼冷延鋼帯を連続焼鈍酸洗ラインで焼鈍のみを行ったものを供試材Dとし、50×100mmの大きさの試験片を切り出した。
【0065】
【表8】
Figure 0003687314
【0066】
この試験片の両面に中性塩電解処理を施した。中性塩電解処理は20%硫酸ナトリウム水溶液(80℃)中で、2秒間の陽極電解と、1秒間の陰極電解(電流密度はいずれも80mA/cm2 )のサイクルを30回繰り返す方法で行った。
【0067】
次いで、表2に示す酸洗液(50℃)中に120秒間浸漬して酸洗した。酸洗液の温度条件は前記実施例1の場合と同じである。比較のために、従来の硝ふっ酸酸洗液による酸洗も実施例1と同様に行った。
【0068】
酸洗中にNOxガスを測定し、酸洗後の試験片表面のスケール残存程度、酸洗ムラ程度、粒界溝程度、および表面粗度を測定した。表9に酸洗後の試験片表面の評価方法を示す。NOxガスの測定方法、および表面粗度測定方法は実施例1の場合と同じである。
表10に上記冷延鋼帯の焼鈍供試材の酸洗試験結果を示す。
【0069】
【表9】
Figure 0003687314
【0070】
【表10】
Figure 0003687314
【0071】
表10の試験結果に示すように、本発明法の酸洗条件で酸洗した試験片はスケール残存や酸洗ムラおよび粒界溝は全くなく、酸洗後の表面粗度も比較的小さかった。酸洗中のNOxガスの発生も少なかった(2ppm以下)。
【0072】
これに対して、本発明の酸洗液と同じ成分を含んでいるが、塩酸濃度が本発明の請求の範囲より低いもの(液No.29)は全面にスケールが残存し、塩酸濃度が高いもの(液No.30)は酸洗による肌荒れが激しかった。
【0073】
また、硝酸濃度が低いもの(液No.31)は太い粒界溝が発生し、硝酸濃度が高いもの(液No.32)は全面にスケールが残存した。
【0074】
ふっ化水素酸濃度が低いもの(液No.33および35)は脱スケールが不十分で酸洗ムラが発生し、ふっ化水素酸濃度が高いもの(液No.34および36)は脱スケールは完了したが肌荒れが激しかった。
【0075】
一方、過酸化水素濃度が低いもの(液No.37および39)はNOxガスの発生が多く、過酸化水素濃度が高いもの(液No.38および40)は脱スケールが不十分であった。
【0076】
硫酸の添加が多すぎるもの(液No.41および42)は肌荒れや酸洗ムラが大きかった。
また、従来の硝ふっ酸酸洗(液No.43)では酸洗時のNOxガスの発生が多く、太い粒界溝が発生した。
【0077】
次に、表10に示した試験片のうち、脱スケールが完了した10種類の代表的な試験片を選び、バフ研磨試験を行った。バフ研磨機で一定圧力を加えて50×50mmの面積を研磨した後、JIS Z8741−1983に従って20度鏡面光沢を測定した。表11にバフ研磨試験結果を示す。
【0078】
【表11】
Figure 0003687314
【0079】
表11の試験結果から明らかなように、本発明の酸洗液で酸洗した試験片(試験No.44〜48)は比較的短時間の研磨により鏡面光沢が大幅に向上した。
【0080】
これに対して、本発明の酸洗液と同じ成分を含むが、成分濃度が本発明の範囲を超える液で酸洗したもの(試験No.49〜52)や、従来の硝ふっ酸で酸洗したもの(試験No.53)は鏡面光沢の向上が少なかった。これは発生した粒界溝が研磨によって除去されにくいためと考えられる。
【0081】
【発明の効果】
本発明のステンレス鋼用酸洗液を使用して酸洗することにより、酸洗時のNOxガスの発生を防止でき、酸洗による粒界溝の発生を防止し、バフ研磨性や光沢性を向上できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pickling solution for stainless steel.
