JP2596798B2 - Existing building seismic isolation method - Google Patents

Existing building seismic isolation method

Info

Publication number
JP2596798B2
JP2596798B2 JP17066388A JP17066388A JP2596798B2 JP 2596798 B2 JP2596798 B2 JP 2596798B2 JP 17066388 A JP17066388 A JP 17066388A JP 17066388 A JP17066388 A JP 17066388A JP 2596798 B2 JP2596798 B2 JP 2596798B2
Authority
JP
Japan
Prior art keywords
existing building
seismic isolation
steel column
support
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17066388A
Other languages
Japanese (ja)
Other versions
JPH0220767A (en
Inventor
公彦 最上
秀一 津吉
秀幸 成田
正夫 宮口
弘道 山田
進 山下
忠雄 村野
勝志 内村
善雄 鈴木
俊介 菅野
浩 速水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP17066388A priority Critical patent/JP2596798B2/en
Publication of JPH0220767A publication Critical patent/JPH0220767A/en
Application granted granted Critical
Publication of JP2596798B2 publication Critical patent/JP2596798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、既存の事務所ビルあるいはデパートのよ
うな大型店舗ビルなどの深礎部に免震装置を組み込み、
地震によっても建物があまり揺れないように地震時の耐
震性、免震性を高める目的で実施される既存建物の免震
化工法に関する。
DETAILED DESCRIPTION OF THE INVENTION INDUSTRIAL APPLICATIONS The present invention incorporates a seismic isolation device into a deep corner of an existing office building or a large store building such as a department store,
The present invention relates to a seismic isolation method for existing buildings, which is implemented to improve seismic resistance and seismic isolation in the event of an earthquake so that the building is not shaken by the earthquake.

従来の技術 免震建物及び免震装置は、既に種々公知に属する(例
えば特開昭60−168875号、特開昭61−151377号、特公昭
61−17984号公報参照)。また、免震建物の実施例も既
にいくつかある。
2. Description of the Related Art Various types of seismic isolation buildings and seismic isolation devices are known to the public (for example, Japanese Patent Application Laid-Open Nos. 60-168875 and 61-151377, and
61-17984). There are also some examples of seismic isolation buildings.

但し、これらは全て新規に建築される建物に実施され
る技術内容となっている。
However, these are all technical contents to be implemented for newly constructed buildings.

本発明が解決しようとする課題 最近、事務所のオフィスオートメーション化(OA
化)はめざましいが、これに伴い既存建物が地震によっ
て大きく揺れないことが重要な条件になってきている。
精密なOA機器は振動には非常に弱いからである。
Problems to be Solved by the Present Invention Recently, office automation of offices (OA
Although it is remarkable, it has become an important condition that existing buildings do not shake significantly due to the earthquake.
Precision OA equipment is very sensitive to vibration.

従って、新築の免震建物における事務所のOA化には何
の心配もないが、既存建物については何らかの手段で免
震化することが急務の解決課題とされている。
Therefore, there is no concern about the office building of newly constructed base-isolated buildings, but it is urgently necessary to make existing buildings seismically isolated by some means.

最近の車社会の発展ぶりは、事務所ビルや店舗ビル
などに駐車場スペースが不可欠の条件となったばかりで
なく、その拡張増設が営業的にも重要な課題となってい
る。しかし、近年の市街地における地価の異常なまでの
高騰と建物の過密ぶりは、新しく立地条件の良い土地を
買い求めてビルや駐車場を建てることを非常に困難な状
況に至らしめている。そこで、例えば既存建物の上部に
新たな利用空間スペースを増築しようとすると、同既存
建物が持ち合わせている構造耐力上の限界がある上に、
日照権の問題も絡んでくるので、その実現は非常に難し
い。特に昭和56年6月以前の建物の上部に新たに増築す
るときは、新耐震設計法の適用を受け、その条件(耐震
診断基準)を満たすことはまず不可能に近いとさえ考え
られている。
With the recent development of the car society, parking spaces have become an indispensable condition in office buildings and store buildings, etc., and the expansion and expansion of these spaces has become an important business issue. However, abnormally high land prices and overcrowding of buildings in recent years in urban areas have made it extremely difficult to buy new land with good location and build buildings and parking lots. So, for example, if you try to add a new space above the existing building, there is a limit on the structural strength that the existing building has,
The issue of sunshine rights is also involved, so it is very difficult to realize it. In particular, when a new building is built on top of a building before June 1981, the new seismic design method is applied, and it is considered that it is almost impossible to meet the conditions (seismic diagnosis criteria) at first. .

したがって、本発明の目的は、既存建物を安全、確実
に免震化することができ、その構造安全性と耐震性を高
めることができる既存建物の免震化工法を提供すること
にある。
Therefore, an object of the present invention is to provide a seismic isolation method for an existing building, which can safely and surely make the existing building seismically isolated, and can improve its structural safety and seismic resistance.

