US3230160A - Electrolyte for electrochemical material removal - Google Patents

Electrolyte for electrochemical material removal Download PDF

Info

Publication number
US3230160A
US3230160A US224834A US22483462A US3230160A US 3230160 A US3230160 A US 3230160A US 224834 A US224834 A US 224834A US 22483462 A US22483462 A US 22483462A US 3230160 A US3230160 A US 3230160A
Authority
US
United States
Prior art keywords
electrolyte
sodium nitrite
water
per liter
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US224834A
Inventor
George C Kennedy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US224834A priority Critical patent/US3230160A/en
Priority to CH862663A priority patent/CH428369A/en
Priority to FR942765A priority patent/FR1367099A/en
Priority to DEG38611A priority patent/DE1258232B/en
Priority to GB36531/63A priority patent/GB985158A/en
Application granted granted Critical
Publication of US3230160A publication Critical patent/US3230160A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/08Working media
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

United States Patent 3,230,160 ELECTROLYTE FOR ELECTROCHEMICAL MATERIAL REMOVAL George C. Kennedy, Cincinnati, Ulric, assignor to General Electric Company, a corporation of New York No Drawing. Filed Sept. 19, 1962, Ser. No. 224,834 3 Claims. (Cl. 204-143) This invention relates to electrolyte solutions and, more particularly, to an electrolyte especially suitable for electromechanical material removal processes.
Methods and equipment for the electrochemical removal of material from a workpiece have-been known for a great number of years. With such method, which is the opposite of electrodeposition, and in the use of such equipment, the workpiece from which material is to 'be removed is the anode and a tool is the cathode. In the presence of a suitable electrolyte, current is passed between the cathode and the anode to bring about deplating of material of the anode-workpiece.
More recent forms of this basic procedure for removing material electrochemically rather than by means of an arc discharge have taken the form of general removal of surfaces or edges as shown by US. Patent 2,590,927--Brandt et al., the form of electrolytically cutting metal as shown by US. Patent 2,739,935Kehl et al., the form of electrolytic grinding processes and apparatus one example of which is shown in US. Patent 2,746,9l7- Comstock and the selective electrolytic material removal to form various types of cavities and holes as shown by patent application S.N. 823,975Crawford et al., filed June 30, 1959, and abandoned and which is assigned to the assignee of the present invention.
One of the essential elements in all of these processes is the electrolyte which conducts current between the two electrodes allowing material to be eroded electrochemically from the workpiece. In order to provide adequate conductivity in electrolytes, thus to lower the resistance to flow of current between the electrodes, a variety of salts, acids and the like are used. However, many electrolytes are highly corrosive to equipment, or produce intergranular attack on material of the workpiece. This is particularly true when the electrolyte conductivity is adjusted to provide optimum feed rates for the tool and workpiece one toward the other in order to achieve maximum material removal rates.
It is a principal object of this invention to provide an electrolyte capable of 1) protecting ordinary, commonly used metallic equipment from corrosion, (2) eliminating intergranular attack on a metallic workpiece and (3) operating at optimum material removal rates with regard to conductivity through the solution.
Another object is to provide an electrolyte which can be inexpensively and easily prepared, which does not become rancid and which is safe with regard to the health of workmen.
Briefly, the electrolyte of the present invention consists essentially of an aqueous solution of 90240 grams of sodium formate and about 20-80 grams of sodium nitrite per liter of water. The most effective and preferred form of the invention consists essentially of about 120 grams of sodium formate and about 26 grams of sodium nitrite per liter of water.
Of the two salts included in electrolyte of this invention, the sodium formate provides the principal amount of electrical conductivity while the sodium nitrite provides principally corrosion resistance. However both are salts which will ionize in water so that both will contribute some conductivity to the electrolyte.
As sodium formate is dissolved in water, the solutions resistivity decreases from about 20 ohms at about Patented Jan. 18, 1966 50 grams per liter to about 9 ohms at 400 grams per liter. As sodium formate and sodium nitrite are combined in an aqueous solution, the resistivity further decreases so that at 50 grams per liter of sodium formate and about 175 grams per liter of sodium nitrite, the specific resistivity of an aqueous solution is between 7 and 7.5 ohms. This same condition exists up to a concentration of about 300 grams per liter of sodium formate with the same amount of sodium nitrite. As sodium nitrite is added to a solution ranging between about 50 and 300 grams per liter of sodium formate, the specific resistivity of the solution progressively decreases until at about 400 grams per liter of sodium nitrite the specific resistivity is between 5 and 5.5.
The effect of sodium nitrite in water as a corrosion inhibiting agent is well known. Therefore, in order to provide a combination of corrosion resistance for equipment and workpiece from the effect of sodium nitrite as well as low specific resistivity and hence high conductivity, as provided by the combination of sodium nitrite and sodium formate, it would seem that substantial amounts of sodium nitrite would be more appropriate. However, it has been found that certain amounts of sodium nitrite are detrimental to the workpiece by causing intergranular attack. It is believed that such effect is partly due to the existence of stray current as a result of the lower resistivity of the solutions including greater amounts of sodium nitrite. Thus, a well balanced electrolyte for electrochemical material removal need not necessarily have the highest conductivity.
A chart of aqueous solutions of the two salts sodium formate and sodium nitrite show specific resistivity areas which might appear more favorable than that of the present invention. However, it has been found that the particular composition of 120-240 grams of sodium formate and 2570 grams of sodium nitrite per liter of water, unexpectedly provides an electrolyte having an overall balance of (1) relatively low specific resistivity, (2) resistance to corrosion of equipment and (3) resistance to intergranular attack on workpiece material. It has been found that the conductivity of aqueous electrolyte solutions including less than about grams of sodium formate and sodium nitrite up to about 80 grams per liter of water have excessively high specific resistivity. Therefore it is less desirable and less practical an electrolyte.
The data of the following Table I is typical of a wide variety of solutions studied in connection with the present invention. As shown :by Examples 1, 2 and 3, the range of 2570 grams of sodium nitrite and -240 grams of sodium formate per liter of water is specifically preferred with regard to pitting of the specimen. Examples 4 and 5 show that sodium nitrite alone or in the presence of too much sodium formate will not prevent pitting of the specimen. In addition, Example 6 shows that a large amount of sodium nitrite can do more harm from a pitting corrosion point of view than can the relatively large amount of sodium formate in Example 5.
TABLE I Aqueous solutions Example NaNOz (5/ HCOONa Specimen (al Condition The most desirable amount of sodium formate in the electrolyte of the present invention is at about 1 pound per gallon of water (about 120 grams per liter of Water) in the presence of a particular amount of sodium nitrite. The data of Table II shows that with such an amount of sodium formate, less than about 20 grams per liter of sodium nitrite will result in a large amount of corrosion, with about 20 grams per liter representing a point at which only slight corrosion of the specimen takes place. It Was found that between about 25 and 80 grams of sodium nitrite per liter of Water in such a solution did not corrode the specimen Whereas about 80 grams per liter resulted in the specimens surface being pitted.
TABLE II Aqueous solution with 120 g./l. of HCOONa NaNo (g./l.): Results 16 Very corroded. 20 Slightly corroded. 25 No corrosion. 80 Surface pitted.
Thus it can be seen that an unusual combination of resistance to surface corrosion and resistance to intergranular attack, along with proper conductivity, can be achieved in an electrolyte within the range of the present invention. This is particularly true of an electrolyte consisting essentially of, 25-70 grams of sodium nitrite and 120-240 grams of sodium formate per liter of water. From an economical and health point of view along with optimum material removal rates, it has been found that an electrolyte including about 25 grams of sodium nitrite and about 120 grams of sodium formate for each liter of water is particularly desirable.
An electrolyte consisting of sodium chloride and water has been used for electrochemical machining processes where corrosion and pitting is not a problem. However, it has been found that solutions of sodium chloride and sodium nitrite in a wide variety of proportions does not inhibit severe surface pitting of the workpiece or equipment subject to such corrosion with or without various amounts of sodium formate.
Although this invention has been described in connection with certain specific examples, these are not meant to be limitations on the scope of the invention. Those skilled in the art of electrolytes and electrochemical material removal will recognize the variations and modifications of which the invention is capable.
What is claimed is:
1. An aqueous solution, suitable for use as an electrolyte in electrochemical material removal, consisting of sodium formate, sodium nitrite and water, the sodium formate content being -240 grams per liter of water and the sodium nitrite content being 20-80 grams per liter of water.
2. An aqueous solution, suitable for use as an electrolyte in electrochemical material removal, consisting of sodium formate, sodium nitrite and water, the sodium formate content being -240 grams per liter of water and the sodium nitrite content being 25-70 grams per liter of water.
3. An aqueous solution, suitable for use as an electrolyte in electrochemical material removal, consisting of sodium formate, sodium nitrite and water, the sodium formate content being about 120 grams per liter of water and the sodium nitrite content being about 25 grams per liter of water.
References Cited by the Examiner UNITED STATES PATENTS 2,939,825 6/1960 Faust et a1. 204142 3,004,910 10/1961 Keeleric 204-143 3,046,206 7/1962 Johnson et a1. 204-l43 JOHN H. MACK, Primary Examiner.

Claims (1)

1. AN AQUEOUS SOLUTION, SUITABLE FOR USE AS AN ELECTROLYTE IN ELECTROCHEMICAL MATERIAL REMOVAL, CONSISTING OF SODIUM FORMATE, SODIUM NITRITE AND WATER, THE SODIUM FORMATE CONTENT BEING 90-240 GRAMS PER LITER OF WATER NAD THE SODIUM NITRITE CONTENT BEING 20-80 GRAMS PER LITER OF WATER.
US224834A 1962-09-19 1962-09-19 Electrolyte for electrochemical material removal Expired - Lifetime US3230160A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US224834A US3230160A (en) 1962-09-19 1962-09-19 Electrolyte for electrochemical material removal
CH862663A CH428369A (en) 1962-09-19 1963-07-10 electrolyte
FR942765A FR1367099A (en) 1962-09-19 1963-07-26 electrolyte
DEG38611A DE1258232B (en) 1962-09-19 1963-09-05 Electrolyte for electrolytic metal removal
GB36531/63A GB985158A (en) 1962-09-19 1963-09-17 Electrolyte for electro-chemical removal of materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US224834A US3230160A (en) 1962-09-19 1962-09-19 Electrolyte for electrochemical material removal

Publications (1)

Publication Number Publication Date
US3230160A true US3230160A (en) 1966-01-18

Family

ID=22842425

Family Applications (1)

Application Number Title Priority Date Filing Date
US224834A Expired - Lifetime US3230160A (en) 1962-09-19 1962-09-19 Electrolyte for electrochemical material removal

Country Status (4)

Country Link
US (1) US3230160A (en)
CH (1) CH428369A (en)
DE (1) DE1258232B (en)
GB (1) GB985158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363708A (en) * 1980-05-24 1982-12-14 Daimler-Benz Aktiengesellschaft Process for exposing silicon crystals on the surface of a component of an aluminum alloy of high silicon content
US5911864A (en) * 1996-11-08 1999-06-15 Northrop Grumman Corporation Method of fabricating a semiconductor structure
US11775079B2 (en) 2020-03-26 2023-10-03 Snap Inc. Navigating through augmented reality content

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939825A (en) * 1956-04-09 1960-06-07 Cleveland Twist Drill Co Sharpening, shaping and finishing of electrically conductive materials
US3004910A (en) * 1952-09-18 1961-10-17 George F Keeleric Apparatus for electrolytic cutting, shaping and grinding
US3046206A (en) * 1955-02-23 1962-07-24 Richard C Johnson Electro-chemical machining system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE748265C (en) * 1941-01-22 1944-10-31 Dr Phil Adolf Robert Kroener Electrolytic etching process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004910A (en) * 1952-09-18 1961-10-17 George F Keeleric Apparatus for electrolytic cutting, shaping and grinding
US3046206A (en) * 1955-02-23 1962-07-24 Richard C Johnson Electro-chemical machining system
US2939825A (en) * 1956-04-09 1960-06-07 Cleveland Twist Drill Co Sharpening, shaping and finishing of electrically conductive materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363708A (en) * 1980-05-24 1982-12-14 Daimler-Benz Aktiengesellschaft Process for exposing silicon crystals on the surface of a component of an aluminum alloy of high silicon content
US5911864A (en) * 1996-11-08 1999-06-15 Northrop Grumman Corporation Method of fabricating a semiconductor structure
US11775079B2 (en) 2020-03-26 2023-10-03 Snap Inc. Navigating through augmented reality content

Also Published As

Publication number Publication date
DE1258232B (en) 1968-01-04
CH428369A (en) 1967-01-15
GB985158A (en) 1965-03-03

Similar Documents

Publication Publication Date Title
US3409522A (en) Electrochemical machining of titanium and alloys thereof
US3873512A (en) Machining method
US3619390A (en) Aqueous electrolytic stripping bath to remove metal coatings from bases of steel
JPH03501753A (en) Electrochemical processing method for articles made of conductive materials
US4404074A (en) Electrolytic stripping bath and process
US3230160A (en) Electrolyte for electrochemical material removal
NL8102696A (en) ELECTROLYTIC BATH AND METHOD FOR ELECTROLYTIC REMOVAL OF SUBSTRATES USING THIS BATH.
US2542779A (en) Electropolishing composition and process
US2745800A (en) Electroplating with iron
US3242062A (en) Fluorine-cuntaining electrolyte for electrolytic cutting of metals
US4233124A (en) Electrolytic stripping bath and process
US2578898A (en) Electrolytic removal of metallic coatings from various base metals
US3669858A (en) Electrochemical machining
US3632490A (en) Method of electrolytic descaling and pickling
US2456281A (en) Removing incrustations from lead anodes used for chromium plating
US1314842A (en) And raymond m
US3424054A (en) Method of machining metals and apparatus therefor
US3630865A (en) Sequestering agents as additives for alkali chlorates
US3401103A (en) Electrochemical machining process and electrolyte composition of chloride and sulfates
US3129153A (en) Dissolution of copper
JP2602621B2 (en) Electropolishing method for stainless steel members
US3429791A (en) Electrochemical machining ferrous metals using a film forming electrolyte including fluoride salts
Boden et al. Reduction of stray-current attack in electrochemical machining
US2994649A (en) Process for electrodepositing lead dioxide
SU1018839A1 (en) Method of dimensional electrochemical working of tungsten and tungsten-base alloys