[0002]
[Prior art]
In the manufacture of a stainless steel plate, after annealing (annealing) after hot rolling or cold rolling, oxide scale is generated on the surface, but pickling is performed by immersing in an acidic aqueous solution to remove this. However, since the scale itself is hardly dissolved by pickling, the scale is cracked in advance by a mechanical method such as shot blasting (after hot rolling), salt bath immersion treatment or neutral salt electrolysis. A chemical method such as treatment is used to modify the acid-permeable scale (after cold rolling), followed by pickling. As a result, the pickling solution can dissolve the metal just below the scale, so that the scale peels off and the descaling is promoted.
[0003]
As the pickling solution used for pickling, a mixed aqueous solution of nitric acid and hydrofluoric acid (hereinafter referred to as “nitric hydrofluoric acid” for the sake of convenience) is the most common, and is particularly frequently used for pickling austenitic stainless steel. However, since nitric hydrofluoric acid has a problem that nitric acid is decomposed during pickling to generate NOx gas, various techniques for suppressing NOx have been studied in recent years.
[0004]
For example, it is known that generation of NOx gas is suppressed by adding urea, sulfamic acid or hydrogen peroxide into the pickling solution. For example. Japanese Patent Publication No. 60-2392 discloses a method for preventing NOx gas generation from a nitric hydrofluoric acid pickling solution by adding sulfamic acid and hydrogen peroxide.
[0005]
In addition, attempts have been made to prevent the generation of NOx gas using a pickling solution that does not contain nitric acid. For example, JP-A-60-243289 mainly discloses hydrofluoric acid, hydrogen peroxide and hydrochloric acid. A pickling method using a pickling solution as a component is disclosed.
[0006]
Another drawback of the nitric hydrofluoric acid pickling method is that intergranular erosion or intergranular corrosion is likely to occur. In the case of austenitic stainless steel, the grain boundary is eroded into a groove shape to form a grain boundary groove, the surface gloss is lowered, and it takes a long time to finish the mirror surface by buffing. Further, in the case of ferritic stainless steel, rough skin becomes severe and gloss is remarkably lowered.
[0007]
Studies have been made on pickling methods in which such intergranular erosion and intergranular corrosion are unlikely to occur. For example, JP-A-5-86489 discloses a method of immersion or electrolysis in an aqueous solution containing hydrochloric acid and nitrate ions. Has been.
[0008]
[Problems to be solved by the invention]
Among the above pickling methods, the methods disclosed in Japanese Patent Publication No. 60-2392 and Japanese Patent Application Laid-Open No. 60-243289 are the same as the conventional nitric hydrofluoric acid pickling method. Has the disadvantage of being prone to occur. Further, the method disclosed in Japanese Patent Laid-Open No. 5-86489 cannot suppress the generation of NOx gas.
[0009]
The problems to be solved by the present invention are the following (1) and (2).
(1) Prevent the generation of NOx gas during pickling.
(2) Prevents intergranular erosion and intergranular corrosion due to pickling, and improves gloss and buffing.
[0010]
[Means for Solving the Problems]
The inventors have studied a new pickling method that can simultaneously solve both the above problems (1) and (2).
[0011]
First, in order to suppress the generation of NOx gas, the effect was examined by adding urea, sulfamic acid and hydrogen peroxide. As a result, urea and sulfamic acid not only have an unstable NOx gas suppression effect, but ammonium ions and sulfuric acid are generated in the pickling solution, and the surface tone and gloss after pickling are likely to change. all right.
[0012]
On the other hand, since hydrogen peroxide has a stable NOx gas suppression effect and does not generate harmful substances, it was decided to use hydrogen peroxide.
[0013]
Next, as a result of research on pickling methods for preventing grain boundary erosion or grain boundary corrosion, it is possible to prevent it by adjusting the concentration of hydrochloric acid, nitric acid, hydrofluoric acid and hydrogen peroxide to an appropriate range. I found it possible. Of these components, hydrochloric acid and hydrofluoric acid work to destroy the passive state of stainless steel and elute the metal as a cation, and nitric acid consumes excess electrons as the metal elutes. It works to promote dissolution. In addition, hydrogen peroxide is considered not only to suppress NOx gas, but also to promote dissolution by consuming electrons in the same manner as nitric acid.
[0014]
In general, the pickling solution decreases as the metal ion concentration in the solution increases as a result of use. However, the pickling solution according to the present invention has been found to increase the pickling capability when a certain amount of metal ions coexist. did.