課題を解決するための手段 (第1の発明) 上記従来技術の課題を解決するための手段として、こ
の発明に係る既存建物の免震化工法は、既存建物が支持
杭によって支持されている場合に実施されるものであっ
て、図面の第1図〜第13図に実施例を示したとおり、 イ) 既存建物3の地下を根切りして支持杭2…を支持
層地盤1まで露出させる段階と、 ロ) 露出した支持杭2の外周に必要本数の仮受けサポ
ート8…を建て、各仮受けサポート8…に油圧ジャッキ
12を設置し、この油圧ジャッキ12を既存建物3の地下構
造躯体3Aとの間に働かせて支持杭2の負担軸力を仮受け
サポート8…へ盛り替える段階と、 ハ) 軸力を盛り替えた後に支持杭2を解体し、代わっ
て同位置に本設の鉄骨柱18を建てる段階と、 ニ) 本設鉄骨柱18と既存建物3の地下構造躯体3Aとの
間に免震装置19を設置し、その後仮受けサポート8の軸
力を本設鉄骨柱18へ盛り替え、仮受けサポート8等は撤
去する段階と、より成る構成とした(第1図〜第8
図)。
Means for Solving the Problems (First Invention) As a means for solving the above-mentioned problems of the prior art, the seismic isolation method for an existing building according to the present invention employs a method in which the existing building is supported by supporting piles. As shown in the embodiment in FIGS. 1 to 13 of the drawings, a) excavating the basement of the existing building 3 and exposing the support piles 2 to the support layer ground 1. Steps: b) Build the required number of temporary support supports 8 on the outer periphery of the exposed support pile 2, and install hydraulic jacks on each temporary support 8.
12) Installing the hydraulic jack 12 between the underground structure 3A of the existing building 3 and the hydraulic jack 12 to change the load on the support pile 2 to the temporary support 8 ... c) Change the axial force After that, the supporting pile 2 is dismantled, and instead, a permanent steel column 18 is constructed at the same position. D) A seismic isolation device 19 is installed between the permanent steel column 18 and the underground structural frame 3A of the existing building 3. After that, the axial force of the temporary support 8 is re-arranged to the permanent steel column 18, and the temporary support 8 and the like are removed (FIGS. 1 to 8).
Figure).

作 用 1本の支持杭2が負担する軸力をその外周に建てた数
本の仮受けサポート8及び油圧ジャッキ12の軸力として
盛り替えるので、作業者は仮受けサポート8の間を出入
りして支持杭2の解体作業が容易、かつ安全にできる。
Operation Since the axial force borne by one support pile 2 is changed as the axial force of several temporary support supports 8 and hydraulic jacks 12 built around its periphery, the worker enters and exits between the temporary support supports 8. Thus, the work of dismantling the support pile 2 can be easily and safely performed.

支持杭2を解体して本設鉄骨柱18に建て替えるので、
既存建物3の健全性と耐震性は決して毀損されない。そ
して、本設鉄骨柱18と既存建物3の地下構造躯体3Aとの
間の位置へ免震装置19を組み入れることが容易に可能と
なり、同建物の免震化が図れる。また、この免震化によ
って既存建物3の耐震性と構造安全性が大幅に向上す
る。支持杭2を露出させる根切り工事のついでに地下室
20を増設することも可能であり、増設した地下室20(地
下増設部分)の躯体工事に必要な梁と柱接合部のアンカ
ーも予め本設鉄骨柱18に設けておくことができ、接合を
容易、確実に行なうことができる。
Since the support pile 2 is dismantled and rebuilt to the permanent steel column 18,
The soundness and seismic resistance of the existing building 3 are never impaired. Then, it becomes possible to easily incorporate the seismic isolation device 19 into the position between the permanent steel column 18 and the underground structure skeleton 3A of the existing building 3, and the building can be made seismically isolated. In addition, the seismic isolation greatly improves the seismic resistance and structural safety of the existing building 3. Basement with excavation to expose support pile 2
It is also possible to add an additional 20. Anchors for beam and column joints required for skeleton construction of the added basement 20 (underground extension) can be provided on the main steel column 18 in advance, facilitating joining. Can be performed reliably.

(第2の発明) 同じく従来技術の課題を解決するための手段として、
この発明に係る既存建物の免震化工法は、既存建物が直
接支持層地盤で支持されていて支持杭がない場合に実施
されるものであって、それはやはり図面の第14図〜第18
図に実施例を示したとおり、 イ) 既存建物3を支持している支持層地盤1中に既存
建物3の地下に及ぶメインの横トンネル7を堀り、この
横トンネル7から既存建物3における柱3Bの直下位置を
通る枝トンネル21を掘る段階と、 ロ) 枝トンネル21から既存建物3における柱3Bの下端
に向かって垂直上向きに縦坑22を掘り、この縦坑22に沿
って鉄骨柱24を建てる段階と、 ハ) 鉄骨柱24の天端と既存建物3の柱3Bの柱脚部との
間に免震装置19を設置し、さらに油圧ジャッキ25を設置
し、この油圧ジャッキ25を働かせて鉄骨柱24へ軸力を導
入して既存建物3の支持を支持層地盤1から鉄骨柱24及
び免震装置19へ盛り替える段階と、 から成る構成とした。
(Second Invention) Similarly, as means for solving the problems of the prior art,
The seismic isolation method of an existing building according to the present invention is carried out when the existing building is directly supported by the ground of the support layer and there is no supporting pile, which is also shown in FIGS.
As shown in the embodiment in the figure, a) A main horizontal tunnel 7 extending underground of the existing building 3 is dug in the support layer ground 1 supporting the existing building 3, and the horizontal tunnel 7 A step of digging a branch tunnel 21 passing directly below the column 3B; and b) a vertical shaft 22 is dug vertically upward from the branch tunnel 21 toward the lower end of the column 3B in the existing building 3, and a steel column is formed along the shaft 22. C) The seismic isolation device 19 is installed between the top of the steel column 24 and the column base of the column 3B of the existing building 3, and the hydraulic jack 25 is further installed. And the step of introducing an axial force to the steel column 24 to change the support of the existing building 3 from the support layer ground 1 to the steel column 24 and the seismic isolation device 19.

作用 支持層地盤1の上に直接建設されて支持杭を持たない
既存建物3の場合、支持層地盤1の十分深い位置に掘っ
た枝トンネル21を通じて鉄骨柱24の建方を行なうので、
既存建物3の健全性、耐震性は毀損されないし、鉄骨柱
24を建てる際に免震装置19を組み込むことが容易に可能
である。既存建物3の支持は支持層1から鉄骨柱24及び
免震装置19へ盛り替える。ついでに周囲の地盤1を根切
りすることによって新たに地下室20を増設することが可
能であり、鉄骨柱24を最終的には増設した地下室20の構
造躯体の一部とすることができる。
In the case of the existing building 3 which is constructed directly on the supporting layer ground 1 and has no supporting pile, the steel column 24 is constructed through the branch tunnel 21 dug at a sufficiently deep position in the supporting layer ground 1.
The soundness and seismic resistance of the existing building 3 are not impaired,
It is easily possible to incorporate the seismic isolation device 19 when building 24. The support of the existing building 3 is changed from the support layer 1 to the steel column 24 and the seismic isolation device 19. Then, the basement 20 can be newly added by cutting off the surrounding ground 1, and the steel column 24 can be finally formed as a part of the structural frame of the added basement 20.

実施例 次に、図面に示した本発明の実施例を説明する。Next, an embodiment of the present invention shown in the drawings will be described.

まず第1図〜第8図は、支持層地盤(土丹層)1にま
で達する支持杭2…によって支持された既存建物3を免
震化する場合について示している。
First, FIG. 1 to FIG. 8 show a case where an existing building 3 supported by support piles 2...

第1図は、既存建物3の外周に止水を兼ねた山留め壁
4が施工された段階を示している。この山留め壁4は、
例えば第9図Aに示したように、既存建物3を包囲する
平面形状で、地上から支持層地盤1に到達する深さに形
成されている。この山留め壁4は、シートパイルの打込
み又はタックス(商標)等の凝固材を使用した薬液注入
工法等による手段で施工されている。
FIG. 1 shows a stage in which a mountain retaining wall 4 also serving as a water stop is constructed on the outer periphery of the existing building 3. This retaining wall 4
For example, as shown in FIG. 9A, it has a planar shape surrounding the existing building 3 and is formed at a depth reaching the support layer ground 1 from the ground. The retaining wall 4 is constructed by driving a sheet pile or by a chemical liquid injection method using a solidifying material such as Tax (trademark).

第2図は、既存建物3の近傍位置に縦坑5を堀り、そ
の地上部分にはグラブホッパー6を設置し、縦坑5につ
ながる横トンネル7を既存建物3の平面形状の外形線に
沿ってその外側に掘り(第9図A)、この横トンネル7
を利用して資材や掘削土等の搬出入を行ない、既存建物
3の地下部分(梁礎部分)を根切りして支持杭2…を支
持層1の深さまで完全に露出せしめた段階を示してい
る。
FIG. 2 shows that a shaft 5 is dug near the existing building 3, a grab hopper 6 is installed on the ground, and a horizontal tunnel 7 connected to the shaft 5 is formed in a plane shape of the existing building 3. Dig along the outside (Fig. 9A), and
This shows the stage where materials and excavated soil are carried in and out using, and the underground part (beam foundation) of the existing building 3 is cut off to completely expose the support piles 2 to the depth of the support layer 1. ing.

この場合の根切り工事は、第9図A〜Dに進捗状況を
段階的に例示したように、既存建物3の平面において、
前記横トンネル7に沿って端から順に例えば4本の支持
杭2…を含む四角形を1単位の根切り施工区分とし、こ
の施工区分を一つおきの単位で部分的に根切り施工を進
め、もって万一の場合でも既存建物3の耐震性や健全性
には一切の悪影響を及ぼしめない手順が採用される。勿
論、次の施工手順としては、先に一つおきに飛ばした施
工区分の根切りを進めて第9図Bのように横に連絡せし
め、以下同様な手順の繰り返しによって第9図C、Dの
ように全平面の施工に水平展開するのである。
The excavation work in this case is performed on the plane of the existing building 3 as illustrated in steps in FIGS.
A quadrangular shape including, for example, four support piles 2... In order from the end along the horizontal tunnel 7 is defined as one unit of root cutting section, and this cutting section is partially advanced in every other unit. In the unlikely event that a problem occurs, a procedure that does not have any adverse effect on the earthquake resistance and soundness of the existing building 3 is adopted. Of course, as the next construction procedure, the roots of the construction sections skipped every other step are first advanced and contacted laterally as shown in FIG. 9B, and the same procedure is repeated to repeat FIGS. It spreads horizontally to the construction of all planes like this.

次に、第3図は、上記の根切りによって露出された各
支持杭2…の外周に仮受けサポート8…を建てた段階を
示している。
Next, FIG. 3 shows a stage in which temporary supports 8 are erected on the outer periphery of each support pile 2 exposed by the root cutting.

第4図は各仮受けサポート8…に軸力を導入して既存
建物3の荷重支持を支持杭2からその周囲の仮受けサポ
ート8…へ盛り替えた段階を示している。
FIG. 4 shows a stage in which an axial force is introduced into each temporary support 8 to change the load support of the existing building 3 from the support pile 2 to the surrounding temporary support 8.

その具体的な手段は、第10図と第11図に詳示したよう
に、仮受けサポート8は支持杭2の外周の直角4方向の
位置に4本建てる(但し、本数、位置はこの限りでな
い)。それにはまず、第10図のように支持層地盤1の所
定位置に予め立坑9を例えば2メートルぐらいの深さ掘
削し、この立坑9に仮受けサポート8たるH形鋼を挿入
して垂直に建てる。このように支持杭2の近傍位置に建
てた仮受けサポート8…は、必然的に地下構造躯体3Aに
おける特に柱脚部ないしその近辺位置を支持することに
なり耐力上好都合である。1本の支持杭2に関して共通
に働く周囲4本の仮受けサポート8…は、水平方向のつ
なぎ材10で相互に接合し、さらにブレース11を組入れて
補剛する。各仮受けサポート8…の上端部には1台ずつ
油圧ジャッキ12を設置し、そのジャッキアップにより荷
重の盛り替えが行なわれる。
The concrete means is, as shown in detail in FIGS. 10 and 11, four temporary supporters 8 are erected at four positions at right angles to the outer periphery of the support pile 2 (however, the number and positions are limited Not). First, as shown in FIG. 10, a shaft 9 is preliminarily excavated at a predetermined position of the support layer ground 1 at a depth of, for example, about 2 meters, and an H-shaped steel serving as a temporary receiving support 8 is inserted into the shaft 9 and vertically. build. The temporary receiving supports 8 built in the vicinity of the support piles 2 inevitably support the column bases or the vicinity thereof in the underground structure skeleton 3A, which is advantageous in terms of strength. The four temporary supporting supports 8... Which work in common with respect to one supporting pile 2 are joined to each other by a horizontal connecting member 10 and further stiffened by incorporating a brace 11. One hydraulic jack 12 is installed at the upper end of each of the temporary receiving supports 8, and the load is changed by jack-up.

荷重盛り替え作業の詳細は第12図A〜Cに詳示したよ
うに、まず仮受けサポート8の上端に取付けた天端プレ
ート17上に軸力能力が200トン、ストロークが220mm位の
油圧ジャッキ12を設置し、そのラム先端は既存建物3の
地下構造躯体(基礎梁)3Aの下面へホールインアンカー
等で固定したプレート13へ当接させる。前記プレート13
と仮受けサポート8の上端部は斜材14で連結しておく。
また、仮受けサポート8の上部にはブラケット15を予め
付設しておく。そして、油圧ジャッキ12を駆動して、当
初は荷重盛り替えに必要な軸力よりも適度に大きな軸力
を仮受けサポート8に導入し、もって前記荷重盛り替え
後の仮受けサポート8に必要とされる軸力に耐えるだけ
の先端支持力を支持層地盤1に予め発生させておく。こ
うして所定軸力を油圧ジャッキ12で確認した後に、ブラ
ケット15とプレート13との間へ鋼材による躯体受け構台
16を組立てる(第12図B)。その後油圧ジャッキ12はゆ
るめて撤去し、荷重負担の盛り替え作業を完了する。こ
うして4本の仮受けサポート8…について全部盛り替え
を完了すると、当該支持杭2の荷重負担は零となり、解
体可能となる。
As shown in FIGS. 12A to 12C, details of the load changing operation are as follows. First, a hydraulic jack having an axial force capacity of 200 tons and a stroke of about 220 mm is placed on the top end plate 17 attached to the upper end of the temporary support 8. 12 is installed, and the tip of the ram is brought into contact with a plate 13 fixed to the lower surface of the underground structural frame (foundation beam) 3A of the existing building 3 with a hole-in anchor or the like. The plate 13
And the upper end of the temporary support 8 are connected by a diagonal member 14.
In addition, a bracket 15 is provided in advance on the temporary support 8. Then, by driving the hydraulic jack 12, an axial force that is appropriately larger than the axial force necessary for the load change is initially introduced into the temporary support 8, thereby requiring the temporary support 8 after the load change. An end supporting force enough to withstand the applied axial force is generated in the supporting layer ground 1 in advance. After confirming the predetermined axial force with the hydraulic jack 12, the frame receiving gantry made of steel is inserted between the bracket 15 and the plate 13.
Assemble 16 (Fig. 12B). Thereafter, the hydraulic jack 12 is loosened and removed, and the work of changing the load burden is completed. When the rearrangement of all four temporary receiving supports 8 is completed in this way, the load burden on the support pile 2 becomes zero and the support pile 2 can be dismantled.

次に、第5図は、前記のようにして荷重負担から解放
された支持杭2を全部解体し、既存建物3の荷重を仮受
けサポート8…で支持せしめた段階を示している。
Next, FIG. 5 shows a stage in which the support pile 2 released from the load burden as described above is completely dismantled and the load of the existing building 3 is supported by the temporary receiving supports 8.

第6図は、それまで支持杭2があった位置に本設の鉄
骨柱18を建てた段階を示している。
FIG. 6 shows a stage in which a permanent steel column 18 has been erected at the position where the support pile 2 was located.

第7図は、仮受けサポート8から本設の鉄骨柱18へ荷
重盛り替えを行ない、仮受けサポートを撤去した段階を
示している。
FIG. 7 shows a stage in which the load is changed from the temporary support 8 to the permanent steel column 18 and the temporary support is removed.

仮受けサポート8の軸力を本設鉄骨柱18へ盛り替える
にあたり、第13図のように本設鉄骨柱18の天端と既存建
物3の地下構造躯体3Aとの間に免震装置19を設置する。
この免震装置19は、鉄板19aとゴムシート19bとを交互に
貼合わせて柱状体に形成した積層ゴム柱であり、水平入
力の吸収に優れた効果を奏する。
In order to change the axial force of the temporary support 8 to the permanent steel column 18, a seismic isolation device 19 is installed between the top end of the permanent steel column 18 and the underground structural frame 3A of the existing building 3, as shown in FIG. Install.
The seismic isolation device 19 is a laminated rubber column formed by alternately attaching iron plates 19a and rubber sheets 19b to form a columnar body, and has an excellent effect of absorbing horizontal input.

また、本設鉄骨柱18の下部にブラケット26を突設し、
支持層地盤1の上に打設した柱基礎27上にベースプレー
ト28を固定し、このベースプレート28上に立てた油圧ジ
ャッキ25をブラケット26へ働かせて本設鉄骨柱18へ軸力
が導入される。本設鉄骨柱18の下端部のフートプレート
29にスタッドボルト30をねじ込み、ロックナット31で固
定する。
Also, a bracket 26 protrudes below the main steel column 18,
A base plate 28 is fixed on a column foundation 27 cast on the support layer ground 1, and a hydraulic jack 25 erected on the base plate 28 is acted on a bracket 26 to introduce an axial force to the permanent steel column 18. Foot plate at the lower end of the permanent steel column 18
A stud bolt 30 is screwed into 29 and fixed with a lock nut 31.

油圧ジャッキ25で本設鉄骨柱18へ所定大きさの軸力を
導入して仮受けサポート8から本設鉄骨柱18へ軸力を盛
り替える。本設鉄骨柱18の軸力は、スタッドボルト30と
ロックナット31を調節してスタッドボルト30からベース
プレート27へと伝達せしめる。その後油圧ジャッキ25は
ゆるめて撤去し、本設鉄骨18は例えば鉄骨鉄筋コンクリ
ート柱に仕上げるのである。
A predetermined amount of axial force is introduced into the permanent steel column 18 by the hydraulic jack 25 to change the axial force from the temporary support 8 to the permanent steel column 18. The axial force of the steel column 18 is transmitted from the stud bolt 30 to the base plate 27 by adjusting the stud bolt 30 and the lock nut 31. Thereafter, the hydraulic jack 25 is loosened and removed, and the permanent steel frame 18 is finished into, for example, a steel reinforced concrete column.

上記のようにして既存建物3の免震化が行なわれるの
であり、その結果同建物3の耐震性と構造安全性が大幅
に向上する。したがって、新耐震設計法の施工(昭和56
年6月)以前の建物であっても、増築に伴う耐震補強は
必ずしも必要でなくなり、経済性が大いに向上するほ
か、OA機器の使用に好適な環境を作れるのである。
The seismic isolation of the existing building 3 is performed as described above, and as a result, the seismic resistance and structural safety of the building 3 are greatly improved. Therefore, construction of the new seismic design method (Showa 56
Buildings before June) are not necessarily required to have seismic reinforcement as a result of the expansion, greatly improving economic efficiency and creating an environment suitable for the use of OA equipment.

次に、第7図は、全ての支持杭2…について上述のよ
うに免震装置19を組み入れる根切りを地盤全部に拡張す
ることによって地下室20を増設した段階を示し、第8図
は地下増設部分の躯体工事を行ない、地下室20の増設を
完了した段階を示している。
Next, FIG. 7 shows a stage in which the basement 20 is expanded by extending the root excavation incorporating the seismic isolation device 19 to the whole ground as described above for all the support piles 2. This shows a stage where the skeleton construction of a part has been performed and the extension of the basement 20 has been completed.

こうした地下増設部分の躯体工事までの工程は、第12
図A〜Dに示した施工区分の単位ごとに完成してゆく。
そして、順次隣接の施工区分間を連絡させつないでゆく
ことにより、既存建物3の耐震性と健全性を確保しつつ
免震装置19の組み入れと地下室20の増設を併合して行な
う。増設した地下室20の躯体工事における柱梁接合部に
関しては、本設鉄骨柱18に予め柱、梁接合用のアンカー
を突設しておくことにより接合を容易、確実に行なうこ
とができるのである。
The process up to the construction of the underground extension is described in Section 12.
It is completed for each unit of the construction section shown in FIGS.
Then, by connecting the adjacent construction sections sequentially, the seismic isolation device 19 is incorporated and the basement 20 is expanded while the seismic resistance and soundness of the existing building 3 are secured. With regard to the beam-column joints in the frame construction of the added basement 20, joints can be easily and reliably performed by projecting anchors for column and beam joints in advance on the permanent steel columns 18.

第2の実施例 次に、第14図〜第18図は、既存建物3が土丹層又は東
京礫層のような支持層地盤1で直接支持されていて、支
持杭等の深礎部分がない場合に、その既存建物3を免震
化する工法を示している。
Second Embodiment Next, FIGS. 14 to 18 show that an existing building 3 is directly supported by a support layer ground 1 such as a Dotan layer or a Tokyo gravel layer, and a deep foundation portion such as a support pile is provided. If there is no construction method, the existing building 3 is seismically isolated.

第14図は、既存建物3の外周に止水を兼ねた山留め壁
4が施工された段階を示している。
FIG. 14 shows a stage in which a mountain retaining wall 4 also serving as a water stop is constructed on the outer periphery of the existing building 3.

この山留め壁4は、上記第1実施例の場合と同様に、
既存建物3の周囲を包囲する平面形状で施工し、地上か
ら支持層地盤1に到達する深さまで形成される。山留め
壁4は、シートパイルの打ち込み又はタックス(商標)
等の凝固材を使用した薬液注入工法等による手段で施工
されている。
This retaining wall 4 is, as in the case of the first embodiment,
It is constructed in a planar shape surrounding the existing building 3 and is formed from the ground to a depth reaching the support layer ground 1. The retaining wall 4 is formed by driving a sheet pile or using a tax (trademark).
It is constructed by means such as a chemical liquid injection method using a solidifying material such as.

第15図は、既存建物3の近傍位置に縦坑5を掘り、そ
の地上部分にはグラブホッパー6を設置し、縦坑5につ
ながるメインの横トンネル7を支持層地盤1中の所定深
さ位置、即ち後で設置される鉄骨柱の下端位置レベルに
掘り、この横トンネル7を利用して資材や掘削土等の搬
出入を行ない、既存建物3の柱3B…の直下位置を通る枝
トンネル21を掘った段階を示している。
FIG. 15 shows that a shaft 5 is dug near the existing building 3, a grab hopper 6 is installed on the ground, and a main horizontal tunnel 7 connected to the shaft 5 is provided at a predetermined depth in the support layer ground 1. Dig to the position, that is, the level of the lower end position of the steel column to be installed later, carry out the loading and unloading of materials, excavated soil, etc. using this horizontal tunnel 7, and branch tunnel that passes immediately below the column 3B ... of the existing building 3 The stage where 21 was dug is shown.

第16図は、上記のようにして掘った枝トンネル21内か
ら既存建物3における個々の柱3Bの下端に向かって垂直
上向きに縦坑22を掘り、この縦坑22の直下位置に柱基礎
23を施工し、その上に建てた鉄骨柱24を前記縦坑22に沿
って立て、既存建物3の柱3Bの下端との間には免震装置
19を組み入れ、鉄骨柱24の下部に油圧ジャッキ25を設置
し、そのジャッキアップによって鉄骨柱24へ軸力を導入
し、既存建物3の荷重を支持層地盤1から鉄骨柱24へ盛
り替えた段階を示している。
FIG. 16 shows that a shaft 22 is dug vertically upward from the branch tunnel 21 dug as described above toward the lower end of each column 3B in the existing building 3, and a column foundation is located immediately below the shaft 22.
23, a steel column 24 built on it is set up along the shaft 22, and a seismic isolation device is installed between the lower end of the column 3B of the existing building 3.
19, the hydraulic jack 25 was installed under the steel column 24, the axial force was introduced to the steel column 24 by the jack-up, and the load of the existing building 3 was relocated from the support layer ground 1 to the steel column 24. Is shown.

鉄骨柱24の天端と既存建物3の柱3Bの下端との間に免
震装置19を組み入れて軸力を盛り替える手段とやり方
は、やはり第13図に示したように、鉄骨柱24に沿ってそ
の下部に油圧ジャッキ25を設置し、この油圧ジャッキ25
の軸力をブラケット26を介して鉄骨柱24へ伝達する。そ
して、鉄骨柱24が負担した軸力は、スタッドボルト30を
立ててベースプレート28へ伝達せしめることで荷重盛り
替えを行なう。
As shown in Fig. 13, the means and method of incorporating the seismic isolation device 19 between the top end of the steel column 24 and the lower end of the column 3B of the existing building 3 are as follows. A hydraulic jack 25 is installed along the lower part of the
Is transmitted to the steel column 24 via the bracket 26. Then, the axial force that the steel column 24 bears is changed by changing the load by raising the stud bolt 30 and transmitting it to the base plate 28.

第17図は、既存建物3の荷重支持の盛り替え後に、周
囲の地盤1の根切りを地盤全部に拡張して地下室20を形
成した段階を示している。
FIG. 17 shows a stage in which the basement 20 is formed by extending the roots of the surrounding ground 1 to the entire ground after changing the load support of the existing building 3.

第18図は、増設した地下室部分の躯体工事を行ない、
地下室20の増設を完成した段階を示している。
Fig. 18 shows the construction work of the expanded basement,
This shows a stage where the extension of the basement 20 has been completed.

なお、本実施例の場合にも、鉄骨柱24の建方から地盤
の根切り、躯体工事までの一連の工程は、上記第1実施
例と同様に、既存建物3の平面において、メインの横ト
ンネル7に沿って端から順に、例えば数本の柱3B…を含
む四角形又は枝トンネル21の長さを1単位の施工区分と
し、これを一つおきの単位で部分的に施工を進め、次に
先に一つおきに飛ばした区分の施工を進め、以下同様な
手順の繰り返しによって第9図A〜Dのように建物全平
面の施工に水平展開するやり方を採用し、もって万一の
場合でも既存建物3の耐震性と健全性には一切の悪影響
を及ぼしめないものとされる。
Also in the case of the present embodiment, a series of steps from the construction of the steel columns 24 to the ground excavation and the skeleton construction are performed on the plane of the existing building 3 in the plane of the existing building 3 as in the first embodiment. In order from the end along the tunnel 7, for example, the length of a square or branch tunnel 21 including several pillars 3B... Is defined as one unit of construction section, and the construction is partially advanced in alternate units. First of all, proceed with the construction of every other skipped section, and then adopt the method of horizontal development to the construction of the whole building as shown in Figs. 9A to 9D by repeating the same procedure, and in case of emergency However, it is said that the existing building 3 will not have any adverse effect on the earthquake resistance and soundness.

本発明が奏する効果 以上に実施例と併せて詳述したとおりであって、この
発明に係る既存建物の免震化工法によれば、既存建物3
の免震化を、同既存建物の健全性、耐震性を一切毀損す
ることなく、また、既存建物の使用を中断することなく
安全、確実に実施でき、既存建物3の構造安全性と耐震
性を大幅に向上できるほか、OA機器などの使用に好適な
環境を提供できる。
Advantageous Effects of the Present Invention As described in detail in conjunction with the embodiment above, according to the seismic isolation method for an existing building according to the present invention, the existing building 3
Can be implemented safely and reliably without damaging the soundness and seismic resistance of the existing building, and without interrupting the use of the existing building. The structural safety and seismic resistance of the existing building 3 In addition to greatly improving the environment, it is possible to provide an environment suitable for use of OA equipment and the like.

したがって、昭和56年6月の新耐震設計法施行以前の
既存建物についても、その増築に伴う耐震補強を必ずし
も必要としないで経済的に施工可能となる。
Therefore, existing buildings before the enforcement of the New Seismic Design Law in June 1981 can be constructed economically without necessarily requiring seismic strengthening accompanying the expansion.

その上、既存建物3の免震化と併合して、同既存建物
3が本来持ち合わせている構造耐力や日照権の問題に一
切低触することなく、安全に地下室20(床面積)を増設
することができ、同地下室20を駐車場や倉庫、売場など
に活用することで大きな経済的効果を得ることができ
る。特に最近の地価の異常なまでの高騰は、免震化のた
めの地下工事に要する莫大な費用(坪単価)を差し引い
てもなお、増設された地下室20の有効利用スペースが余
りあるほどの経済効果、付加価値をもたらすのである。
In addition, in conjunction with the seismic isolation of the existing building 3, the basement 20 (floor area) will be safely expanded without any problems with the structural strength and sunshine rights inherent in the existing building 3. By using the basement 20 for a parking lot, a warehouse, a sales floor, etc., a great economic effect can be obtained. In particular, the recent rise in land prices to an unusually high level means that even if the huge cost (unit price per tsubo) required for underground construction for seismic isolation is deducted, there is still enough available space for the expanded basement 20 It brings benefits and added value.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第8図はこの発明に係る既存建物の地下室増設
工法の枢要な工程を示した断面図、第9図A〜Dは建物
を平面的に見た施工の進捗状況を示した説明図、第10図
は支持杭と仮受けサポートとの荷重盛り替えの手段を示
した立面図、第11図は第10図の11−11断面図、第12図A
〜Cは仮受けサポートのジャッキアップ手段を工程順に
示した説明図、第13図は免震装置の組入れ構造を示した
正面図、第14図〜第18図はこの発明の第2実施例である
既存建物の地下室増設工法の枢要な工程を示した断面図
である。 3……既存建物、4……山留め壁 2……支持杭、1……支持層 8……仮受けサポート、12……油圧ジャッキ 3A……地下構造躯体 18……本設の鉄骨柱、19……免震装置 7……メインの横トンネル、21……縦坑 24……鉄骨柱、25……油圧ジャッキ
1 to 8 are cross-sectional views showing essential steps of a basement extension method of an existing building according to the present invention, and FIGS. 9A to 9D are views showing progress of construction when the building is viewed in a plan view. Fig. 10, Fig. 10 is an elevation view showing a means for changing the load between the support pile and the temporary support, Fig. 11 is a sectional view taken along line 11-11 of Fig. 10, and Fig.
To C are explanatory views showing the jack-up means of the temporary support in the order of steps, FIG. 13 is a front view showing the structure for incorporating the seismic isolation device, and FIGS. It is sectional drawing which showed the important process of the basement extension construction method of a certain existing building. 3 ... existing building 4 ... retaining wall 2 ... support pile 1 ... support layer 8 ... temporary support, 12 ... hydraulic jack 3A ... underground structure frame 18 ... permanent steel column, 19 …… Seismic isolation device 7 …… Main horizontal tunnel, 21… Pit shaft 24 …… Steel column, 25… Hydraulic jack

フロントページの続き (72)発明者 宮口 正夫 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (72)発明者 山田 弘道 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (72)発明者 山下 進 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (72)発明者 村野 忠雄 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (72)発明者 内村 勝志 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (72)発明者 鈴木 善雄 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 菅野 俊介 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 速水 浩 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内Continued on the front page (72) Inventor Masao Miyaguchi 8-21-1, Ginza, Chuo-ku, Tokyo Inside the Tokyo Head Office of Takenaka Corporation (72) Inventor Hiromichi Yamada 8-2-1-1, Ginza, Chuo-ku, Tokyo Stock Company Takenaka Corporation (Tokyo) (72) Inventor Susumu Yamashita 8-21-1, Ginza, Chuo-ku, Tokyo Inside Tokyo Takenaka Corporation (Tokyo) (72) Inventor Tadao Murano 8-2-1-1, Ginza, Chuo-ku, Tokyo (72) Inventor Katsushi Uchimura 8-21-1, Ginza, Chuo-ku, Tokyo Tokyo, Japan (72) Inventor Yoshio Suzuki 2-5-2 Minamisuna, Koto-ku, Tokyo No. 14 Inside Takenaka Corporation Technical Research Institute (72) Inventor Shunsuke Sugano 2-5-1 Minamisuna, Koto-ku, Tokyo Inside No. 5 Takenaka Corporation Technical Research Institute (72) Inventor Hiroshi Hayami 2-Chome Minamisuna, Koto-ku, Tokyo No. 5-14 Inside of Takenaka Corporation Technical Research Institute

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イ) 既存建物の地下を根切りして支持杭
を露出させる段階と、 ロ) 露出した支持杭の外周に必要本数の仮受けサポー
トを建て、各仮受けサポートにジャッキを設置し、この
ジャッキを既存建物の地下構造躯体に働かせて支持杭の
軸力を仮受けサポートへ盛り替える段階と、 ハ) 軸力を盛り替えた後に支持杭を解体し、代わって
同位置に本設の鉄骨柱を建てる段階と、 ニ) 本設鉄骨柱と既存建物の地下構造躯体との間に免
震装置を設置し、その後仮受けサポートの軸力を本設鉄
骨柱へ盛り替え、仮受けサポート等は撤去する段階と、 より成ることを特徴とする既存建物の免震化工法。
(1) A step of excavating the basement of an existing building to expose the supporting piles, and (b) A required number of temporary supporting supports are erected around the exposed supporting piles, and jacks are installed on each temporary supporting support. Then, the jack is applied to the underground structure of the existing building to change the axial force of the supporting pile to the temporary support. C) After the axial force is changed, the supporting pile is dismantled and the book is replaced at the same position. And d) installing a seismic isolation device between the main steel column and the underground structure of the existing building, and then relocating the axial force of the temporary support to the main steel column. A method of seismic isolation of existing buildings, characterized by the following steps:
【請求項2】イ) 既存建物を支持している支持層地盤
中に同既存建物の地下に及ぶメインの横トンネルを堀
り、この横トンネルから既存建物の柱の直下位置を通る
枝トンネルを掘る段階と、 ロ) 枝トンネルから既存建物の柱の下端に向かって垂
直上向きに縦坑を掘り、この縦坑に沿って鉄骨柱を建て
る段階と、 ハ) 鉄骨柱の天端と既存建物の地下構造躯体との間に
免震装置を設置すると共にジャッキを設置し、このジャ
ッキを働かせて軸力を鉄骨柱へ導入し既存建物の支持を
鉄骨柱と免震装置へ盛り替える段階と、 から成ることを特徴とする既存建物の免震化工法。
2. A main tunnel extending underground to the existing building is dug in the support layer ground supporting the existing building, and a branch tunnel passing from the horizontal tunnel to a position directly below the pillar of the existing building. Digging; and b) digging a vertical shaft vertically upward from the branch tunnel toward the lower end of the pillar of the existing building, and constructing a steel column along the shaft; c) the top of the steel column and the existing building. A seismic isolation device and a jack are installed between the underground structural frame and a jack, and this jack is used to introduce the axial force into the steel column, and to replace the support of the existing building with the steel column and the seismic isolation device. A seismic isolation method for existing buildings, characterized by the following:
JP17066388A 1988-07-08 1988-07-08 Existing building seismic isolation method Expired - Fee Related JP2596798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17066388A JP2596798B2 (en) 1988-07-08 1988-07-08 Existing building seismic isolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17066388A JP2596798B2 (en) 1988-07-08 1988-07-08 Existing building seismic isolation method

Publications (2)

Publication Number Publication Date
JPH0220767A JPH0220767A (en) 1990-01-24
JP2596798B2 true JP2596798B2 (en) 1997-04-02

Family

ID=15909067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17066388A Expired - Fee Related JP2596798B2 (en) 1988-07-08 1988-07-08 Existing building seismic isolation method

Country Status (1)

Country Link
JP (1) JP2596798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248832A (en) * 2009-04-17 2010-11-04 Taisei Corp Method for constructing seismic isolated structure
JP2012097410A (en) * 2010-10-29 2012-05-24 Jfe Civil Engineering & Construction Corp Artificial ground of roads and others
WO2021093731A1 (en) * 2019-11-12 2021-05-20 山东建筑大学 Method for moving tall building uphill

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722783B2 (en) * 2006-07-03 2011-07-13 株式会社竹中工務店 Foundation reinforcement method for existing buildings
KR101212240B1 (en) * 2012-05-31 2012-12-13 현대산업개발 주식회사 Structure for underground downward extension of structural remodeling and methode thereof
JP6099337B2 (en) * 2012-09-12 2017-03-22 大成建設株式会社 Temporary support method for foundation
US9316012B2 (en) * 2013-04-26 2016-04-19 W. Charles Perry Systems and methods for retrofitting a building for increased earthquake resistance
JP6038754B2 (en) * 2013-09-24 2016-12-07 鹿島建設株式会社 Seismic isolation method for existing structures
JP6449115B2 (en) * 2015-08-10 2019-01-09 鹿島建設株式会社 Seismic structure and earthquake resistance method
CN112554885B (en) * 2020-11-20 2023-02-17 北京市政路桥股份有限公司 Tunnel vertical shaft and transverse channel excavation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248832A (en) * 2009-04-17 2010-11-04 Taisei Corp Method for constructing seismic isolated structure
JP2012097410A (en) * 2010-10-29 2012-05-24 Jfe Civil Engineering & Construction Corp Artificial ground of roads and others
WO2021093731A1 (en) * 2019-11-12 2021-05-20 山东建筑大学 Method for moving tall building uphill

Also Published As

Publication number Publication date
JPH0220767A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
US3184893A (en) Contact foundation method
KR101014796B1 (en) Top-down underground construction method using prefabricated concrete column member as temporary bridge column
KR101205783B1 (en) The complex execution method which dismantling work of existing underground structure and constructs of new building simultaneously
JPH08253946A (en) Reverse placing method for concrete of underground structure under road
JP2596798B2 (en) Existing building seismic isolation method
JP3724320B2 (en) Construction method for underground structures
JP2640969B2 (en) Basement expansion method for existing buildings
JP2000352296A (en) Method o constructing passage just under underground structure
KR20000058239A (en) Multi-phased underground construction method for wide excavation using permanent structural members as temporary struts
JP2000265574A (en) High floor type steel frame footing beam method
JP3248458B2 (en) Shoring construction underground construction method
JP3390081B2 (en) How to build an underground parking
JPS62288269A (en) Method for extending underground stair of building
KR100615149B1 (en) A method of construction top-down for the ground fabric construction
JPH0559728A (en) Sheathing work above underground structure
JPS63280153A (en) Underground inverted lining method
JP3133598B2 (en) Construction method of small and medium-sized building with basement floor
JP2003082691A (en) Execution method for underground structural skeleton
JPH09170338A (en) Base isolation method for existing building
JP3378932B2 (en) Underground structure of a building without internal columns below the basement floor and its construction method
JP2838019B2 (en) Caisson blade framing method
JP2819008B2 (en) Existing building seismic isolation method
JP2894217B2 (en) Building structural frame
JP3061934B2 (en) Retaining wall construction method
JP2565457B2 (en) Structure pillar construction method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees