JP2602067B2 - Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone - Google Patents

Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone

Info

Publication number
JP2602067B2
JP2602067B2 JP63171924A JP17192488A JP2602067B2 JP 2602067 B2 JP2602067 B2 JP 2602067B2 JP 63171924 A JP63171924 A JP 63171924A JP 17192488 A JP17192488 A JP 17192488A JP 2602067 B2 JP2602067 B2 JP 2602067B2
Authority
JP
Japan
Prior art keywords
flounder
leu
growth hormone
ser
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63171924A
Other languages
Japanese (ja)
Other versions
JPH0223884A (en
Inventor
邦夫 中島
正則 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gene KK
Original Assignee
Nippon Gene KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gene KK filed Critical Nippon Gene KK
Priority to JP63171924A priority Critical patent/JP2602067B2/en
Publication of JPH0223884A publication Critical patent/JPH0223884A/en
Application granted granted Critical
Publication of JP2602067B2 publication Critical patent/JP2602067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、組換え型ヒラメ成長ホルモン、ヒラメ成長
ホルモン構造遺伝子、ヒラメ成長ホルモン生産用組換え
プラスミド、ヒラメプレ成長ホルモン、ヒラメプレ成長
ホルモン構造遺伝子、ヒラメプレ成長ホルモン構造遺伝
子組換えプラスミド、ヒラメ成長ホルモン及びヒラメプ
レ成長ホルモンの製造方法に関するものである。
The present invention relates to a recombinant flounder growth hormone, a flounder growth hormone structural gene, a recombinant plasmid for flounder growth hormone production, a flounder pre-growth hormone, a flounder pre-growth hormone structural gene, Field of the Invention The present invention relates to a recombinant plasmid of Japanese flounder pre-growth hormone structural gene, Japanese flounder growth hormone, and a method for producing Japanese flounder pre-growth hormone.

[従来の技術] 魚類における固体の成長には、哺乳類や鳥類と同様
に、それぞれの種族に特有なアミノ酸配列構造をもつ成
長ホルモンが作用し必須の働きをしている。
[Prior Art] As in mammals and birds, growth hormone having an amino acid sequence structure specific to each species acts on solid growth in fish, and plays an essential role.

最近の研究によって魚類の種族間における成長ホルモ
ン構造の差異は相当に著しいものであることが判明して
いる。例えばサケ成長ホルモンとウナギ成長ホルモンと
の相同性は48%であり(K.YAMAGUCHIら、Gen.Comp.Endo
crinol.66 477(1987))、サケ成長ホルモンとブリ成
長ホルモンの相同性は68%で、ブリ成長ホルモンとウナ
ギ成長ホルモンの相同性は42%となっている。(M.WATA
HIKIら、Gen.Comp.Endorinol.70印刷中(1988))。
Recent studies have shown that differences in growth hormone structure among fish species are significant. For example, the homology between salmon growth hormone and eel growth hormone is 48% (K. YAMAGUCHI et al., Gen. Comp. Endo
crinol. 66 477 (1987)), the homology between salmon growth hormone and yellowtail growth hormone is 68%, and the homology between yellowtail growth hormone and eel growth hormone is 42%. (M.WATA
HIKI et al., Printing Gen.Comp.Endorinol.70 (1988)).

これら魚類成長ホルモン間の相同性は、ヒト成長ホル
モンとサル成長ホルモンとの相同性98%(C.H.Liら、Ar
ch.Biochem.Biophys.245 287(1986))に比較してもは
るかに低いものである。
The homology between these fish growth hormones is 98% homology between human and monkey growth hormone (CHLi et al., Ar
ch. Biochem. Biophys. 245 287 (1986)).

この点からも、成長ホルモンによって成長を促進する
には、魚類には各種族に固有の成長ホルモンを投与する
方法が最も自然である。
From this point of view, the most natural way to promote growth by growth hormone is to administer growth hormones specific to various species to fish.

実際にサケ成長ホルモンをサケ科の魚類に投与すると
その成長を著しく促進する効果が得られることからサケ
・マス養殖への応用が考えられている(特開昭60−2147
98)。
Actually, when salmon growth hormone is administered to salmonid fish, an effect of remarkably promoting its growth can be obtained, and thus application to salmon and trout aquaculture has been considered (Japanese Patent Application Laid-Open No. 60-2147).
98).

またブリ成長ホルモンについてもハマチ養殖への応用
が考えられている(特願昭61−174385号及び特願昭62−
184083号)。
The application of yellowtail growth hormone to hamachi cultivation is also being considered (Japanese Patent Application Nos. 61-174385 and 61-174385).
184083).

さらに、ヒラメ養殖も本邦において盛んに行なわれる
ようになり、養殖ヒラメの成長促進をもたらすヒラメ成
長ホルモンの開発と量産は目下重要な課題の一つとなっ
ている。
Furthermore, flounder cultivation has also become popular in Japan, and the development and mass production of flounder growth hormone, which promotes the growth of cultured flounder, is one of the most important issues at present.

[発明が解決しようとする課題] しかるに天然のヒラメ成長ホルモンはヒラメ脳下垂体
に極く微量に含まれているに過ぎず、構造解析すらもな
されていない現状である。
[Problems to be Solved by the Invention] However, the natural flounder growth hormone is contained only in a trace amount in the flounder pituitary gland, and no structural analysis has been performed.

そこで上記の諸問題に鑑み、本発明者らは、遺伝子操
作手段を使用してヒラメ成長ホルモンを大量に得ること
を目的として本発明に至った。
In view of the above problems, the present inventors have reached the present invention for the purpose of obtaining a large amount of flounder growth hormone using a genetic engineering means.

さらに付言すると、本発明は、ヒラメ成長ホルモン構
造遺伝子をクローニングして塩基配列を決定するととも
にヒラメ成長ホルモンのアミノ酸配列構造を解読し、ヒ
ラメ成長ホルモンを大腸菌等によって生産することによ
り、生理作用を解明すると同時にその強力な成長促進作
用をヒラメ養殖に応用することを可能にするものであ
る。
Furthermore, the present invention elucidates the physiological effects by cloning the flounder growth hormone structural gene, determining the nucleotide sequence, decoding the amino acid sequence structure of flounder growth hormone, and producing flounder growth hormone by Escherichia coli or the like. At the same time, it makes it possible to apply its strong growth promoting effect to flounder aquaculture.

さらに詳しく付言すると、まずヒラメ成長ホルモン構
造遺伝子を単離、増幅してその塩基配列を決定し、ホル
モンタンパク質のアミノ酸配列構造を解読することを目
的とした。
More specifically, the object was to first isolate and amplify the flounder growth hormone structural gene, determine its base sequence, and to decode the amino acid sequence structure of the hormone protein.

次にヒラメ成長ホルモンの構造遺伝子を微生物の遺伝
子に組込んで発現ベクターを構築し、微生物によってヒ
ラメ成長ホルモンを量産することを目的とした。
Next, the purpose of the present invention was to construct an expression vector by incorporating the structural gene of flounder growth hormone into the gene of a microorganism, and to mass-produce flounder growth hormone by the microorganism.

[課題を解決するための手段] 本発明の第1の発明に係るヒラメ成長ホルモンは、下
記の構造を有するペプチドである。
[Means for Solving the Problems] The flounder growth hormone according to the first invention of the present invention is a peptide having the following structure.

Gln−Pro−Ile−Thr−Glu−Asn−Gln−Arg−Leu−Phe−
Ser−Ile−Ala−Val−Gly−Arg−Val−Gln−Tyr−Leu−
His−Leu−Val−Ala−Lys−Lys−Leu−Phe−Ser−Asp−
Phe−Glu−Asn−Ser−Leu−Gln−Leu−Glu−Asp−Gln−
Arg−Leu−Leu−Asn−Lys−Ile−Ala−Ser−Lys−Glu−
Phe−Cys−His−Ser−Asp−Asn−Phe−Leu−Ser−Pro−
Ile−Asp−Lys−His−Glu−Thr−Gln−Gly−Ser−Ser−
Val−Gln−Lys−Leu−Leu−Ser−Val−Ser−Tyr−Arg−
Leu−Ile−Glu−Ser−Trp−Glu−Phe−Phe−Ser−Arg−
Phe−Leu−Val−Ala−Ser−Phe−Ala−Val−Arg−Thr−
Gln−Val−Thr−Ser−Lys−Leu−Ser−Glu−Leu−Lys−
Met−Gly−Leu−Leu−Lys−Leu−Ile−Glu−Ala−Asn−
Gln−Asp−Gly−Ala−Gly−Gly−Phe−Ser−Glu−Ser−
Ser−Val−Leu−Gln−Leu−Thr−Pro−Tyr−Gly−Asn−
Ser−Glu−Leu−Phe−Ala−Cys−Phe−Lys−Lys−Asp−
Met−His−Lys−Val−Glu−Thr−Tyr−Leu−Thr−Val−
Ala−Lys−Cys−Arg−Leu−Phe−Pro−Glu−Ala−Asn−
Cys−Thr−Leu 本発明の第2の発明に係るヒラメ成長ホルモン構造遺
伝子は下記のアミノ酸配列をコードするヒラメ生成ホル
モン構造遺伝子である。
Gln-Pro-Ile-Thr-Glu-Asn-Gln-Arg-Leu-Phe-
Ser-Ile-Ala-Val-Gly-Arg-Val-Gln-Tyr-Leu-
His-Leu-Val-Ala-Lys-Lys-Leu-Phe-Ser-Asp-
Phe-Glu-Asn-Ser-Leu-Gln-Leu-Glu-Asp-Gln-
Arg-Leu-Leu-Asn-Lys-Ile-Ala-Ser-Lys-Glu-
Phe-Cys-His-Ser-Asp-Asn-Phe-Leu-Ser-Pro-
Ile-Asp-Lys-His-Glu-Thr-Gln-Gly-Ser-Ser-
Val-Gln-Lys-Leu-Leu-Ser-Val-Ser-Tyr-Arg-
Leu-Ile-Glu-Ser-Trp-Glu-Phe-Phe-Ser-Arg-
Phe-Leu-Val-Ala-Ser-Phe-Ala-Val-Arg-Thr-
Gln-Val-Thr-Ser-Lys-Leu-Ser-Glu-Leu-Lys-
Met-Gly-Leu-Leu-Lys-Leu-Ile-Glu-Ala-Asn-
Gln-Asp-Gly-Ala-Gly-Gly-Phe-Ser-Glu-Ser-
Ser-Val-Leu-Gln-Leu-Thr-Pro-Tyr-Gly-Asn-
Ser-Glu-Leu-Phe-Ala-Cys-Phe-Lys-Lys-Asp-
Met-His-Lys-Val-Glu-Thr-Tyr-Leu-Thr-Val-
Ala-Lys-Cys-Arg-Leu-Phe-Pro-Glu-Ala-Asn-
Cys-Thr-Leu The flounder growth hormone structural gene according to the second invention of the present invention is a flounder-forming hormone structural gene encoding the following amino acid sequence.

本発明の第3の発明に係る組換えプラスミドは前記第
2の発明のアミノ酸配列をコードするヒラメ成長ホルモ
ン構造遺伝子を含有するものである。
The recombinant plasmid according to the third invention of the present invention contains a flounder growth hormone structural gene encoding the amino acid sequence of the second invention.

本発明の第4の発明に係るヒラメ成長ホルモン構造遺
伝子は下記のアミノ酸配列をコードするものである。
The flounder growth hormone structural gene according to the fourth invention of the present invention encodes the following amino acid sequence.

本発明の第5の発明に係る組換えプラスミドは第4の
発明のアミノ酸配列をコードるヒラメ成長ホルモン構造
遺伝子を含有するものである。
The recombinant plasmid according to the fifth invention of the present invention contains a flounder growth hormone structural gene encoding the amino acid sequence of the fourth invention.

本発明の第6図の発明に係る組換え型ヒラメプレ成長
ホルモンは少なくとも下記の構造を有するポリペプチド
である。
The recombinant flounder pre-growth hormone according to the invention of FIG. 6 of the present invention is a polypeptide having at least the following structure.

Met−Asn−Arg−Val−Ile−Leu−Leu−Leu−Ser−Val−
Met−Cys−Val−Gly−Val−Ser−Ser−Gln−Pro−Ile−
Thr−Glu−Asn−Gln−Arg−Leu−Phe−Ser−Ile−Ala−
Val−Gly−Arg−Val−Gln−Tyr−Leu−His−Leu−Val−
Ala−Lys−Lys−Leu−Phe−Ser−Asp−Phe−Glu−Asn−
Ser−Leu−Gln−Leu−Glu−Asp−Gln−Arg−Leu−Leu−
Asn−Lys−Ile−Ala−Ser−Lys−Glu−Phe−Cys−His−
Ser−Asp−Asn−Phe−Leu−Ser−Pro−Ile−Asp−Lys−
His−Glu−Thr−Gln−Gly−Ser−Ser−Val−Gln−Lys−
Leu−Leu−Ser−Val−Ser−Tyr−Arg−Leu−Ile−Glu−
Ser−Trp−Glu−Phe−Phe−Ser−Arg−Phe−Leu−Val−
Ala−Ser−Phe−Ala−Val−Arg−Thr−Gln−Val−Thr−
Ser−Lys−Leu−Ser−Glu−LeuLys−−Met−Gly−Leu−
Leu−Lys−Leu−Ile−Glu−Ala−Asn−Gln−Asp−Gly−
Ala−Gly−Gly−Phe−Ser−Glu−Ser−Ser−Val−Leu−
Gln−Leu−Thr−Pro−Tyr−Gly−Asn−Ser−Glu−Leu−
Phe−Ala−Cys−Phe−Lys−Lys−Asp−Met−His−Lys−
Val−Glu−Thr−Tyr−Leu−Thr−Val−Ala−Lys−Cys−
Arg−Leu−Phe−Pro−Glu−Ala−Asn−Cys−Thr−Leu 本発明の第7の発明に係るヒラメプレ成長ホルモン構
造遺伝子は第6の発明のアミノ酸配列をコードするもの
である。
Met-Asn-Arg-Val-Ile-Leu-Leu-Leu-Ser-Val-
Met-Cys-Val-Gly-Val-Ser-Ser-Gln-Pro-Ile-
Thr-Glu-Asn-Gln-Arg-Leu-Phe-Ser-Ile-Ala-
Val-Gly-Arg-Val-Gln-Tyr-Leu-His-Leu-Val-
Ala-Lys-Lys-Leu-Phe-Ser-Asp-Phe-Glu-Asn-
Ser-Leu-Gln-Leu-Glu-Asp-Gln-Arg-Leu-Leu-
Asn-Lys-Ile-Ala-Ser-Lys-Glu-Phe-Cys-His-
Ser-Asp-Asn-Phe-Leu-Ser-Pro-Ile-Asp-Lys-
His-Glu-Thr-Gln-Gly-Ser-Ser-Val-Gln-Lys-
Leu-Leu-Ser-Val-Ser-Tyr-Arg-Leu-Ile-Glu-
Ser-Trp-Glu-Phe-Phe-Ser-Arg-Phe-Leu-Val-
Ala-Ser-Phe-Ala-Val-Arg-Thr-Gln-Val-Thr-
Ser-Lys-Leu-Ser-Glu-LeuLys--Met-Gly-Leu-
Leu-Lys-Leu-Ile-Glu-Ala-Asn-Gln-Asp-Gly-
Ala-Gly-Gly-Phe-Ser-Glu-Ser-Ser-Val-Leu-
Gln-Leu-Thr-Pro-Tyr-Gly-Asn-Ser-Glu-Leu-
Phe-Ala-Cys-Phe-Lys-Lys-Asp-Met-His-Lys-
Val-Glu-Thr-Tyr-Leu-Thr-Val-Ala-Lys-Cys-
Arg-Leu-Phe-Pro-Glu-Ala-Asn-Cys-Thr-Leu The flounder pre-growth hormone structural gene according to the seventh invention of the present invention encodes the amino acid sequence of the sixth invention.

本発明の第8の発明に係る組換えプラスミドは第6の
発明のアミノ酸配列をコードするヒラメプレ成長ホルモ
ン構造遺伝子を含有するものである。
The recombinant plasmid according to the eighth invention of the present invention contains a flounder pre-growth hormone structural gene encoding the amino acid sequence of the sixth invention.

本発明の第9の発明に係る組換え型ヒラメ成長ホルモ
ン又は組換え型ヒラメプレ成長ホルモンの製造方法は第
3の発明に記載の組換えプラスミド又は第5図の発明に
記載の組換えプラスミド又は第8の発明に記載の組換え
プラスミドを導入した菌又は細胞を培養基中に培養し、
該培養基中に蓄積された第1の発明又は第6の発明に記
載の組換え型ヒラメ成長ホルモン又は組換え型ヒラメプ
レ成長ホルモンを分離精製するものである。
The method for producing recombinant flounder growth hormone or recombinant flounder pre-growth hormone according to the ninth invention of the present invention comprises the recombinant plasmid described in the third invention or the recombinant plasmid described in the invention of FIG. A bacterium or a cell into which the recombinant plasmid according to the invention of 8 is introduced is cultured in a culture medium,
A recombinant flounder growth hormone or a recombinant flounder pre-growth hormone according to the first or sixth aspect of the present invention, which is accumulated in the culture medium.

本発明者らは、ヒラメ脳下垂体よりプレ成長ホルモン
mRNAを抽出してそれに対する相補鎖DNAを酸素的に合成
して二重鎖としたのち大腸菌プラスミドに組込み、ヒラ
メ成長ホルモン構造遺伝子増幅プラスミドを樹立した。
次いでその組換えプラスミドを大腸菌に導入して培養増
幅した後、ヒラメ成長ホルモンの構造遺伝子の塩基配列
を決定するとともにホルモンタンパク質の一次構造(ア
ミノ酸配列)を解読した。
The present inventors have developed pre-growth hormone from flounder pituitary gland.
The mRNA was extracted and its complementary DNA was synthesized oxygenically to form a double-stranded DNA, which was then incorporated into an Escherichia coli plasmid to establish a flounder growth hormone structural gene amplification plasmid.
Next, the recombinant plasmid was introduced into Escherichia coli and cultured, and then the base sequence of the structural gene of flounder growth hormone was determined, and the primary structure (amino acid sequence) of the hormone protein was decoded.

さらに本発明者らは得られたヒラメ成長ホルモン構造
遺伝子を大腸菌のpBR322プラスミド由来の発現ベクター
に組込み、ヒラメ成長ホルモン産生大腸菌プラスミドを
構築した。構築されたプラスミドを大腸菌のDH1株、JM1
03株、JM109株(C.Yanisch−Perronら Gene,33,103−1
19(1985))などに導入してヒラメ成長ホルモン生産大
腸菌株として確立した後、これらの菌株をβ−D−イソ
プロピルチオガラクトシド(IPTG)を含む培地中で培養
することにより菌体内に全菌体タンパク質の5から10%
の濃度にヒラメ成長ホルモンを生産させることに成功
し、ここに本発明を完成した。
Furthermore, the present inventors incorporated the obtained flounder growth hormone structural gene into an expression vector derived from pBR322 plasmid of Escherichia coli to construct a flounder growth hormone-producing Escherichia coli plasmid. Escherichia coli DH1 strain, JM1
03 strains, JM109 strains (C. Yanisch-Perron et al., Gene, 33 , 103-1
19 (1985)) and established as flounder growth hormone-producing Escherichia coli strains, and then culturing these strains in a medium containing β-D-isopropylthiogalactoside (IPTG). 5 to 10% of protein
And succeeded in producing Japanese flounder growth hormone, and completed the present invention.

以下に本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail.

本発明の第6乃至8の発明は、ヒラメ脳下垂体組織由
来の樹立されたヒラメプレ成長ホルモン及びヒラメプレ
成長ホルモン構造遺伝子及びヒラメプレ成長ホルモン構
造遺伝子組換え大腸菌プラスミドに関するものでる。
The sixth to eighth inventions of the present invention relate to established flounder pre-growth hormone, flounder pre-growth hormone structural gene, and flounder pre-growth hormone structural gene recombinant E. coli plasmid derived from flounder pituitary tissue.

上記3発明は次のようにして樹立された。 The above three inventions were established as follows.

ヒラメから摘出したヒラメ脳下垂体組織をグアニジウ
ムチオシアネート溶液中で破砕し、遠心分離によりRNA
画分を集め、得られたRNA画分をオリゴd(T)カラム
に通してポリ(A)末尾を有するポリ(A)+RNA(メッ
センジャーRNA)を濃縮した。
Flounder pituitary tissue isolated from flounder is disrupted in guanidinium thiocyanate solution and centrifuged to remove RNA.
Fractions were collected, and the obtained RNA fraction was passed through an oligo d (T) column to concentrate poly (A) + RNA (messenger RNA) having a poly (A) tail.

濃縮したポリ(A)+RNAをプラスミドpSI4001(K.Izu
iら、Nucleic Acids Res.14 1615(1986))のアンピシ
リン耐性遺伝子と77個のd(T)連鎖をもつ全長2.5kb
のクローニング用プライマーと結合させ、逆転写酵素で
ポリ(A)+RNAの相補鎖DNAを合成してその3′末端に
デオキシヌクレオチド末端転移酵素によって22個のd
(C)連鎖をつけた。
The concentrated poly (A) + RNA was transferred to plasmid pSI4001 (K. Izu
i, et al., Nucleic Acids Res. 14 1615 (1986)), 2.5 kb full length with 77 ampicillin resistance gene and 77 d (T) linkages
And a complementary strand DNA of poly (A) + RNA is synthesized using reverse transcriptase, and 22 d's are added to its 3 'end by deoxynucleotide terminal transferase.
(C) A chain was attached.

相補鎖DNAを含まないクローニングベクター側の末端
を制限酵素Hind IIIの処理によって除き、一方で用意し
た両端にHind III接着端と22個のd(G)連鎖を持ち内
部にlacプロモータ1個とSD(シャイン・ダルガルノ)
配列と翻訳開始コドンATGのセットを3フレーム分もつ
全長390塩基対のpSI4001由来のリンカーをこのHind III
断端に結合させた。それと同時に両端に位置した22個づ
つのd(C)連鎖とd(G)連鎖によってこのポリ
(A)+RNAを含むベクタープライマーとリンカーからな
るDNA鎖を環状化させ、続いてRNaseHとDNAポリメラーゼ
Iによってポリ(A)+RNA鎖をDNA鎖に変換し、DNAリガ
ーゼ処理によってリン酸ジエステル結合を形成させてこ
こにヒラメ成長ホルモン構造遺伝子(相補鎖DNA)を含
むDNA鎖を完全な環状二重鎖DNA構造のプラスミドとして
完成した。
The end of the cloning vector which does not contain the complementary strand DNA is removed by treatment with the restriction enzyme Hind III. On the other hand, both ends have a Hind III adhesion end and 22 d (G) linkages, and one lac promoter and SD (Shine Dalgarno)
A linker derived from pSI4001 having a total length of 390 base pairs and having a sequence and a set of translation initiation codons ATG for three frames was used for Hind III.
Bonded to stump. At the same time, the DNA strand consisting of the vector primer containing poly (A) + RNA and the linker is circularized by 22 d (C) and d (G) linkages located at both ends, followed by RNaseH and DNA polymerase. I converts the poly (A) + RNA strand into a DNA strand, forms a phosphodiester bond by DNA ligase treatment, and converts the DNA strand containing flounder growth hormone structural gene (complementary strand DNA) into a complete circular double strand. This was completed as a plasmid with a strand DNA structure.

本発明者らは、得られたプラスミドを大腸菌JM109株
に導入して37℃で培養し、アシピシリンを含む寒天培地
上に育成したコロニーに対してブリ成長ホルモンのcDNA
のBcl I断片をプローグとしてコロニーハイブリダイゼ
ーションを行ない複数個の陽性コロニーを得た。
The present inventors introduced the obtained plasmid into Escherichia coli JM109 strain, cultured at 37 ° C., and grown a colony grown on an agar medium containing acipicillin.
Using the Bcl I fragment as a probe, colony hybridization was performed to obtain a plurality of positive colonies.

これらの陽性コロニーからプラスミド導入大腸菌を培
養したのちプラスミドを抽出精製し、その長さと制限酵
素地図及び塩基配列を解析することによりヒラメプレ成
長ホルモン構造遺伝子大腸菌プラスミドpfGH1を樹立し
た。
After culturing plasmid-introduced Escherichia coli from these positive colonies, the plasmid was extracted and purified, and its length, restriction enzyme map and nucleotide sequence were analyzed to establish a flounder pre-growth hormone structural gene Escherichia coli plasmid pfGH1.

表2に示されたpfGH1の全塩基配列のうちのヌクレオ
チド番号83から655に至るデオキシリボヌクレオチド連
鎖は本発明によってはじめて明らかにされたヒラメプレ
成長ホルモン構造遺伝子の塩基配列であり、第5図に示
されたヒラメプレ成長ホルモンのアミノ酸配列と、その
N末端側のシグナルペプチド部分を除いた請求項1のヒ
ラメ成長ホルモンのアミノ酸配列をはじめて解明したも
のである。
The deoxyribonucleotide sequence from nucleotide number 83 to 655 of the entire nucleotide sequence of pfGH1 shown in Table 2 is the nucleotide sequence of the Japanese flounder pre-growth hormone structural gene first revealed by the present invention, and is shown in FIG. This is the first elucidation of the amino acid sequence of Japanese flounder growth hormone and the amino acid sequence of Japanese flounder growth hormone of claim 1 except for the N-terminal signal peptide portion.

本発明の第1乃至5の発明は、ヒラメ成長ホルモン及
びヒラメ成長ホルモン構造遺伝子及びヒラメ成長ホルモ
ン生産用大腸菌組換えプラスミドに関するものである。
The first to fifth aspects of the present invention relate to flounder growth hormone, flounder growth hormone structural gene, and an Escherichia coli recombinant plasmid for producing flounder growth hormone.

上記5発明は次のようにして得られた。 The above five inventions were obtained as follows.

第8図の発明のプラスミドpfCH1のヌクレオチド番号1
53の位置を制限酵素Hae IIで切断し、ヌクレオチド番号
700の位置をおなじくNsi Iで切断して得られるヒラメ成
長ホルモン構造遺伝子を含む547塩基対のデオキシリボ
ヌクレオチドを鎖を精製し、これに対してSD配列とヒラ
メ成長ホルモン遺伝子の5′末端側を含む合成DNA鎖を
結合させ、さらにこの結合DNA鎖をpKK223−3(ファル
マシア社製)由来のtacプロモーターとrrnBT1及びT2タ
ーミネーターとアンピシリン耐性遺伝子を含むpBR322由
来の発現ベクターに組込むことによりヒラメ成長ホルモ
ン生産大腸菌組換えプラスミド(pKFGH3)、(pKFGH4)
を得た。
Nucleotide number 1 of plasmid pfCH1 of the invention of FIG.
Cleavage at position 53 with the restriction enzyme Hae II, the nucleotide number
Purify the 547 bp deoxyribonucleotide chain containing the Japanese flounder growth hormone structural gene obtained by cleavage at position 700 with Nsi I, including the SD sequence and the 5 'end of the Japanese flounder growth hormone gene The synthetic DNA strand was ligated, and the ligated DNA strand was incorporated into a pBR322-derived expression vector containing a pKK223-3 (manufactured by Pharmacia) -derived tac promoter, rrnBT1 and T2 terminators, and an ampicillin resistance gene, thereby producing flounder growth hormone-producing E. coli. Recombinant plasmid (pKFGH3), (pKFGH4)
I got

上記のヒラメ成長ホルモン生産用の組換えプラスミド
pKFGH3は、第1図に示された環状二重構造を持ち、表1
に示された全塩基配列を持つ。このヒラメ成長ホルモン
生産プラスミドpKFGH3を大腸菌のDH1株、JM109株、JM10
3株、JE5505株(国立遺伝学研究所所有)などに導入
し、導入した大腸菌を培養することにより菌体内にヒラ
メ成長ホルモンを生産することが出来る。
Recombinant plasmid for producing flatfish growth hormone as described above
pKFGH3 has the cyclic double structure shown in FIG.
Has the entire base sequence shown in Table 1. This flatfish growth hormone producing plasmid pKFGH3 was transformed into E. coli strains DH1, JM109 and JM10.
Flounder growth hormone can be produced in the cells by introducing the strain into 3 strains, JE5505 strain (owned by the National Institute of Genetics), and culturing the introduced Escherichia coli.

また、上記のプラスミドpKFGH3の構築の際に、結合さ
れた合成DNAの塩基配列のうち翻訳開始コドンATGに続く
6塩基対(表1のヌクレオチド番号36から41までに相
当)を欠落させて構築すると、もう1つのヒラメ成長ホ
ルモン生産大腸菌組換えプラスミドpKFGH4が得られた。
このpKFGH4を導入された大腸菌の培養によっては、pKFG
H3により生産されるヒラメ成長ホルモンよりN末端に続
くアミノ酸が2つの削除されたヒラメ成長ホルモンを得
ることが出来る。
When the above plasmid pKFGH3 is constructed, it is constructed by deleting 6 base pairs (corresponding to nucleotide numbers 36 to 41 in Table 1) following the translation initiation codon ATG in the base sequence of the synthetic DNA thus bound. Thus, another flounder growth hormone producing Escherichia coli recombinant plasmid pKFGH4 was obtained.
Depending on the culture of E. coli transfected with pKFGH4, pKFG
Flounder growth hormone can be obtained in which two amino acids following the N-terminal are deleted from flounder growth hormone produced by H3.

このように構築するヒラメ成長ホルモン生産プラスミ
ドの中のヒラメ成長ホルモン構造遺伝子の塩基配列を変
更することにより、希望する如何なるアミノ酸配列を持
ったヒラメ成長ホルモンを生産する組換えプラスミド樹
立することが出来る。
By changing the nucleotide sequence of the flounder growth hormone structural gene in the flounder growth hormone producing plasmid thus constructed, a recombinant plasmid producing flounder growth hormone having any desired amino acid sequence can be established.

本発明の第9の発明は組換え型ヒラメ成長ホルモン及
び組換え型ヒラメプレ成長ホルモンの製造に関するもの
である。
The ninth invention of the present invention relates to the production of recombinant flounder growth hormone and recombinant flounder pre-growth hormone.

例えば、JM109株、DH1株などの大腸菌にpKFGH3を導入
しβ−D−イソプロピルチオガラクトシド(IPTG)を含
む培地で培養することによ、第2図に全アミノ酸配列が
示された組換え型ヒラメ成長を得ることが出来る。この
組換え型ヒラメ成長ホルモンは、第5図に示されたヒラ
メプレ成長ホルモンの一次構造のうちアミノ酸番号18の
グルタミンからのアミノ損番号190のロイシンに至るま
での成熟型ヒラメ成長ホルモンのN末端にメチオンニン
が結合したアミノ酸174個からなるものである。
For example, by introducing pKFGH3 into Escherichia coli such as the JM109 strain and the DH1 strain and culturing it in a medium containing β-D-isopropylthiogalactoside (IPTG), the recombinant flounder whose entire amino acid sequence is shown in FIG. 2 is obtained. You can get growth. This recombinant flounder growth hormone is located at the N-terminus of the mature flounder growth hormone from the primary structure of flounder pre-growth hormone shown in FIG. 5, ranging from glutamine at amino acid number 18 to leucine at amino acid number 190. It is composed of 174 amino acids to which methionine is bound.

同様にしてJM109株などの大腸菌にプラスミドpKFGH4
又はpfGH1を導入したのちIPTGを含む培地中で培養する
ことにより、第3図に全アミノ酸配列が示されたアミノ
酸172個からなる組換え型ヒラメ成長ホルモン又は第5
図に全アミノ酸配列が示された組換え型ヒラメプレ成長
ホルモンが得られる。さらにこれらの組換え型ヒラメプ
レ成長ホルモンはアミノペプチターゼ等によりN末端を
除去して、ヒラメ成長ホルモンとして精製可能である。
Similarly, plasmid pKFGH4 is added to E. coli such as JM109 strain.
Alternatively, by introducing pfGH1 and culturing in a medium containing IPTG, recombinant flounder growth hormone consisting of 172 amino acids whose entire amino acid sequence is shown in FIG.
A recombinant flounder pre-growth hormone whose entire amino acid sequence is shown in the figure is obtained. Furthermore, these recombinant flounder pre-growth hormones can be purified as flounder growth hormone by removing the N-terminal with aminopeptidase or the like.

さらに本発明によってはじめて解明されたヒラメ成長
ホルモンのアミノ酸配列をもとにして、その全部または
一部のアミノ酸配列をコードするデオキシリボヌクレオ
チド連鎖を含む種々の発現ベクターを構築し、それぞれ
適切な宿主として大腸菌、枯草菌、光合成菌、酵母また
は動物細胞に導入ののち培養することにより各種の組換
え型ヒラメ成長ホルモンを得ることが出来る。
Further, based on the amino acid sequence of flounder growth hormone first elucidated by the present invention, various expression vectors containing a deoxyribonucleotide chain encoding the entire or partial amino acid sequence thereof were constructed, and E. coli was used as an appropriate host. After introduction into Bacillus subtilis, photosynthetic bacteria, yeast or animal cells, the cells are cultured to obtain various recombinant flounder growth hormones.

[作用] 本発明におけるヒラメ成長ホルモンは、ヒラメの成長
を促進させることにより、養殖ヒラメの大型化、養殖期
間の短縮化を推進するものである。
[Action] The flounder growth hormone in the present invention promotes the growth of flounder, thereby promoting the enlargement of cultured flounder and shortening of the culture period.

[実施例] 以下に本発明の実施例を示す。[Example] An example of the present invention will be described below.

(実施例1)ヒラメプレ成長ホルモン構造遺伝子増幅プ
ラスミドの構築とクローニング ヒラメ脳下垂体458mgをグアニジウムチオシアネート
(和光純薬工業社製)溶液5ml中にてポリトロンで破砕
し、1万2千回転で15分間遠心したのち塩化セシウム中
で2万9千回転19時間遠心して得られたRNA画分をエタ
ノール沈殿法によって洗浄した。
Example 1 Construction and Cloning of Flounder Pre-growth Hormone Structural Gene Amplification Plasmid 458 mg of flounder pituitary gland was crushed with a polytron in 5 ml of a guanidium thiocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) solution and subjected to 12,000 rotations. After centrifugation for 15 minutes, the RNA fraction obtained by centrifugation in cesium chloride at 29,000 rpm for 19 hours was washed by ethanol precipitation.

洗浄されたRMA画分を0.1%のドデシル硫酸ナトリウム
(和光純薬工業社製)溶液中で200mgのオリゴd(T)
カラム(コラボレーティブ・リサーチ社製)を通すこと
により75μgの全ポリ(A)+RNAが得られた。このうち
5μgのポリ(A)+RNAをとり、1.5μgのベクター・
プライマー(K.Shigesadaら、Gene,53 163(1987))
と混合して10単位の逆転酵素(ライフ・サイエンス社
製)と37℃で40分間反応させた。
The washed RMA fraction was treated with 200 mg of oligo d (T) in a 0.1% sodium dodecyl sulfate (Wako Pure Chemical Industries, Ltd.) solution.
By passing through a column (manufactured by Collaborative Research), 75 μg of total poly (A) + RNA was obtained. Take 5 μg of poly (A) + RNA, and add 1.5 μg of vector
Primers (K. Shigesada et al., Gene, 53 163 (1987))
And reacted with 10 units of a reverse enzyme (manufactured by Life Science) at 37 ° C. for 40 minutes.

反応物にデオキシヌクレオチド末端転移酵素を作用さ
せてd(C)を22個付加したのちHind III(ニッポンジ
ーン社製)処理を行なった。処理溶液のうち10分の1量
を取り、リンカー(K.Shigesadaら、Gene,53 163(198
7))12ngを加えて反応物を環状化し、RNaseH、DNAポリ
メラーゼI、DNAリガーゼ(宝酒造社製)を反応させ
て、ここに共有結合した環状二重鎖大腸菌組換えプラス
ミドを得た。
Deoxynucleotide terminal transferase was allowed to act on the reaction product to add 22 d (C), followed by Hind III (Nippon Gene) treatment. An aliquot of the treatment solution was taken and the linker (K. Shigesada et al., Gene, 53 163 (198
7)) The reaction product was circularized by adding 12 ng, and reacted with RNaseH, DNA polymerase I, and DNA ligase (Takara Shuzo) to obtain a cyclic double-stranded Escherichia coli recombinant plasmid covalently bonded thereto.

この全量を大腸菌DH1株にトランフォーム(D.Hanaha
n,J.Mol.Biol.166.577(1983))し、約1万個のプラス
ミド導入コロニーを得た。このうち4000個のコロニーに
ついて、406塩基対のブリ成長ホルモンcDNA(特願昭62
−184083号)のBcl I断片(TGATCA)をプローブとし
てコロニーハイブリダイゼーションを行ない12個の陽性
コロニーを得た。12個のうち11個のコロニーから得られ
たプラスミドは同じ長さと同じ構造を持つ完全長のヒラ
メプレ成長ホルモンcDNAを含んでいた。このうち1つの
プラスドpfGH1について全塩基配列を決定してヒラメプ
レ成長ホルモン及びヒラメ成長ホルモンの構造遺伝子を
解明するとともにそれにこのアミノ酸配列をも解読し
た。
Transform the whole amount into E. coli DH1 strain (D.Hanaha
n, J.Mol.Biol. 166 .577 (1983 )) to obtain about 10,000 plasmids introduced colonies. Of the 4000 colonies, 406 base pairs of yellowtail growth hormone cDNA (Japanese Patent Application No. Sho 62)
Colony hybridization was carried out using a Bcl I fragment (T * GATCA) of -184083) as a probe to obtain 12 positive colonies. Plasmids from 11 out of 12 colonies contained full-length flounder pre-growth hormone cDNA with the same length and structure. The whole nucleotide sequence of one of these plasmids, pfGH1, was determined to elucidate the structural genes of flounder pre-growth hormone and flounder growth hormone, and the amino acid sequence thereof was also deciphered.

プラスミドpfGH1を導入したDH1,JM109株などの大腸菌
を培養すると、200mlの培養液あたり精製プラスミドが2
00μg得られ、ここにヒラメプレ成長ホルモン構造遺伝
子増幅大腸菌組換えプラスミドpfGH1を樹立した。
When culturing Escherichia coli such as DH1 and JM109 strains into which the plasmid pfGH1 has been introduced, two purified plasmids per 200 ml of culture solution were obtained.
In this case, a flounder pre-growth hormone structural gene amplified E. coli recombinant plasmid pfGH1 was established.

上記プラスミドを導入した大腸菌JM109株は50μg/ml
のアンピシリンを含む培養液中で生育し、37℃における
LB培地(バクトトリプトン 10g/l、イーストエキス 5
g/l、NaCl 5g/l、5N NaOHにてpH7.2〜7.4調整)中の
培養では30〜60分で2倍量となった。
Escherichia coli JM109 strain into which the above plasmid was introduced was 50 μg / ml.
Grown in culture containing ampicillin at 37 ° C
LB medium (Bacto-tryptone 10g / l, yeast extract 5
g / l, NaCl 5 g / l, pH 7.2-7.4 adjusted with 5N NaOH), the amount was doubled in 30-60 minutes.

本培地200mlに前記プライミド導入大腸菌培養液1mlを
加え37℃で6〜8時間培養して菌体数が約4×108個/ml
に達したときクロラムフェニコール(和光純薬工業社
製)を170μg/mlとなるように加え、さらに37℃で16〜1
8時間振盪培養すると菌体数は増加しないが、プラスミ
ド40コピー/1菌体から200/1菌体にまで増加し、200ml培
地あたり150〜300μgのプラスミドpfGH1が得られた。
Cell count of about to 6-8 hours at the Puraimido introducing 37 ° C. was added E. coli culture 1ml of this medium 200 ml 4 × 10 8 cells / ml
When reached, add chloramphenicol (manufactured by Wako Pure Chemical Industries, Ltd.) to a concentration of 170 μg / ml.
After 8 hours of shaking culture, the number of cells did not increase, but the number of cells increased from 40 copies / cell to 200 / cell, yielding 150 to 300 μg of plasmid pfGH1 per 200 ml medium.

本発明のヒラメプレ成長ホルモン構造遺伝子組換えプ
ラスミドpfGH1は、ヒラメプレ成長ホルモンを暗号化す
るデオキシリボヌクレオチド連鎖とpSI4001の複製オリ
ジンとアンピシリン耐性遺伝子を含む全長3820塩基対の
環状二重鎖DNAである。
The flatfish pre-growth hormone structural gene recombinant plasmid pfGH1 of the present invention is a 3,820 base pair full-length circular double-stranded DNA containing a deoxyribonucleotide chain encoding flounder pre-growth hormone, a replication origin of pSI4001, and an ampicillin resistance gene.

表2A〜Gは同じくプラスミドpfGH1の遺伝子の全塩基
配列を示す、第4図は前記ヒラメプレ成長ホルモン構造
遺伝子組換えプラスミドpfGH1の遺伝子地図、第5図は
生産されるヒラメプレ成長ホルモンの全アミノ酸配列図
である。
Tables 2A to 2G also show the entire nucleotide sequence of the plasmid pfGH1 gene. FIG. 4 is a genetic map of the above-mentioned flatfish pre-growth hormone structural gene recombinant plasmid pfGH1, and FIG. 5 is a complete amino acid sequence diagram of the produced flounder pre-growth hormone. It is.

第5図で表されるヒラメプレ成長ホルモンは、そのま
ま又はN末端をアミノペプチダーゼ等により除去して、
よりヒラメ成長ホルモンの形に近づけて投与可能とな
る。
Flounder pre-growth hormone shown in FIG.
It can be administered closer to the form of flounder growth hormone.

なお、形質転換体として本プラスミドpfGH1をJM109株
に導入した大腸菌(pfGH1/JM109)は寄託番号 微工研
菌寄第10123号として工業技術院微生物工業技術研究所
に寄託済みである。
Escherichia coli (pfGH1 / JM109) in which the present plasmid pfGH1 was introduced into the JM109 strain as a transformant has been deposited with the National Institute of Microbial Industry and Technology at the National Institute of Advanced Industrial Science and Technology under the deposit number No. 10123 of Microtechnical Laboratory Bacteria.

(実施例2)ヒラメ成長ホルモン生産大腸菌組換えプラ
スミド構築 第6図に全塩基配列が示されたpfGH1プラスミドを10
μg取り、制限酵素Hae II20単位を添加して37℃で2時
間処理したのち制限酵素Nsi I20単位を加えて同じく37
℃で2時間処理を行なった。反応DNA試料を5%ポリア
クリルアミドのスラブゲル中を150Vで3時間電気泳動
し、ヌクレオチド番号153から700に至る下記の如き両端
構造をもつDNA断片0.5μgを得た。
(Example 2) Construction of recombinant plasmid of flounder growth hormone-producing Escherichia coli The pfGH1 plasmid having the entire nucleotide sequence shown in FIG.
μg, add 20 units of restriction enzyme Hae II, treat at 37 ° C. for 2 hours, add 20 units of restriction enzyme Nsi I
The treatment was performed at 2 ° C. for 2 hours. The reaction DNA sample was electrophoresed in a 5% polyacrylamide slab gel at 150 V for 3 hours to obtain 0.5 μg of a DNA fragment ranging from nucleotide numbers 153 to 700 and having both end structures as described below.

次にシャイン・ダルガルノ配列(SD配列)と開始コド
ンATGからはじまるシストロンとのセットを2個所含む
下記の構造の長さ54塩基のDNA鎖をアプライド・バイオ
システムズ社製DNA合成機381Aで2本合成して二重鎖と
した後、そのうちの30ngを取った。
Next, two 54-base DNA strands of the following structure containing two sets of a Shine-Dalgarno sequence (SD sequence) and a cistron starting from the start codon ATG are synthesized using an Applied Biosystems DNA synthesizer 381A. After making it double-stranded, 30 ng of it was taken.

さらに発明用ベクターとして、pBR322プラスミド由来
で、5′末端側にリボソームRNA転写終結シグナルであ
るrrnBT1及びT2ターミネーターを持ち、内部にアンピシ
リン耐性遺伝子と複製オリジンを持ち、3′末端側にta
cプロモーターを配した二重鎖DNAを調整し、制限酵素Ps
t IとEcoR1をそれぞれ1単位添加して37℃で2時間加温
することにより5′末端をPst I断端とし、3′末端をE
coR I断端とした。調整したDNAを0.8%アガロースゲル
中で電気泳動を行なって4585塩基対の長さを持つ断片を
抽出精製し、そのうちの0.5μgを取った。
Further, as a vector for the invention, it is derived from the pBR322 plasmid and has rrnBT1 and T2 terminators which are ribosomal RNA transcription termination signals at the 5 ′ end, an ampicillin resistance gene and a replication origin internally, and a tag at the 3 ′ end.
Adjust the double-stranded DNA with the c promoter, and use the restriction enzyme Ps
One unit each of tI and EcoR1 was added, and the mixture was heated at 37 ° C. for 2 hours to make the 5 ′ end a Pst I end and the 3 ′ end to an Est.
coR I stumped. The prepared DNA was subjected to electrophoresis in a 0.8% agarose gel to extract and purify a fragment having a length of 4585 base pairs, and 0.5 µg thereof was taken.

上記の3種類のDNA断片をT4DNAリガーゼ300単位を含
む溶液20μ中で混合し、12℃で16時間反応させて環状
二重鎖DNAとした。この反応液のうち5μを取り、200
μ中のコンピテントなJM109株大腸菌2×108個にトラ
ンスフォーム(導入)した。これに800μのLB培地を
加えて37℃で1時間加温した後、このうち150μを取
って50μg/mlのアンピシリンを含むLB−寒天培地のシャ
ーレにまいてプラスミド導入大腸菌を培養した。出現し
たコロニーをワットマン541瀘紙にうつし、別に用意し
たヒラメ成長ホルモンcDNAのHae II/Nsi I断片(547塩
基対)を[α−32P]CTP使用によるランダムプライマー
法(ニッポンジーン社製キット使用)でラベルしたDNA
(5×106cpm)をプローブとして50%ホルムアミド中で
42℃に加温してコロニーハイブリダイゼーションを行な
った。この紙を4×SSC緩衝液(NaCl 35g/l、クエン酸
ナトリウム 17.6g/l)及び2×SSC緩衝液(NaCl 17.5
g/l、クエン酸ナトリウム 8.8g/l)で洗浄後、FujiRX
レントゲンフィルム(フジフィルム製)に2日間感光し
て22個の陽性コロニーを得た。
The above three types of DNA fragments were mixed in a solution (20 μ) containing 300 units of T4 DNA ligase, and reacted at 12 ° C. for 16 hours to obtain a circular double-stranded DNA. Take 5μ of this reaction solution, 200
The transformant was introduced into 2 × 10 8 competent E. coli JM109 strains in μ. After 800 μl of LB medium was added thereto and heated at 37 ° C. for 1 hour, 150 μl of this was taken out and spread on a petri dish of LB-agar medium containing 50 μg / ml ampicillin to culture plasmid-introduced Escherichia coli. The emerged colonies are transferred to Whatman 541 filter paper, and a separately prepared Hae II / Nsi I fragment (547 base pairs) of flounder growth hormone cDNA is subjected to a random primer method using [α-32P] CTP (using a kit from Nippon Gene). Labeled DNA
(5 × 10 6 cpm) as a probe in 50% formamide
Colony hybridization was performed by heating to 42 ° C. The paper was treated with 4 × SSC buffer (NaCl 35 g / l, sodium citrate 17.6 g / l) and 2 × SSC buffer (NaCl 17.5 g / l).
g / l, sodium citrate 8.8g / l)
It was exposed to an X-ray film (manufactured by Fujifilm) for 2 days to obtain 22 positive colonies.

上記22個の陽性コロニーからそれぞれプラスミドを抽
出して制限酵素切断片を解析したところ、20個のコロニ
ーからのプラスミドが同一構造を以っていた。このうち
の1つのコロニーからの大腸菌株をβ−D−イソプロピ
ルチオガラクトシド(IPTG)(和光純薬社製)存在下で
培養したところ、実施例3で詳しく述べる如くメチオニ
ン−グルタミン型ヒラメ成長ホルモンAを全菌体タンパ
ク質の5%以上に生産した。前記大腸菌に導入されたプ
ラスミドpKFGH3は、全長5168塩基対のヒラメ成長ホルモ
ン産生大腸菌組換えプラスミドである。
Plasmids were extracted from each of the 22 positive colonies and restriction enzyme digests were analyzed. As a result, plasmids from 20 colonies had the same structure. An Escherichia coli strain from one of the colonies was cultured in the presence of β-D-isopropylthiogalactoside (IPTG) (manufactured by Wako Pure Chemical Industries, Ltd.). As described in detail in Example 3, methionine-glutamine type flounder growth hormone A was used. Was produced in more than 5% of the total cell protein. The plasmid pKFGH3 introduced into Escherichia coli is a flounder growth hormone producing Escherichia coli recombinant plasmid having a total length of 5168 base pairs.

表1A〜Iは同プラスミドpKFGH3の遺伝子の全塩基配列
を示す。第1図はヒラメ成長ホルモン産生大腸菌プラス
ミドpKFGH3の構造地図、第2図は同プラスミドpKFGH3が
生産するヒラメ成長ホルモンAの全塩基配列図である。
Tables 1A to 1 show the entire nucleotide sequence of the gene of the plasmid pKFGH3. FIG. 1 is a structural map of flounder growth hormone producing Escherichia coli plasmid pKFGH3, and FIG. 2 is a complete nucleotide sequence diagram of flounder growth hormone A produced by the plasmid pKFGH3.

また、他の陽性コロニーには、結合させた合成DNAの
塩基配列のうち翻訳開始コドンATGに続く6塩基対(表
1のヌクレオチド番号36から41までに相当)を欠落され
たもう1つのヒラメ成長ホルモン生産大腸菌組換えプラ
スミドpKFGH4が得られた。このpKFGH4を導入された大腸
菌の培養により、pKFGH3により生産されるヒラメ成長ホ
ルモンAよりN末端に続くアミノ酸が2つの削除された
メチオニン−イソロイシン型ヒラメ成長ホルモンBを得
ることが出来た。第3図はプラスミドpKFGH4より生産さ
れる組換え型ヒラメ成長ホルモンBのアミノ酸配列図で
ある。
In addition, another positive colony had another flounder growth lacking 6 base pairs (corresponding to nucleotide numbers 36 to 41 in Table 1) following the translation initiation codon ATG in the base sequence of the bound synthetic DNA. The hormone-producing Escherichia coli recombinant plasmid pKFGH4 was obtained. By culturing Escherichia coli into which pKFGH4 had been introduced, methionine-isoleucine-type flounder growth hormone B in which two amino acids following the N-terminal were removed from flounder growth hormone A produced by pKFGH3 was obtained. FIG. 3 is an amino acid sequence diagram of recombinant flounder growth hormone B produced from plasmid pKFGH4.

なお、形質転換体としてプラスミドpKFGH3を導入した
大腸菌pKFGH3/JM109は、寄託番号 微工研菌寄第10121
号、プラスミドpKFGH4を導入した大腸菌pKFGH4/JM109
は、寄託番号 微工研菌寄第10122号として工業技術院
微生物工業技術研究所に寄託済みである。
Escherichia coli pKFGH3 / JM109 into which plasmid pKFGH3 was introduced as a transformant was deposited under the accession number No. 10121
E. coli pKFGH4 / JM109 into which plasmid pKFGH4 was introduced
Has been deposited with the Institute of Microorganisms and Industrial Technology of the National Institute of Advanced Industrial Science and Technology under the deposit number No. 10122.

(実施例3)組換え型ヒラメ成長ホルモンの生産 まず最初に、実施例2で示したヒラメ成長ホルモン産
生組換えプラスミドpKFGH3を導入したJM109大腸菌株を5
0μg/mlのアンピシリンと0.2%カザミノ酸を含むM−9
培地5mlに接種し、37℃で培養した。培養液の濁度が0D6
00=0.2となったところでlacプロモーターの誘導剤であ
る。β−D−イソプロピルチオガラクトシド(IPTG)を
2mMとなるように添加し、37℃で5時間培養を継続し
た。得られた培養液を12000rpmで10分間遠心して菌体を
回収した。この菌体をレムリ(Laemmli)のサンプル溶
解液(12.5mM Tris−HCl、0.02% BPB、15% glycero
l、350mM β−ME、pH=6.8)にとかして100℃で10分間
加熱したのち、レムリの方法(U.K.Laemmli,Nature,227
680(1980))に従ってSDS−ポリアクリルアミドゲル
電気泳動を行い、泳動したゲルを酢酸/メタノール中で
クマシーブリリアントブルー(Coomassie Brilliant Bl
ue)にて染色してヒラメ成長ホルモンの生産を確認し
た。
Example 3 Production of Recombinant Flounder Growth Hormone First, the JM109 E. coli strain introduced with the flounder growth hormone-producing recombinant plasmid pKFGH3 shown in Example 2 was transformed into 5 strains.
M-9 containing 0 μg / ml ampicillin and 0.2% casamino acid
5 ml of the medium was inoculated and cultured at 37 ° C. The turbidity of the culture is 0D6
When 00 = 0.2, it is an inducer of the lac promoter. β-D-isopropylthiogalactoside (IPTG)
2 mM was added, and the culture was continued at 37 ° C. for 5 hours. The obtained culture was centrifuged at 12000 rpm for 10 minutes to collect the cells. The cells were used as Laemmli sample lysates (12.5 mM Tris-HCl, 0.02% BPB, 15% glycero).
1, 350 mM β-ME, pH = 6.8) and heated at 100 ° C. for 10 minutes, followed by the method of Remmli (UKLaemmli, Nature, 227).
SDS-polyacrylamide gel electrophoresis according to 680 (1980)) and the electrophoresed gel was run in acetic acid / methanol in Coomassie Brilliant Bl.
ue) to confirm the production of flounder growth hormone.

このように生産されたヒラメ成長ホルモンAタンパク
質は、デンシトメーター(島津製作所製)の測定により
全菌体タンパク質の5%以上の濃度に達した。
The flounder growth hormone A protein produced in this way reached a concentration of 5% or more of the total bacterial cell protein as measured by a densitometer (manufactured by Shimadzu Corporation).

次に、上記のヒラメ成長ホルモンAを産生する大腸菌
体をSDS−ポリアクリルアミドゲル電気泳動し、泳動し
たゲルをバーネットの方法(W.N.Burnette,Anal.Bioche
m.112 195(1981))の方法に従ってニトロセルロース
膜へ電気的にブロッティングした。次いでこのニトロセ
ルロース膜をヒラメ成長ホルモンに対する抗体とプロテ
インA/ワサビペルオキシダーゼ結合試薬および4−クロ
ロ−1−ナフトールを用いるエンザイム・イムノアッセ
イ法により処理をして、分子量約20000の同じ位置にヒ
ラメ成長ホルモンAのバンドを検出することが出来た。
Next, the Escherichia coli producing the flounder growth hormone A was subjected to SDS-polyacrylamide gel electrophoresis, and the electrophoresed gel was subjected to a Burnett method (WNBurnette, Anal. Bioche.
m. 112 195 (1981)). Then, the nitrocellulose membrane was treated by an enzyme immunoassay using an antibody against flounder growth hormone, a protein A / horseradish peroxidase binding reagent and 4-chloro-1-naphthol, and flounder growth hormone A was placed at the same position with a molecular weight of about 20,000. Band could be detected.

さらに、SDS−ポリアクリルアミドゲル電気泳動によ
って分離される分子量約20000のタンパク質をゲルから
抽出して気相プロテインシーケンサーによりN末端側の
アミノ酸配列を解析したところ、第3図に示された通り
のアミノ酸配列が得られた。この結果、プラスミドpKFG
H3を保持する大腸菌は、ヒラメ成長ホルモンAを生産し
ていることが確認された。
Further, a protein having a molecular weight of about 20,000 separated by SDS-polyacrylamide gel electrophoresis was extracted from the gel, and the N-terminal amino acid sequence was analyzed using a gas-phase protein sequencer. The sequence was obtained. As a result, plasmid pKFG
It was confirmed that Escherichia coli carrying H3 produced flounder growth hormone A.

同様な方法で、プラスミドpKFGH4を導入した大腸菌又
はプラスミドpfGH1を導入した大腸菌を培養し、ヒラメ
成長ホルモン又はヒラメプレ成長ホルモンを生産するこ
とができる。
In a similar manner, Escherichia coli transfected with plasmid pKFGH4 or Escherichia coli transfected with plasmid pfGH1 can be cultured to produce flounder growth hormone or flounder pre-growth hormone.

[発明の効果] 本発明は以上説明したとおり、本発明によってはじめ
て解明されたヒラメ成長ホルモンのアミノ酸配列をもと
にして、その全部または一部のアミノ酸配列をコードす
るデオキシリボヌクレオチド連鎖を含む種々の発現ベク
ターを構築し、それぞれを適切な形質転換体として大腸
菌、枯草菌、光合成菌、酵母または動物細胞等に導入の
のち培養することにより各種の形質転換体より組換え型
ヒラメ成長ホルモンを容易にしかも大量に得ることが出
来る。さらにその具体例としてプラスミドpKFGH3、プラ
スミドpKFGH4及びプラスミドpfGH1を培養し、ヒラメ成
長ホルモン及びヒラメプレ成長ホルモンを得てヒラメの
成長を促進させることにより、養殖ヒラメの大型化、養
殖期間の短縮化を推進することが出来るという効果があ
る。
[Effects of the Invention] As described above, the present invention is based on the amino acid sequence of Japanese flounder growth hormone firstly elucidated by the present invention, and includes various types including a deoxyribonucleotide chain encoding the entire or partial amino acid sequence thereof. Expression vectors are constructed, and each is transformed into an appropriate transformant into Escherichia coli, Bacillus subtilis, photosynthetic bacteria, yeast, animal cells, etc., and then cultured to facilitate the production of recombinant flounder growth hormone from various transformants. Moreover, it can be obtained in large quantities. Further, as a specific example, plasmid pKFGH3, plasmid pKFGH4, and plasmid pfGH1 are cultured to obtain flounder growth hormone and flounder pre-growth hormone, and to promote the growth of flounder, thereby promoting the enlargement of cultured flounder and shortening of the culture period. There is an effect that can be done.

【図面の簡単な説明】[Brief description of the drawings]

第1図はヒラメ成長ホルモン産生大腸菌組換えプラスミ
ドpKFGH3の構造地図、第2図は同プラスミドpKFGH3が生
産するヒラメ成長ホルモンAの全アミノ酸配列図、第3
図はヒラメ成長ホルモン産生大腸菌組換えプラスミドpK
FGH4より生産される組換え型ヒラメ成長ホルモンBのア
ミノ酸配列図、第4図はヒラメプレ成長ホルモン構造遺
伝子組換えプラスミドpfGH1の遺伝子地図、第5図は生
産されるヒラメプレ成長ホルモンの全アミノ酸配列図で
ある。
FIG. 1 is a structural map of a flounder growth hormone producing Escherichia coli recombinant plasmid pKFGH3, FIG. 2 is a complete amino acid sequence diagram of flounder growth hormone A produced by the plasmid pKFGH3, FIG.
The figure shows flounder growth hormone producing E. coli recombinant plasmid pK.
Fig. 4 is an amino acid sequence diagram of recombinant flounder growth hormone B produced from FGH4, Fig. 4 is a genetic map of a flounder pre-growth hormone structural gene recombinant plasmid pfGH1, and Fig. 5 is a complete amino acid sequence diagram of produced flounder pre-growth hormone. is there.

───────────────────────────────────────────────────── フロントページの続き (54)【発明の名称】 ヒラメ成長ホルモン、ヒラメ成長ホルモン構造遺伝子、ヒラメ成長ホルモン生産用組換えプラス ミド、ヒラメプレ成長ホルモン、ヒラメプレ成長ホルモン構造遺伝子、ヒラメプレ成長構造遺伝 子組換えプラスミド、ヒラメ成長ホルモン及びヒラメプレ成長ホルモンの製造方法 ──────────────────────────────────────────────────続 き Continued on the front page (54) [Title of the invention] Japanese flounder growth hormone, Japanese flounder growth hormone structural gene, recombinant plasmid for Japanese flounder growth hormone production, Japanese flounder pre-growth hormone, Japanese flounder pre-growth hormone structural gene, Japanese flounder pre-growth structural gene Method for producing recombinant plasmid, flounder growth hormone and flounder pre-growth hormone

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の構造を有するポリペプチドであるヒ
ラメ成長ホルモン。 Gln−Pro−Ile−Thr−Glu−Asn−Gln−Arg−Leu−Phe−
Ser−Ile−Ala−Val−Gly−Arg−Val−Gln−Tyr−Leu−
His−Leu−Val−Ala−Lys−Lys−Leu−Phe−Ser−Asp−
Phe−Glu−Asn−Ser−Leu−Gln−Leu−Glu−Asp−Gln−
Arg−Leu−Leu−Asn−Lys−Ile−Ala−Ser−Lys−Glu−
Phe−Cys−His−Ser−Asp−Asn−Phe−Leu−Ser−Pro−
Ile−Asp−Lys−His−Glu−Thr−Gln−Gly−Ser−Ser−
Val−Gln−Lys−Leu−Leu−Ser−Val−Ser−Tyr−Arg−
Leu−Ile−Glu−Ser−Typ−Glu−Phe−Phe−Ser−Arg−
Phe−Leu−Val−Ala−Ser−Phe−Ala−Val−Arg−Thr−
Gln−Val−Thr−Ser−Lys−Leu−Ser−Glu−Leu−Lys−
Met−Gly−Leu−Leu−Lys−Leu−Ile−Glu−Ala−Asn−
Gln−Asp−Gly−Ala−Gly−Gly−Phe−Ser−Glu−Ser−
Ser−Val−Leu−Gln−Leu−Thr−Pro−Tyr−Gly−Asn−
Ser−Glu−Leu−Phe−Ala−Cys−Phe−Lys−Lys−Asp−
Met−His−Lys−Val−Glu−Thr−Tyr−Leu−Thr−Val−
Ala−Lys−Cys−Arg−Leu−Phe−Pro−Glu−Ala−Asn−
Cys−Thr−Leu
1. A flounder growth hormone which is a polypeptide having the following structure. Gln-Pro-Ile-Thr-Glu-Asn-Gln-Arg-Leu-Phe-
Ser-Ile-Ala-Val-Gly-Arg-Val-Gln-Tyr-Leu-
His-Leu-Val-Ala-Lys-Lys-Leu-Phe-Ser-Asp-
Phe-Glu-Asn-Ser-Leu-Gln-Leu-Glu-Asp-Gln-
Arg-Leu-Leu-Asn-Lys-Ile-Ala-Ser-Lys-Glu-
Phe-Cys-His-Ser-Asp-Asn-Phe-Leu-Ser-Pro-
Ile-Asp-Lys-His-Glu-Thr-Gln-Gly-Ser-Ser-
Val-Gln-Lys-Leu-Leu-Ser-Val-Ser-Tyr-Arg-
Leu-Ile-Glu-Ser-Typ-Glu-Phe-Phe-Ser-Arg-
Phe-Leu-Val-Ala-Ser-Phe-Ala-Val-Arg-Thr-
Gln-Val-Thr-Ser-Lys-Leu-Ser-Glu-Leu-Lys-
Met-Gly-Leu-Leu-Lys-Leu-Ile-Glu-Ala-Asn-
Gln-Asp-Gly-Ala-Gly-Gly-Phe-Ser-Glu-Ser-
Ser-Val-Leu-Gln-Leu-Thr-Pro-Tyr-Gly-Asn-
Ser-Glu-Leu-Phe-Ala-Cys-Phe-Lys-Lys-Asp-
Met-His-Lys-Val-Glu-Thr-Tyr-Leu-Thr-Val-
Ala-Lys-Cys-Arg-Leu-Phe-Pro-Glu-Ala-Asn-
Cys-Thr-Leu
【請求項2】下記のアミノ酸配列をコードするヒラメ成
長ホルモン構造遺伝子。
2. A flounder growth hormone structural gene encoding the following amino acid sequence.
【請求項3】請求項2のアミノ酸配列をコードするヒラ
メ成長ホルモン構造遺伝子を含有する組換えプラスミ
ド。
3. A recombinant plasmid containing a flounder growth hormone structural gene encoding the amino acid sequence of claim 2.
【請求項4】下記のアミノ酸配列をコードするヒラメ成
長ホルモン構造遺伝子。
4. A flounder growth hormone structural gene encoding the following amino acid sequence.
【請求項5】請求項4のアミノ酸配列をコードするヒラ
メ成長ホルモン構造遺伝子を含有する組換えプラスミ
ド。
5. A recombinant plasmid containing a flounder growth hormone structural gene encoding the amino acid sequence of claim 4.
【請求項6】少なくとも下記の構造を有するポリペプチ
ドである組換え型ヒラメプレ成長ホルモン。 Met−Asn−Arg−Val−Ile−Leu−Leu−Leu−Ser−Val−
Met−Cys−Val−Gly−Val−Ser−Ser−Gln−Pro−Ile−
Thr−Glu−Asn−Gln−Arg−Leu−Phe−Ser−Ile−Ala−
Val−Gly−Arg−Val−Gln−Tyr−Leu−His−Leu−Val−
Ala−Lys−Lys−Leu−Phe−Ser−Asp−Phe−Glu−Asn−
Ser−Leu−Gln−Leu−Glu−Asp−Gln−Arg−Leu−Leu−
Asn−Lys−Ile−Ala−Ser−Lys−Glu−Phe−Cys−His−
Ser−Asp−Asn−Phe−Leu−Ser−Pro−Ile−Asp−Lys−
His−Glu−Thr−Gln−Gly−Ser−Ser−Val−Gln−Lys−
Leu−Leu−Ser−Val−Ser−Tyr−Arg−Leu−Ile−Glu−
Ser−Typ−Glu−Phe−Phe−Ser−Arg−Phe−Leu−Val−
Ala−Ser−Phe−Ala−Val−Arg−Thr−Gln−Val−Thr−
Ser−Lys−Leu−Ser−Glu−Leu−Lys−Met−Gly−Leu−
Leu−Lys−Leu−Ile−Glu−Ala−Asn−Gln−Asp−Gly−
Ala−Gly−Gly−Phe−Ser−Glu−Ser−Ser−Val−Leu−
Gln−Leu−Thr−Pro−Tyr−Gly−Asn−Ser−Glu−Leu−
Phe−Ala−Cys−Phe−Lys−Lys−Asp−Met−His−Lys−
Val−Glu−Thr−Tyr−Leu−Thr−Vol−Ala−Lys−Cys−
Arg−Leu−Phe−Pro−Glu−Ala−Asn−Cys−Thr−Leu
6. A recombinant flounder pre-growth hormone which is a polypeptide having at least the following structure. Met-Asn-Arg-Val-Ile-Leu-Leu-Leu-Ser-Val-
Met-Cys-Val-Gly-Val-Ser-Ser-Gln-Pro-Ile-
Thr-Glu-Asn-Gln-Arg-Leu-Phe-Ser-Ile-Ala-
Val-Gly-Arg-Val-Gln-Tyr-Leu-His-Leu-Val-
Ala-Lys-Lys-Leu-Phe-Ser-Asp-Phe-Glu-Asn-
Ser-Leu-Gln-Leu-Glu-Asp-Gln-Arg-Leu-Leu-
Asn-Lys-Ile-Ala-Ser-Lys-Glu-Phe-Cys-His-
Ser-Asp-Asn-Phe-Leu-Ser-Pro-Ile-Asp-Lys-
His-Glu-Thr-Gln-Gly-Ser-Ser-Val-Gln-Lys-
Leu-Leu-Ser-Val-Ser-Tyr-Arg-Leu-Ile-Glu-
Ser-Typ-Glu-Phe-Phe-Ser-Arg-Phe-Leu-Val-
Ala-Ser-Phe-Ala-Val-Arg-Thr-Gln-Val-Thr-
Ser-Lys-Leu-Ser-Glu-Leu-Lys-Met-Gly-Leu-
Leu-Lys-Leu-Ile-Glu-Ala-Asn-Gln-Asp-Gly-
Ala-Gly-Gly-Phe-Ser-Glu-Ser-Ser-Val-Leu-
Gln-Leu-Thr-Pro-Tyr-Gly-Asn-Ser-Glu-Leu-
Phe-Ala-Cys-Phe-Lys-Lys-Asp-Met-His-Lys-
Val-Glu-Thr-Tyr-Leu-Thr-Vol-Ala-Lys-Cys-
Arg-Leu-Phe-Pro-Glu-Ala-Asn-Cys-Thr-Leu
【請求項7】請求項6のアミノ酸配列をコードするヒラ
メプレ成長ホルモン構造遺伝子。
[7] A flounder pre-growth hormone structural gene encoding the amino acid sequence of [6].
【請求項8】請求項6のアミノ酸配列をコードするヒラ
メプレ成長ホルモン構造遺伝子を含有する組換えプラス
ミド。
8. A recombinant plasmid containing a flounder pre-growth hormone structural gene encoding the amino acid sequence of claim 6.
【請求項9】請求項3に記載の組換えプラスミド又は請
求項5に記載の組換えプラスミド又は請求項8に記載の
組換えプラスミドを導入した菌又は細胞を培養基中に培
養し、該培養基中に蓄積された請求項1又は請求項6に
記載の組換え型ヒラメ成長ホルンモン又は組換え型ヒラ
メプレ成長ホルモンを分離精製する組換え型ヒラメ成長
ホルモン又は組換え型ヒラメプレ成長ホルモンの製造方
法。
9. A bacterium or a cell into which the recombinant plasmid according to claim 3 or the recombinant plasmid according to claim 5 or the recombinant plasmid according to claim 8 has been introduced, is cultured in a culture medium. A method for producing a recombinant flounder growth hormone or a recombinant flounder pre-growth hormone, comprising separating and purifying the recombinant flounder growth hornmon or the recombinant flounder pre-growth hormone according to claim 1 or 6.
JP63171924A 1988-07-12 1988-07-12 Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone Expired - Lifetime JP2602067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171924A JP2602067B2 (en) 1988-07-12 1988-07-12 Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171924A JP2602067B2 (en) 1988-07-12 1988-07-12 Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone

Publications (2)

Publication Number Publication Date
JPH0223884A JPH0223884A (en) 1990-01-26
JP2602067B2 true JP2602067B2 (en) 1997-04-23

Family

ID=15932373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171924A Expired - Lifetime JP2602067B2 (en) 1988-07-12 1988-07-12 Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone

Country Status (1)

Country Link
JP (1) JP2602067B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174799A (en) * 1988-08-26 1990-07-06 Nippon Oil Co Ltd Fish growth hormone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUCLEIC ACIDS RES=1988 *

Also Published As

Publication number Publication date
JPH0223884A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
AU648670B2 (en) A-C-B Proinsulin, method of manufacturing and using same, and intermediates in insulin production
JP2686090B2 (en) Novel fusion protein and purification method thereof
NO159392B (en) PROCEDURE FOR MANUFACTURING MATERIAL NON-GYCLOSYLTER INTERFERON.
NZ199391A (en) Chimeric polypeptides comprising a proinsulin sequence,and preparation by recombinant dna technique;production of human insulin
JPS60115528A (en) Human interleukin-2 protein, its production and pharmacological composition containing the same
DK168048B1 (en) CLEANED HUMAN INTERLEUKIN-1, ITS MANUFACTURING AND USE IN PHARMACEUTICAL PREPARATIONS
IE64441B1 (en) Dna sequences recombinant dna molecules and processes for producing swine growth hormone-like polypeptides
CN107353347A (en) A kind of fusion protein being made up of pig albumin, Porcine interferon-gamma and porcine interferon alpha and preparation method thereof
RU2144957C1 (en) Recombinant plasmid dna ppins07 encoding fused polypeptide containing human proinsulin and strain of bacterium escherichia coli - producer of fused polypeptide containing human proinsulin
JPS6361960B2 (en)
JP2602067B2 (en) Flounder growth hormone, flounder growth hormone structural gene, recombinant plasmid for flounder growth hormone production, flounder pre-growth hormone, flounder pre-growth hormone structural gene, flounder pre-growth structural gene recombinant plasmid, flounder growth hormone, and method for producing flounder pre-growth hormone
CN107936107B (en) Ostrea gigas interferon regulatory factor CgIRF-1 gene recombinant protein, preparation method and application
CA1338900C (en) Escherichia coli plasmid vector with lipoprotein promoter and modified shine-dalgarno sequence
AT393690B (en) Homogeneous, recombinant immune interferon fragments
JPH02273193A (en) Recombinant interleukin-2 fused proteins
CN108840934B (en) Recombinant sheep long-acting interferon tau, fusion protein for preparing long-acting interferon tau and preparation method of fusion protein
JPH0698000B2 (en) Gene encoding a polypeptide having human interleukin 2 activity
RU2325440C1 (en) RECOMBINANT PLASMID DNA pGG-1 CODING POLYPEPTIDE OF HUMAN PROINSULIN GLARGIN AND STRAIN OF BACTERIA ESCHERICHIA COLI BGG18-PRODUCER OF RECOMBINANT PROINSULIN GLARGIN
CN108794645A (en) A kind of fusion protein and preparation method thereof being made of bovine albumin, Bov IFN γ and Bov IFN α
CN1167799C (en) Method for secreting and expressing acid fibroblast growth factor
CN108794644A (en) A kind of fusion protein and preparation method thereof being made of cattle interleukins-2 2, Bov IFN γ and Bov IFN α
JP2666069B2 (en) Recombinant avian prolactin or recombinant avian preprolactin, recombinant chicken prolactin, recombinant chicken prolactin structural gene, recombinant chicken preprolactin, recombinant chicken preprolactin structural gene, recombinant plasmid, recombinant plasmid Microorganisms containing
JP2518862B2 (en) New plasmid vector
JP2616784B2 (en) High expression plasmid for human interleukin 1 polypeptide production
EP0686194A1 (en) Harp family growth factors, preparation methods therefor and uses thereof