[0015]
As a result of examining this phenomenon in more detail, it was found that when trivalent iron ions eluted by pickling of stainless steel change to divalent, it contributes to improvement of pickling ability by consuming electrons. It was. It has also been found that tetravalent or hexavalent titanium ions have the same effect.
[0016]
In addition, trivalent iron ions and tetravalent or hexavalent titanium ions partially form complex ions containing fluorine or chlorine in the pickling solution of the present invention. It is thought to be useful for improving the pickling ability.
[0017]
Next, when the metal ion concentration in the pickling solution was excessively increased, we studied a method that would not reduce the pickling rate as much as possible, and found that the method of adding sulfuric acid was relatively inexpensive and effective. . This is presumably because the direct effect of increasing the acid concentration of the pickling solution by the addition of sulfuric acid and the indirect effect of liberating hydrofluoric acid from the metal fluoride complex appear. We have also found that sulfuric acid helps to speed up the dissolution rate and reduce the time required for descaling even in the absence of metal ions.
[0018]
Based on the above findings, the gist of the present invention is the following (1) to (4).
(1) It contains 10 to 100 g / l hydrochloric acid, 10 to 100 g / l nitric acid, 5 to 50 g / l free hydrofluoric acid, 5 to 200 g / l total fluorine, and 5 to 30 g / l hydrogen peroxide. Pickling solution for stainless steel.
[0019]
(2) A total of 10 to 50 mol of at least one kind of trivalent iron ion, tetravalent titanium ion and hexavalent titanium ion is added to the pickling solution for stainless steel described in the above item (1). / M 3 containing pickling solution for stainless steel.
[0020]
(3) A pickling solution for stainless steel, characterized in that the pickling solution for stainless steel as described in (1) above further contains 10 to 100 g / l of sulfuric acid.
[0021]
(4) The pickling solution for stainless steel as described in the above item (1) is further added with 10 to 100 g / l of sulfuric acid, at least one of trivalent iron ion, tetravalent titanium ion and hexavalent titanium ion. A pickling solution for stainless steel characterized by containing 10 to 100 mol / m 3 of ions in total.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The pickling method according to the present invention can be applied to both batch type pickling and continuous type pickling.
[0023]
In the case of the batch method, after a shot blast treatment is performed on a cut plate-like or tubular stainless steel with a scale, it is immersed in the pickling solution according to the method of the present invention or sprayed with the pickling solution according to the present invention. Recommended. In addition, when the plate thickness is thin or the shape is complicated and the shot blasting process cannot be applied, after performing an alkali molten salt immersion process (also referred to as a salt bath method), the sheet is immersed in the pickling solution according to the present invention. That's fine.
[0024]
In the case of a continuous system, descaling is performed using a continuous annealing pickling line. That is, a stainless steel hot-rolled steel strip or a cold-rolled steel strip is first annealed using a combustion heating furnace. Next, in the case of a hot-rolled steel strip, the scale is cracked or a part of the scale is peeled off by a mechanical method such as shot blasting. In the case of a cold-rolled steel strip, the scale is modified by a chemical method such as alkali molten salt treatment or neutral salt electrolysis. After these pickling pretreatments, complete descaling is performed by immersing in the pickling solution according to the present invention or spraying the pickling solution according to the present invention.
[0025]
Next, the composition of the pickling solution described in the claims will be described.
Hydrochloric acid is a component necessary for dissolving stainless steel, and the higher the concentration, the higher the dissolution rate. However, if it exceeds 100 g / l, the decomposition of hydrogen peroxide becomes severe and the surface roughness of the material to be treated increases. Was 100 g / l. Moreover, since the addition effect is not recognized if it is less than 10 g / l, the lower limit was made 10 g / l. A more preferable range of hydrochloric acid is 30 to 80 g / l.
[0026]
Nitric acid is a component that promotes dissolution of stainless steel, and also decomposes carbides contained in stainless steel, and also serves to prevent adhesion of smuts (adhesives composed mainly of undecomposed carbide particles). . However, if it exceeds 100 g / l, the action of passivating stainless steel becomes stronger, and the dissolution rate becomes rather low, so the upper limit was made 100 g / l. Moreover, since the addition effect is not recognized if it is less than 10 g / l, the lower limit was made 10 g / l. A more preferred range of nitric acid is 30-80 g / l.
[0027]
Free hydrofluoric acid is a component necessary for dissolving stainless steel, like hydrochloric acid. The higher the concentration, the higher the dissolution rate, but when it exceeds 50 g / l, intergranular erosion and hydrogen peroxide decomposition are severe. Therefore, the upper limit was set to 50 g / l. Moreover, since the addition effect is not recognized if it is less than 5 g / l, the lower limit was made 5 g / l. A more preferred range of free hydrofluoric acid is 10-30 g / l.
[0028]
The total fluorine content is the total content of fluorine contained in ions and fluorides such as HF, HF 2 , FeF 2+ , FeF 2 + , and FeF 3 contained in the pickling solution. Is 19/20 of the amount of free hydrofluoric acid (ratio of fluorine of free hydrofluoric acid).
[0029]
Of the fluorine contained in the pickling solution, other than the free hydrofluoric acid fluorine does not contribute directly to the pickling, but indirectly stabilizes the pickling ability and improves the surface roughness and gloss of the steel plate after pickling. Has the function of stabilizing. Hereinafter, this stabilization function will be described.
[0030]
Iron in stainless steel dissolves as divalent ions by pickling, but divalent iron ions are converted to trivalent iron ions by the reactions of the following formulas (1) to (2).
[0031]
2Fe 2+ + 2H + + NO 3 → 2Fe 3+ + H 2 O + NO 2 (1)
2Fe 2+ + 2H + + H 2 O 2 → 2Fe 3+ + 2H 2 O (2)
The trivalent iron ions generated by the reactions of formulas (1) to (2) are further reacted with hydrofluoric acid as shown in the following formulas (3) to (5) to form complex ions of trivalent iron and fluorine. Or produce fluoride.
[0032]
Fe 3+ + HF ⇔FeF 2+ + H + (3)
FeF 2+ + HF ⇔FeF 2 + + H + (4)
FeF 2 + + HF ⇔FeF 3 + H + (5)
However, the symbol “⇔” in the equations (3) to (5) represents an equilibrium state.
[0033]
As in the above formulas (3) to (5), free hydrofluoric acid is consumed by the trivalent iron ions, so that the pickling ability is reduced. By replenishing the pickling solution with sulfuric acid to increase the hydrogen ion (H + ) concentration, the iron fluoride complex ion and fluoride are returned to the original hydrofluoric acid (that is, the reactions (3) to (5)) To the left). In other words, the presence of fluorine makes it possible to stabilize the pickling ability.
[0034]
As a method of increasing the concentration of fluorine in the pickling solution, it is also possible to add a fluoride such as sodium fluoride. In that case, trivalent iron is reacted with the following reactions (6) to (8). Since fluorine complex ions are generated, the consumption of free hydrofluoric acid due to the reactions of formulas (3) to (5) can be reduced.
[0035]
Fe 3+ + NaF ⇔FeF 2+ + Na + (6)
FeF 2+ + NaF ⇔FeF 2 + + Na + (7)
FeF 2 + + NaF ⇔FeF 3 + Na + (8)
Tetravalent or hexavalent titanium ions also form complex fluoride ions. Although the chemical structure of titanium complex ions has not been fully elucidated, as with iron ions, hydrofluoric acid can be indirectly supplied by supplementation with nitric acid or sulfuric acid.
[0036]
In consideration of the above-mentioned effect of fluorine, the lower limit of the total fluorine amount was set to 5 g / l (strictly 4.75 g / l) which is almost the same as that of free hydrofluoric acid. However, since excessive descaling and rough skin are liable to occur if all fluorine is present in excess, the upper limit is set to 200 g / l including fluorine that has reacted with the metal in the pickling solution. A more preferable range of the total fluorine amount is 10 to 100 g / l.
[0037]
Hydrogen peroxide oxidizes nitrous acid and converts it to nitric acid, while suppressing the generation of NOx gas and at the same time promoting the dissolution of stainless steel. The upper limit was set to 30 g / l because the effect of passivating was increased and the dissolution rate was decreased. Moreover, since the addition effect is not recognized if it is less than 5 g / l, the lower limit was made 5 g / l. A more preferred range of hydrogen peroxide is 8-20 g / l.
[0038]
The iron ions are the total of complex ions of Fe 3+ and Fe 3+ and fluorine or chlorine, and the titanium ions are Ti 4+ or Ti 6+ titanium ions, or the aforementioned tetravalent or hexavalent titanium ions and fluorine. Or the total amount of complex ions with chlorine. In the present invention, the total amount of iron ions and titanium ions is 10 to 50 mol / m 3 (in the case where sulfuric acid is not added), 10 to 100 mol / m 3 (in which sulfuric acid is added). ).
[0039]
As mentioned above, iron ions and titanium ions become complex fluoride ions to stabilize the pickling ability and stabilize the surface roughness and gloss after pickling. There is also work. In general, as the concentration of metal ions in the pickling solution increases, the pickling ability decreases. However, the pickling solution according to the present invention increases the pickling ability when a certain amount of metal ions coexist. Although the details of this reason are not clear, these ions react as shown in the following formulas (9) to (11), and the dissolution reaction takes place due to consumption of excess electrons due to metal elution. Presumed to be promoted.
[0040]
Fe 3+ + e (electron) → Fe 2+ (9)
Ti 4+ + e (electron) → Ti 3+ (10)
Ti 6+ + 3e (electron) → Ti 3+ (11)
When an appropriate amount of iron ions or titanium ions is contained in the pickling solution, the pickling ability is accelerated as described above. However, when the total amount of iron and titanium ions exceeds 50 mol / m 3 (when sulfuric acid is not added) or 100 mol / m 3 (when sulfuric acid is added), the dissolution rate is slowed. On the other hand, if it is less than 10 mol / m 3 , the addition effect is not recognized. A more preferable range of the total amount of iron ions and titanium ions is 20 to 40 mol / m 3 (when sulfuric acid is not added) or 20 to 80 mol / m 3 (when sulfuric acid is added).
[0041]
Sulfuric acid is a component that works to promote pickling by increasing the acid concentration of the pickling solution, particularly when metal ions coexist, but if added over 100 g / l, the rough skin becomes severe, so the upper limit is 100 g / l. l. Moreover, since the addition effect is not recognized if it is less than 10 g / l, the lower limit was made 10 g / l. A more preferred range of sulfuric acid is 20-80 g / l.
[0042]
The use temperature of the pickling solution according to the present invention is not particularly limited, and the higher the temperature, the faster the pickling rate. However, if the temperature is excessively high, the self-decomposition of hydrogen peroxide in the pickling solution is severe. Therefore, it is desirable to use at 50 ° C. or lower.
[0043]
【Example】
(Example 1)
A stainless steel hot-rolled steel strip having the chemical composition shown in Table 1 was annealed and shot blasted, and specimens A to C were used, and 70 × 100 mm test pieces were cut out.
[0044]
[Table 1]
Figure 0003687314
[0045]
Table 2 shows the pickling solutions used in the test. For comparison, a conventional fluorinated acid pickling solution (10% HNO 3 -2% HF in the case of liquid No. 43 and No. 44) was also used.
[0046]
[Table 2]
Figure 0003687314
[0047]
The test piece was immersed in various pickling solutions shown in Table 2 for 120 seconds. However, the temperature of the pickling solution is liquid No. 1 to 43 are all at 50 ° C. When pickling Sample C at 44, 20% H 2 SO 4 was 80 ° C. for 80 seconds, 10% HNO 3 -2% HF was 50 ° C. for 40 seconds.
[0048]
NOx gas was measured during pickling, and the degree of remaining scale after pickling, the degree of pickling unevenness, the degree of grain boundary grooves, and the surface roughness were measured.
NOx gas during pickling was measured by placing a detection tube at a position 50 mm above the pickling vessel.
[0049]
As shown in Table 3, the evaluation of the surface of the test piece after pickling evaluated the remaining degree of scale, unevenness of pickling and the degree of occurrence of grain boundary grooves in five stages. The surface roughness was measured using a surface roughness meter (indicated by Ry (same as Rmax) defined in JIS B0601-1994).
Tables 4 to 6 show the test results.
[0050]
[Table 3]
Figure 0003687314
[0051]
[Table 4]
Figure 0003687314
[0052]
[Table 5]
Figure 0003687314
[0053]
[Table 6]
Figure 0003687314
[0054]
As is apparent from the test results of Tables 4 to 6, the test pieces pickled under the pickling conditions of the present invention had no residual scale, pickling unevenness, or grain boundary grooves. Further, the surface roughness after pickling was relatively small, and NOx gas generation during pickling was small (3 ppm or less).
[0055]
On the other hand, although it is the same component as the pickling solution of the present invention, the one whose hydrochloric acid concentration is lower than the range of the present invention (Liquid No. 29) has the scale remaining on the entire surface and the hydrochloric acid concentration is high (Liquid No. .30) was severely roughened by pickling (high surface roughness).
[0056]
Moreover, the thing with a low nitric acid density | concentration (liquid No. 31) had the thick grain-boundary groove | channel generate | occur | produced in the test materials A and B, and the thing (liquid No. 32) with which the scale remained on the whole surface.
[0057]
Those having a low hydrofluoric acid concentration (liquid Nos. 33 and 35) have insufficient descaling and uneven pickling, and those having a high hydrofluoric acid concentration (liquids No. 34 and 36) are not descaling. Completed but rough skin. Further, pickling unevenness (gloss unevenness) was caused due to the fact that a portion where erosion due to pickling was relatively large and a portion where a small amount was likely to occur.
[0058]
On the other hand, the low hydrogen peroxide concentration (Liquid Nos. 37 and 39) generated much NOx gas, and the high hydrogen peroxide (Liquid Nos. 38 and 40) had insufficient descaling.
[0059]
Those with too much addition of sulfuric acid (Liquid Nos. 41 and 42) had large skin roughness and pickling unevenness.
Further, in the conventional nitric hydrofluoric acid pickling (liquid Nos. 43 and 44), a large amount of NOx gas was generated during pickling, and thick grain boundary grooves were generated in the test materials A and B.
[0060]
Next, a test was conducted to investigate the influence of metal ions and the effect of pickling method and time. For the specimen A, pickling times were set to 30, 60, and 90 by dipping and spraying using five types of pickling solutions (liquid Nos. 2, 5, 21, 24, and 27, all at a temperature of 50 ° C.). And pickling at 120 seconds.
Table 7 shows the pickling weight loss and the remaining scale in the above test.
[0061]
[Table 7]
Figure 0003687314
[0062]
From the test results in Table 7, the amount of pickling loss is larger when the pickling solution contains less metal ions (Liquid Nos. 5 and 24) than when no metal ions are contained (Liquid Nos. 2 and 21). It was found that there was little remaining. Further, even when a large amount of metal ions was contained (Liquid No. 27), the amount of pickling loss was not reduced by adding sulfuric acid, and the scale residue was not increased.
[0063]
Addition of sulfuric acid increases the pickling weight loss and reduces the residual scale (Comparison between liquid No. 2, 5 and liquid No. 21, 24, 27), and the spray method has more pickling weight loss than the dipping method. It was found that there was little residual scale.
[0064]
(Example 2)
A stainless steel cold-rolled steel strip having the chemical composition shown in Table 8 was subjected only to annealing in a continuous annealing pickling line, and was used as test material D, and a test piece having a size of 50 × 100 mm was cut out.
[0065]
[Table 8]
Figure 0003687314
[0066]
Neutral salt electrolysis treatment was performed on both sides of the test piece. Neutral salt electrolysis is performed in a 20% aqueous solution of sodium sulfate (80 ° C.) by repeating a cycle of 2 seconds of anodic electrolysis and 1 second of cathodic electrolysis (both current densities are 80 mA / cm 2 ) 30 times. It was.
[0067]
Subsequently, it pickled by being immersed in the pickling liquid (50 degreeC) shown in Table 2 for 120 second. The temperature condition of the pickling solution is the same as in Example 1. For comparison, pickling with a conventional nitric hydrofluoric acid pickling solution was also performed in the same manner as in Example 1.
[0068]
NOx gas was measured during pickling, and the degree of scale remaining on the surface of the test piece after pickling, the degree of pickling unevenness, the degree of grain boundary grooves, and the surface roughness were measured. Table 9 shows the evaluation method of the surface of the test piece after pickling. The measuring method of NOx gas and the measuring method of surface roughness are the same as in the case of Example 1.
Table 10 shows the pickling test results of the annealing specimens of the cold-rolled steel strip.
[0069]
[Table 9]
Figure 0003687314
[0070]
[Table 10]
Figure 0003687314
[0071]
As shown in the test results of Table 10, the test pieces pickled under the pickling conditions of the present invention had no scale residue, pickling unevenness and grain boundary grooves, and the surface roughness after pickling was relatively small. . There was little generation of NOx gas during pickling (2 ppm or less).
[0072]
On the other hand, although it contains the same components as the pickling solution of the present invention, the hydrochloric acid concentration lower than the claims of the present invention (Liquid No. 29) has scale remaining on the entire surface and the hydrochloric acid concentration is high. The thing (liquid No. 30) had a rough skin by pickling.
[0073]
Moreover, the thing with a low nitric acid density | concentration (liquid No. 31) generate | occur | produced the thick grain boundary groove | channel, and the thing with a high nitric acid density | concentration (liquid No. 32) remained the scale on the whole surface.
[0074]
Those having a low hydrofluoric acid concentration (liquid Nos. 33 and 35) have insufficient descaling and uneven pickling, and those having a high hydrofluoric acid concentration (liquids No. 34 and 36) are not descaling. Completed but rough skin.
[0075]
On the other hand, those having a low hydrogen peroxide concentration (Liquid Nos. 37 and 39) generated much NOx gas, and those having a high hydrogen peroxide concentration (Liquid Nos. 38 and 40) were insufficiently descaled.
[0076]
Those with too much addition of sulfuric acid (Liquid Nos. 41 and 42) had large skin roughness and pickling unevenness.
In addition, in the conventional nitric hydrofluoric acid pickling (Liquid No. 43), a large amount of NOx gas was generated during pickling, and thick grain boundary grooves were generated.
[0077]
Next, among the test pieces shown in Table 10, ten types of representative test pieces that had been descaled were selected, and a buffing test was performed. After polishing a 50 × 50 mm area by applying a constant pressure with a buffing machine, the 20-degree specular gloss was measured according to JIS Z8741-1983. Table 11 shows the buffing test results.
[0078]
[Table 11]
Figure 0003687314
[0079]
As is clear from the test results in Table 11, the specular gloss of the test pieces (test Nos. 44 to 48) pickled with the pickling solution of the present invention was greatly improved by polishing in a relatively short time.
[0080]
On the other hand, it contains the same components as the pickling solution of the present invention, but it is pickled with a solution having a component concentration exceeding the range of the present invention (Test Nos. 49 to 52), or acid with conventional nitric hydrofluoric acid. What was washed (Test No. 53) showed little improvement in specular gloss. This is presumably because the generated grain boundary grooves are difficult to be removed by polishing.
[0081]
【The invention's effect】
By pickling using the pickling solution for stainless steel of the present invention, it is possible to prevent the generation of NOx gas during pickling, prevent the occurrence of grain boundary grooves due to pickling, and improve buffing and gloss. It can be improved.

Claims (4)

塩酸10〜100g/l、硝酸10〜100g/l、遊離ふっ化水素酸5〜50g/l、全ふっ素量5〜200g/lおよび過酸化水素5〜30g/lを含むことを特徴とするステンレス鋼用酸洗液。Stainless steel containing hydrochloric acid 10 to 100 g / l, nitric acid 10 to 100 g / l, free hydrofluoric acid 5 to 50 g / l, total fluorine amount 5 to 200 g / l and hydrogen peroxide 5 to 30 g / l Pickling solution for steel. 請求項1のステンレス鋼用酸洗液に、さらに3価の鉄イオン、4価のチタンイオンおよび6価のチタンイオンの少なくとも1種のイオンを合計で10〜50モル/m3 含むことを特徴とするステンレス鋼用酸洗液。The pickling solution for stainless steel according to claim 1 further contains 10 to 50 mol / m 3 of at least one kind of trivalent iron ion, tetravalent titanium ion and hexavalent titanium ion in total. Pickling solution for stainless steel. 請求項1のステンレス鋼用酸洗液に、さらに硫酸10〜100g/lを含むことを特徴とするステンレス鋼用酸洗液。The pickling solution for stainless steel according to claim 1, further comprising 10 to 100 g / l of sulfuric acid. 請求項1のステンレス鋼用酸洗液に、さらに硫酸10〜100g/lと、3価の鉄イオン、4価のチタンイオンおよび6価のチタンイオンの少なくとも1種のイオンを合計で10〜100モル/m3 含むことを特徴とするステンレス鋼用酸洗液。The pickling solution for stainless steel according to claim 1 further contains 10 to 100 g / l of sulfuric acid and at least one ion of trivalent iron ion, tetravalent titanium ion and hexavalent titanium ion in a total of 10 to 100. A pickling solution for stainless steel, characterized by containing mol / m 3 .
JP31994197A 1997-11-20 1997-11-20 Pickling solution for stainless steel Expired - Fee Related JP3687314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31994197A JP3687314B2 (en) 1997-11-20 1997-11-20 Pickling solution for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31994197A JP3687314B2 (en) 1997-11-20 1997-11-20 Pickling solution for stainless steel

Publications (2)

Publication Number Publication Date
JPH11152590A JPH11152590A (en) 1999-06-08
JP3687314B2 true JP3687314B2 (en) 2005-08-24

Family

ID=18115959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31994197A Expired - Fee Related JP3687314B2 (en) 1997-11-20 1997-11-20 Pickling solution for stainless steel

Country Status (1)

Country Link
JP (1) JP3687314B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003233062A1 (en) * 2002-10-15 2004-05-04 Henkel Kommanditgesellschaft Auf Aktien Pickling or brightening/passivating solution and process for steel and stainless steel
JP4819468B2 (en) * 2005-10-05 2011-11-24 日本冶金工業株式会社 Pickling method for stainless steel sheet and method for suppressing nitrogen oxide
US7789969B2 (en) 2006-11-01 2010-09-07 Applied Materials, Inc. Methods and apparatus for cleaning chamber components
DE102014111779A1 (en) 2014-08-18 2016-02-18 Iva Industrieöfen Gmbh Process for producing a retort for a nitriding furnace and retort
CN115074740A (en) * 2022-05-11 2022-09-20 哈尔滨焊接研究院有限公司 Low-nickel austenitic stainless steel solid welding wire surface cleaning solution and cleaning method

Also Published As

Publication number Publication date
JPH11152590A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
JP2819378B2 (en) Pickling method for stainless steel
EP2660364B1 (en) Eco-friendly high-speed pickling process for producing a low-chrome ferrite-based cold-rolled stainless steel sheet having superior surface quality
KR100777171B1 (en) Pickling or brightening/passivating solution and process for steel and stainless steel
JP2655770B2 (en) How to pickle and passivate stainless steel without using nitric acid
EP0769575A1 (en) Process for stainless steel pickling and passivation without using nitric acid
JP6420251B2 (en) Polishing and passivating stainless steel surfaces
US6554908B1 (en) Process for pickling stainless steel in the absence of nitric acid and in the presence of chloride ions
US2876144A (en) Metal pickling solutions and methods
JP3687314B2 (en) Pickling solution for stainless steel
KR100876218B1 (en) Surface finish method after descaling stainless steel
JP6031606B2 (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
US3429792A (en) Method of electrolytically descaling and pickling steel
US7229506B2 (en) Process for pickling martensitic or ferritic stainless steel
JPH10324986A (en) Alkaline molten salt bath for descaling high-chromium stainless steel
US5332446A (en) Method for continuous pickling of steel materials on a treatment line
JPH072993B2 (en) Baths and methods for chemical polishing of stainless steel surfaces.
US3197341A (en) Method and composition for descaling stainless steels and related alloys
JP4316029B2 (en) Stainless steel pickling method and pickling solution
JP3105975B2 (en) Glossy chemical polishing treatment liquid for hardened steel members and chemical polishing treatment method for the material
JPH11256374A (en) Pickling liquid for stainless steel and titanium and its pickling method
JP2966188B2 (en) Descaling method for ferritic stainless steel annealed steel strip
KR101528052B1 (en) The Method for Pickling High Cromium Ferrite Stainless Cold Steel Strip using Mixed Acid
JP4322726B2 (en) Manufacturing method of stainless steel sheet with excellent surface gloss
JP2000144462A (en) METHOD OF SURFACE FINISH FOR HIGH Cr STAINLESS STEEL SHEET
JPS6261672B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees