JP2591234B2 - Manufacturing method of seamless steel pipe with ultrafine structure - Google Patents

Manufacturing method of seamless steel pipe with ultrafine structure

Info

Publication number
JP2591234B2
JP2591234B2 JP2069348A JP6934890A JP2591234B2 JP 2591234 B2 JP2591234 B2 JP 2591234B2 JP 2069348 A JP2069348 A JP 2069348A JP 6934890 A JP6934890 A JP 6934890A JP 2591234 B2 JP2591234 B2 JP 2591234B2
Authority
JP
Japan
Prior art keywords
temperature
point
ferrite
temperature range
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2069348A
Other languages
Japanese (ja)
Other versions
JPH03267316A (en
Inventor
千博 林
富夫 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2069348A priority Critical patent/JP2591234B2/en
Publication of JPH03267316A publication Critical patent/JPH03267316A/en
Application granted granted Critical
Publication of JP2591234B2 publication Critical patent/JP2591234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、均一で超微細な組織を有する継目無鋼管
を工業的規模で安定して製造する方法に関する。
The present invention relates to a method for stably producing a seamless steel pipe having a uniform and ultrafine structure on an industrial scale.

〈従来技術とその課題〉 従来から、継目無鋼管の諸特性(例えば低温靱性,延
性,降状強度,耐食性,超塑性等)はその組織が微細に
なるほど向上することが広く知られており、そのため、
例えば成分組成調整に応じて熱間圧延時の圧延条件を規
制した所謂“制御圧延技術”が著しく発展し、該技術に
関する多くの提案がなされている。更に、最近では、制
御圧延後の冷却速度をも調整してオーステナイトから変
態生成するフェライト結晶粒の核生成数を増大させ、そ
の作用を加味してより一層の結晶粒微細化を図ろうとし
た所謂“加速冷却技術”も開発されるに至っている。
<Prior art and its problems> It has been widely known that the properties (eg, low-temperature toughness, ductility, yield strength, corrosion resistance, superplasticity, etc.) of a seamless steel pipe improve as its structure becomes finer. for that reason,
For example, a so-called "controlled rolling technique" in which the rolling conditions during hot rolling are regulated in accordance with the adjustment of the component composition has remarkably developed, and many proposals relating to the technique have been made. Furthermore, recently, the cooling rate after controlled rolling was also adjusted to increase the number of nuclei generated in the ferrite crystal grains transformed from austenite, and the so-called attempt to further refine the crystal grains by taking into account its action. "Accelerated cooling technology" has also been developed.

しかしながら、“制御圧延”に“加速冷却”を組み合
わせた技術をもっていても“冷却によって変態する前の
オーステナイトの最終粒径”には自ずと限界があり、こ
の限界を打破した均一超微細オーステナイト組織を得る
ことは不可能であった。しかも、この組織を基にして形
成される“冷却後の組織”の微細化度にも限界が生じる
のを如何ともし難かったのである。なぜなら、元のオー
ステナイト粒自体を微細化しない限りは、それを冷却し
た際に生成されるマルテンサイト粒を狙い通りに微細化
することは極めて困難であり、例えば加速冷却の効果を
高めようとして冷却を強化すると、意に反した“フェラ
イトとマルテンサイトから成る半焼入組織”しか得られ
ないと言う致命的な問題を招くのみであったからであ
る。
However, even with the technology that combines "controlled rolling" with "accelerated cooling", there is naturally a limit on the "final grain size of austenite before transformation by cooling", and a uniform ultrafine austenitic structure that overcomes this limit is obtained. That was impossible. In addition, it was difficult for the "structure after cooling" formed on the basis of this structure to have a limit to the degree of fineness. Because, unless the original austenite grains themselves are refined, it is extremely difficult to refine the martensite grains produced when they are cooled as intended. Is only a fatal problem that only an unexpected "semi-quenched structure composed of ferrite and martensite" can be obtained.

勿論、制御圧延や加速冷却の他にも結晶粒微細化に関
する種々の提案がなされてはいるが、何れも“冷却によ
り変態する前のオーステナイト粒”の微細化に限界があ
ることから、最終製品の微細化,均一化に係わる従来の
限界を打破する技術とはなり得なかった。つまり、これ
ら従来技術に見られる問題は「熱間加工によって作り出
されるオースナイト粒は、或る程度まで微細になると実
際上もはやそれ以上にまで微細化することができなくな
る」と言う従来の制御圧延技術の限界に由来するもので
あり、十分に微細化されていないオーステナイト組織か
ら加速冷却によって無理に微細なフェライト組織を生成
させようとしても、到底、満足し得る均一な超微細組織
は得られない訳である。
Of course, various proposals have been made regarding grain refinement in addition to controlled rolling and accelerated cooling, but in any case, there is a limit to the refinement of “austenite grains before transformation by cooling”, so the final product is limited. It could not be a technology that breaks down the conventional limits related to the miniaturization and uniformity of semiconductors. In other words, the problem encountered in these prior arts is that the austenite grains produced by hot working become practically no longer finer when they are refined to a certain degree. Derived from the limitations of technology, even if trying to produce a fine ferrite structure by accelerated cooling from an austenite structure that is not sufficiently refined, a satisfactory uniform ultrafine structure cannot be obtained at all It is a translation.

従って、格別な手段により継目無鋼管素材の熱間加工
時におけるオーステナイト組織そのものをより一段と超
微細な組織にしないと、最終製品段階での組織の超微細
化や均一化に係わる前記限界を抜本的に拭い去ることは
できないものと考えられた。
Therefore, unless the austenitic structure itself during hot working of the seamless steel pipe material is made to be an ultra-fine structure by special means, the above-mentioned limit relating to the ultra-fine and uniform structure of the structure at the final product stage is drastically reduced. Was considered impossible to wipe off.

このようなことから、本発明が主目的としたのは、継
目無鋼管製造工程の熱間加工段階で従来技術では不可能
であった均一超微細なオーステナイト組織(平均オース
テナイト結晶粒径:15μm以下)を実現し得る手段を見
出し、これを基に“超微細組織(平均フェライト粒径:1
0μm以下)を有する継目無鋼管”の工業的量産手段を
確立することであった。
For these reasons, the main object of the present invention is to provide a uniform ultra-fine austenitic structure (average austenite crystal grain size: 15 μm or less) which was impossible in the prior art in the hot working stage of the seamless steel pipe manufacturing process. ) Was found, and based on this, the “ultrafine structure (average ferrite grain size: 1
0 μm or less).

〈課題を解決するための手段〉 そして、本発明者等は、上記目的を達成すべく様々な
観点に立って鋭意研究を重ね本発明を完成するに至った
訳であるが、まず本発明の契機となった2つの基礎実験
結果について紹介する。研究用の連続絞り圧延機(駆動
にコモンドライブシステムを採用した24スタンドのシン
キングレデューサ)を用いたこれらの実験は、継目無鋼
管熱間圧延時におけるオーステナイト組織そのものを画
期的に微細化する手段となって結実したが、その内容は
次のようなものであった。
<Means for Solving the Problems> The present inventors have conducted intensive studies from various viewpoints in order to achieve the above object, and have completed the present invention. Here are the results of the two basic experiments that triggered this. These experiments using a continuous rolling mill for research (a 24-stand sinking reducer employing a common drive system for the drive) are a means to break down the austenitic structure itself during hot rolling of seamless steel pipes. The result was as follows.

実験1 直径21.5φ,肉厚2.5tの鋼管を供試材とし、加熱温度
の延伸比(絞り圧延後の成品の長さと絞り圧延前の素管
との長さの比)を変えて絞り圧延実験を行い、絞り圧延
機に入る寸前の入側温度,絞り圧延直後の出側温度を計
測し、絞り圧延で発熱する加工熱を実測した。ここで、
加熱温度は所定の入側温度が得られるように調節した。
Experiment 1 Using a steel pipe with a diameter of 21.5φ and a wall thickness of 2.5t as a test material, draw-rolling by changing the drawing ratio of the heating temperature (the ratio of the length of the product after drawing to the length of the tube before drawing) An experiment was conducted to measure the inlet temperature just before entering the rolling mill and the outlet temperature immediately after the reducing rolling, and the working heat generated by the reducing rolling was actually measured. here,
The heating temperature was adjusted so as to obtain a predetermined inlet temperature.

なお、供試材の材質はSCM430相当材(Fe−0.29%C−
0.22%Si−0.64%Mn−1.08%Cr−0.24%Mo)であり(以
降、成分割合を表わす%は重量%とする)、そのAe1
は725℃,Ac1点は730℃、Ae3点は790℃,Ac3点は795℃で
あった。
The material of the test material was SCM430 equivalent material (Fe-0.29% C-
0.22% Si-0.64% Mn- 1.08% Cr-0.24% Mo) and is (hereinafter,% represents the component ratio is the weight%), the Ae 1 point is 725 ° C., Ac 1 point is 730 ° C., Ae 3 The point was 790 ° C and the Ac 3 point was 795 ° C.

さて、絞り圧延実験は、入側温度を6つの水準(1150
℃,1050℃,950℃,850℃,750℃,及び650℃)で、延伸比
を4つの水準(1.5,2,3及び4)で変化させて実施し
た。
By the way, in the reduction rolling experiment, the inlet temperature was set to six levels (1150
C., 1050.degree. C., 950.degree. C., 850.degree. C., 750.degree. C., and 650.degree. C.) and the draw ratio was changed at four levels (1.5, 2, 3, and 4).

この実験によって得られた「入側温度と出側温度との
関係」を示したのが第1図であり、「入側温度と加工熱
との関係」示したのが第2図である(何れも延伸比をパ
ラメータにとって整理されている)。
Fig. 1 shows the "relationship between the inlet side temperature and the outlet side temperature" obtained by this experiment, and Fig. 2 shows the "relationship between the inlet side temperature and the processing heat" ( In each case, the draw ratio is set as a parameter).

この実験から以下の知見が得られた。即ち、 (a) 入側温度が低下するほど加工熱の発生は顕著と
なり、その傾向は絞り圧延の延伸比が大きいほどより顕
著に現われる。例えば、入側温度:650℃,延伸比:2の場
合の加工熱によって起きる昇温はほゞ170℃であり、延
伸比が4の場合のそれは270℃に達する。また、入側温
度が750℃,延伸比が2の場合の加工熱による昇温はほ
ゞ130℃,穿孔比が4の場合のそれはぼゞ210℃である。
The following findings were obtained from this experiment. That is, (a) the generation of processing heat becomes more remarkable as the entry-side temperature decreases, and this tendency appears more remarkably as the drawing ratio of the reduction rolling increases. For example, the temperature rise caused by the processing heat when the inlet temperature is 650 ° C. and the stretching ratio is 2 is approximately 170 ° C., and reaches 270 ° C. when the stretching ratio is 4. When the inlet temperature is 750 ° C. and the stretching ratio is 2, the temperature rise by the processing heat is about 130 ° C., and when the perforation ratio is 4, it is about 210 ° C.

(b) 注目すべきは入側温度(素材加熱温度)であ
り、加熱温度と延伸比の選定如何によってはAc1点以下
の温度域からAc1点以上の温度域へ、Ac1点以上でかつAc
3点以下の温度域からAc3点以上の温度域へ、更にはAc1
点以下の温度域から一挙にAc3点以上の温度域への逆変
態が実現可能である点である。例えば、入側温度を680
℃にできれば、延伸比1.5でAc1点以下の温度域からAc1
点以上の温度域へ、延伸比2でAc1点以下の温度域からA
c3点以上への逆変態は十分に可能であり、また、入側温
度を780℃にできるならば、延伸比1.5でAc1点以上でか
つAc3点以下の温度域からAc3点以上の温度域への逆変態
も十分に可能となる。
(B) note is the entry side temperature (Material heating temperature), by the choice whether the heating temperature and the draw ratio to the temperature range of not lower than Ac 1 point of the following temperature range Ac 1 point, Ac at one point or more And Ac
A temperature range of below 3 points to the temperature range of not lower than Ac 3 point, even Ac 1
The point is that the reverse transformation from the temperature range below the temperature point to the temperature range above the Ac 3 point can be realized at once. For example, if the inlet temperature is 680
If the ° C., Ac 1 from the temperature range of less than Ac 1 point at a draw ratio of 1.5
From the temperature range below Ac 1 point to A
c Reverse transformation to 3 points or more is sufficiently possible, and if the inlet temperature can be set to 780 ° C., at a stretching ratio of 1.5, the temperature range from 1 point or more to Ac and 3 points or less from Ac to 3 points or more from Ac Reverse transformation to the temperature range is sufficiently possible.

つまり、適用した研究用の連続式絞り圧延機は前述し
たように最大24スタンドから構成されたものであるが、
この連続式絞り圧延機では単スタンドの減面率は小さい
が綿材圧延機と同様に極めて高速の連続圧延が行われる
ために低温側の絞り圧延で歪が累積する。そのため、素
管をAc3点以下、更にはAc1点以下の温度と言う低温域に
て高加工度で絞り圧延すれば、Ac1点以下の温度域からA
c1点以上の温度域へ、或いはAc3点以下の温度域からAc3
点以上の温度域へ、更にはAc1点以下の温度の温度域か
らAc3点以上の温度域まで一挙に昇温させることが可能
になるものと考えられる。
In other words, the applied continuous rolling mill for research was composed of up to 24 stands as described above,
In this continuous rolling mill, the reduction in area of the single stand is small, but the continuous rolling is performed at an extremely high speed as in the case of the cotton rolling mill, so that strain is accumulated in the low-temperature side rolling. Therefore, base pipe the Ac 3 point or less, even if reducing rolling at a high reduction ratio at a low temperature region to say the temperature below Ac 1 point, A from the temperature range of less than Ac 1 point
c To the temperature range of 1 point or more or from the temperature range of 3 points or less to Ac 3
It is considered that the temperature can be raised all at once to the temperature range above the temperature point, and further from the temperature range of the temperature of less than Ac 1 point to the temperature range of more than Ac 3 point.

実験2 直径21.5φ,肉厚2.5tのSCM430相当鋼管を供試材にす
ると共に、延伸比を2.5に固定し、入側温度を1200℃か
ら50℃毎に600℃まで変化させ、絞り圧延直後のオース
テナイト結晶粒度と冷却後のフェライト結晶粒度を観察
調査した。なお、その他の実験条件は“実験1"の場合に
準じている。
Experiment 2 A steel pipe equivalent to SCM430 with a diameter of 21.5φ and a thickness of 2.5t was used as the test material, the draw ratio was fixed at 2.5, the inlet temperature was changed from 1200 ° C to 600 ° C every 50 ° C, and immediately after rolling. The austenitic grain size and the ferrite grain size after cooling were observed and investigated. The other experimental conditions are the same as those in "Experiment 1".

この実験によって得られた「絞り圧延直後のオーステ
ナイト結晶粒度と冷却後のフェライト結晶粒度に及ぼす
入側温度の影響」を第3図に整理して示した。
The effect of the inlet temperature on the austenite grain size immediately after drawing rolling and the ferrite grain size after cooling obtained in this experiment is summarized in FIG.

この実験から以下の知見が得られた。即ち、 (a) 絞り圧延直後のオーステナイト結晶粒度及び冷
却後のフェライト結晶粒度に及ぼす穿孔圧延機入側温度
の影響は明瞭であり、入側温度が低いほど結晶粒径は顕
著に小さくなる。
The following findings were obtained from this experiment. (A) The effect of the inlet temperature of the piercing mill on the austenite grain size immediately after reduction rolling and the ferrite grain size after cooling is clear, and the lower the inlet temperature, the smaller the grain size becomes.

(b) 特に、Ac1点以下の温度域からAc3点以上の温度
域へ一挙に逆変態させた場合のオーステナイト結晶粒径
は粒度番号で15近くなるまで微細化され、冷却後のフェ
ライト粒度は15以上を示している。また、Ac1点以上で
かつAc3点以下の温度域からAc3点以上の温度域への逆変
態によっても粒度番号で12近傍のフェライト粒度が得ら
れており、これらの逆変態加工熱処理によって冷却後の
フェライト粒径を7μm以下とすることは十分に可能で
ある。
(B) In particular, the austenite grain size in the case of reverse transformation from the temperature range of less than Ac 1 point to the temperature range of more than Ac 3 points at a time is refined to a grain size number close to 15, and the ferrite grain size after cooling. Indicates 15 or more. In addition, the ferrite grain size near 12 by the grain size number is also obtained by the reverse transformation from the temperature range of 1 point or more of Ac and the temperature range of 3 points or less of Ac to the temperature range of 3 points or more of Ac, and these reverse transformation processing heat treatments It is sufficiently possible to reduce the ferrite particle size after cooling to 7 μm or less.

なお、この実験では延伸比を2.5に統一して行ってい
るため、結果的に全ての温度域の絞り圧延でAc3点以上
の温度域まで昇温してしまっているが、延伸比が低い場
合のAc1点以下の温度域からAc1点以上の温度域への逆変
態によっても冷却後のフェライト粒径を10μmとするこ
とは十分可能なように思われる。
In this experiment, since the stretching ratio was unified to 2.5, as a result, the temperature was raised to the temperature range of Ac 3 points or more by reduction rolling in all temperature ranges, but the stretching ratio was low. It seems that the ferrite particle size after cooling can be sufficiently reduced to 10 μm even by the reverse transformation from the temperature range below the Ac 1 point to the temperature range above the Ac 1 point.

さて、上記2つの基礎実験を契機として、本発明者等
は逆変態加工熱処理の本格的研究を積み重ね、次の
(A)〜(D)に示す結論を得るに至ったのである。
Now, with the above two basic experiments, the present inventors accumulated full-scale research on reverse transformation working heat treatment and came to the following conclusions (A) to (D).

(A)鋼種によってAc1変態点,Ac3変態点は異なるもの
の、加熱温度と延伸比を適切に選べばAc1点以下の温度
域からAc1点以上の温度域へ、或いはAc1点以上でかつAc
3点以下の温度域からAc3点以上への温度域へ、更にはAc
1点以下の温度域から一挙にAc3点以上の温度域への逆変
態は可能であり、この逆変態加工熱処理によって従来の
制御圧延等では到底得ることのできなかったような超微
細オーステナイト組織が実現できる。
(A) Ac 1 transformation point of steel species, Ac 3 transformation point although different, if properly choose the heating temperature and draw ratio from Ac 1 point below the temperature range to Ac 1 point or more temperature range, or Ac 1 or more points And Ac
From the temperature range of 3 points or less to the temperature range of 3 points or more of Ac,
Reverse transformation from the temperature range of 1 point or less to the temperature range of 3 points or more of Ac is possible at once, and the ultra-fine austenite structure that could not be obtained by conventional controlled rolling etc. by this reverse transformation processing heat treatment Can be realized.

(B)なお、上述のようにフェライト組織に塑性加工を
加えながら加工熱で昇温し、変態点を超えさせてオース
テナイト組織へ逆変態させる場合、該逆変態を十分に完
了させるには、加工熱による温度上昇の過程が終わった
後、完全な平衡状態におけるA1変態点(即ちAe1点)或
いはA3変態点(即ちAe3点)以上に一定時間保持するこ
とが好ましい。
(B) As described above, when the temperature is raised by the working heat while plastic working is performed on the ferrite structure, and the transformation point is exceeded to reversely transform to the austenite structure, the processing must be performed to sufficiently complete the reverse transformation. After the process of temperature rise due to heat is completed, it is preferable that the temperature is maintained for a certain period of time at or above the A 1 transformation point (ie, Ae 1 point) or A 3 transformation point (ie, Ae 3 point) in a perfect equilibrium state.

(C)このようにして得られた超微細オーステナイト組
織は、各種の冷却手段(例えば放冷,徐冷,保熱後冷
却,加速冷却,焼入れ,或いは加工を加えながらの冷却
等)の何れによって冷却しても従来技術では到底得られ
なかった“均一で極めて微細な等方性の変態組織”とな
る。
(C) The ultrafine austenite structure obtained in this manner can be obtained by any of various cooling means (for example, cooling, slow cooling, cooling after heat retention, accelerated cooling, quenching, or cooling while applying processing). Even when cooled, it becomes a "uniform and extremely fine isotropic transformed structure" which could not be obtained by the prior art.

(D)しかも、上述のような逆変態加工熱処理の手段に
よれば、材料は「フェライト→オーステナイト→フェラ
イト」の相変態を潜るので、塑性加工中に析出した炭化
物や窒化物の利用をもくろめば、脆化を伴わずに鋼を強
化することも可能である。
(D) In addition, according to the above-mentioned means of reverse transformation working heat treatment, since the material is immersed in the phase transformation of "ferrite → austenite → ferrite", the use of carbides and nitrides precipitated during plastic working is also intended. For example, it is possible to strengthen the steel without embrittlement.

本発明は、上記知見事項等に基づいて完成されたもの
であり、 「絞り圧延機により、延伸比を1.5以上として“少なく
とも一部がフェライトから成る薄肉中空のホローシェ
ル”を低温で塑性加工しつつ、その際発生する加工熱に
よりAc1点以下の温度域からAc1点以上の温度域へ、或い
はAc1点以上でかつAc3点以下の温度域からAc3点以上の
温度域へ、より望ましくはAc1点以下の温度域から一挙
にAc3点以上の温度域まで昇温し、更に要すれば、この
昇温に続いてAc1点以上、望ましくはAe3点以上の温度域
に保持することで前記フェライトから成る組織の一部又
は全部をオーステナイトに逆変態させ、これによって均
一超微細なオーステナイト組織を実現すると共に、その
後の冷却により超微細組織(フェライト粒径が10乃至は
5μm以下)を有し、優れた強度,靱性,延性、耐食性
等を備えた熱間圧延継目無鋼管を安定して製造できるよ
うにした点」 に特徴を有するものである。
The present invention has been completed on the basis of the above findings and the like, while “drawing a rolling mill at a draw ratio of 1.5 or more and performing plastic working of“ a thin hollow hollow shell at least partially made of ferrite ”at a low temperature. , whereby the temperature range from Ac 1 point below the temperature range of not lower than Ac 1 point by processing heat generated, or Ac at 1 or more points and to a temperature range of not lower than Ac 3 point from the temperature range following three Ac, more Desirably, the temperature is raised from the temperature range of Ac 1 point or less to the temperature range of Ac 3 points or more at once, and if necessary, the temperature is raised to the temperature range of Ac 1 point or more, preferably Ae 3 points or more. By holding the material, a part or all of the structure composed of the ferrite is reversely transformed into austenite, thereby realizing a uniform ultrafine austenitic structure, and further cooling to obtain an ultrafine structure (ferrite grain size of 10 to 5 μm). Below) Intensity, and has toughness, ductility, and wherein the hot-rolled seamless steel tube having a corrosion resistance to the stable point to allow produced. "

なお、ここで言う“フェライト組織”とは、オーステ
ナイト相に対するフェライト相から成る組織を意味して
おり、等方的なフェライト組織ばかりでなく、針状フェ
ライト組織,パーライト組織,ベイナイト組織,マルテ
ンサイト組織,焼戻しマルテンサイト組織等、フェライ
ト相を構成要素とする何れの形態のフェライト組織をも
含むのである。
The term “ferrite structure” as used herein means a structure composed of a ferrite phase with respect to an austenite phase. Not only an isotropic ferrite structure but also a needle-like ferrite structure, a pearlite structure, a bainite structure, a martensite structure. And any form of ferrite structure containing a ferrite phase as a constituent element, such as a tempered martensite structure.

また、本発明が対象とする丸鋼片素材は、少なくとも
一部がフェライトから成る組織(即ち、フェライト単独
組織又はフェライトを含む混合組織)の鋼であればその
他の構成成分や組成を問うものではなく、炭素鋼であっ
ても合金鋼であっても一向に差し支えがない。即ち、本
発明によれば、商用の低炭素鋼から純鉄に至るまで超微
細組織が得られる上、炭素鋼ばかりでなく各種の合金
鋼,ステンレス鋼等おいても合金成分に格別に影響され
ることなく組織を著しく微細化できることから、対象と
する素材鋼のC含有量並びにC以外の成分の組成範囲を
特に制限する必要がない訳である。ただ、C含有量が余
り多くなると巨大な共晶セメンタイトやグラファイトが
現れて組織の均一化,微細化が困難になる傾向があるこ
とから、好ましくはC含有量:1.5%以下の素材を適用す
るのが良い。
Further, the round billet material targeted by the present invention does not ask for other constituent components and compositions as long as the steel has a structure at least partially composed of ferrite (that is, a ferrite single structure or a mixed structure containing ferrite). There is no problem with carbon steel or alloy steel. That is, according to the present invention, an ultrafine structure is obtained from commercial low carbon steel to pure iron, and not only carbon steel but also various alloy steels, stainless steels and the like are particularly affected by alloy components. Since the microstructure can be remarkably refined without the need, the C content of the target material steel and the composition range of components other than C need not be particularly limited. However, if the C content is too large, huge eutectic cementite or graphite appears, and it tends to be difficult to homogenize and refine the structure. Therefore, it is preferable to use a material having a C content of 1.5% or less. Is good.

以下、本発明をその作用と共により詳細に説明する。 Hereinafter, the present invention will be described in more detail together with its operation.

〈作用〉 本発明において、「適用する丸鋼片素材の組織が“フ
ェライト単独組織”又は“フェライトを含む混合組織”
である」ことを前提としたのは、前述した如く、本発明
が「塑性加工を加えながらフェライト相からオーステナ
イト相へ逆変態を起こさせる」ことを重要な要件として
いるからであり、これによって従来技術では例を見ない
微細オーステナイト粒が生成し、その後の冷却により該
微細オーステナイト粒から均一で超微細な変態組織が発
達するようになるからである。
<Action> In the present invention, the "structure of the round billet material to be applied is" a ferrite single structure "or" a mixed structure containing ferrite "
The reason for this is that, as described above, the present invention has an important requirement that "the reverse transformation from the ferrite phase to the austenite phase occurs while performing plastic working". This is because fine austenite grains, which are unprecedented in the art, are formed, and a uniform and ultrafine transformed structure is developed from the fine austenite grains by subsequent cooling.

そして、この時の塑性加工によって加えられる歪量は
次の3つの作用を生起させるに十分な量であることが重
要である。
It is important that the amount of strain applied by the plastic working at this time is an amount sufficient to cause the following three actions.

第1は、加工が加えられて加工硬化したフェライトか
ら非常に微細なオーステナイトの結晶粒が加工により誘
起されて生成する作用である。
The first effect is that very fine austenite crystal grains are generated from the ferrite that has been subjected to the work and hardened by the work.

第2は、フェライトがオーステナイトに逆変態する変
態点まで被加工材の温度を上昇させるための加工発熱の
作用である。
The second is the effect of the heat generated during processing for raising the temperature of the workpiece to the transformation point at which the ferrite reversely transforms into austenite.

第3は、生成した微細なオーステナイトの結晶粒を加
工硬化せしめて、その後のフェライト生成に際して更に
微細なフェライト粒を加工誘起変態生成させる作用であ
る。
The third function is to work harden the generated fine austenite crystal grains and to generate work-induced transformation to generate finer ferrite grains during the subsequent ferrite generation.

しかるに、継目無鋼管の製造プロセスでは、塑性加工
の歪量が33%未満の場合、即ち延伸比が1.5未満の場合
には加工歪が小さくて加工熱の発生が不足気味であり、
被加工材の温度をフェライトからオーステナイトへ逆変
態する温度に到達させること困難となる。また、例えフ
ェライトからオーステナイトへ逆変態させ得たとして
も、微細なオーステナイト粒の加工による誘起生成が不
十分となり、生成するオーステナイト粒径を目標とする
15μm以下とすることが難しくなる。つまり、フェライ
トからオーステナイトへ逆変態させる時の塑性加工の歪
量を延伸比で1.5以上とすることによって初めて、平均
粒径15μm以下の均一な微細オーステナイト組織が比較
的容易に実現できる。しかしながら、あらゆる鋼種を勘
案し現場的に安定して均一な微細オーステナイト組織を
実現するためには、フェライト相からオーステナイト相
に逆変態させる際に加える塑性加工の歪量は延伸比で2
以上とすることが望ましい。
However, in the process of manufacturing a seamless steel pipe, when the strain amount of plastic working is less than 33%, that is, when the draw ratio is less than 1.5, the working strain is small, and the generation of working heat tends to be insufficient.
It is difficult to make the temperature of the workpiece reach the temperature at which the ferrite is transformed back into austenite. In addition, even if the reverse transformation from ferrite to austenite could be achieved, the induced generation by processing of fine austenite grains was insufficient, and the target austenite grain size to be formed was targeted.
It is difficult to make the thickness 15 μm or less. In other words, a uniform fine austenite structure having an average grain size of 15 μm or less can be relatively easily realized only by setting the amount of strain in the plastic working at the time of reverse transformation from ferrite to austenite to 1.5 or more in a draw ratio. However, in order to realize a uniform fine austenitic structure that is stable and uniform on site in consideration of all types of steel, the amount of plastic working strain to be applied at the time of reverse transformation from a ferrite phase to an austenite phase is 2% at a draw ratio.
It is desirable to make the above.

次に、被加工材の昇温温度についてであるが、該昇温
温度が“フェライトがオーステナイトに逆変態する温度
域(即ちAc1点以上の温度域)”であったとしてもその
温度がAc3点未満である場合にはフェライトとオーステ
ナイトの二相混合組織となるが、本発明では温度を上昇
させながら加工を加えるので、昇温温度がAc1点以上に
なりさえすればAc3点未満の温度域であったとしても結
晶粒は加工と再結晶により十分微細化される。勿論、本
発明の作用効果を十二分に発揮させるためにはAc3点以
上の温度域にまで昇温することが望ましいが、二相ステ
ンレス鋼等、製品によってはフェライトとオーステナイ
トの二相組織にする必要のあるものもあり、このような
製品に対しては昇温温度はAc3点未満の温度域で留めて
おく必要があることは言うまでもない。
Next, regarding the temperature rise temperature of the workpiece, even if the temperature rise temperature is “the temperature range in which the ferrite reversely transforms to austenite (ie, the temperature range of one or more points of Ac)”, the temperature becomes Ac If it is less than 3 points, it becomes a two-phase mixed structure of ferrite and austenite, but in the present invention, processing is performed while increasing the temperature, so that as long as the temperature rise temperature is 1 point or more, less than Ac 3 points Even in this temperature range, the crystal grains are sufficiently refined by processing and recrystallization. Of course, in order to fully exert the effects of the present invention, it is desirable to raise the temperature to a temperature range of Ac 3 points or more, but depending on the product such as duplex stainless steel, the dual phase structure of ferrite and austenite is required. Needless to say, it is necessary to keep the heating temperature of such a product in a temperature range lower than the Ac 3 point.

そして、前述したように、フェライト相からオーステ
ナイト相へ逆変態させる際に塑性加工を加えながら加工
熱で昇温させるのは a)フェライト域での加工によるフェライト粒の微細
化, b)加工硬化したフェライト粒からの微細オーステナイ
ト粒の加工誘起生成, c)オーステナイト粒の加工による微細化と、更には加
工硬化したオーステナイト粒からの微細フェライト粒の
歪誘起変態の促進, を図るためであり、これらの諸作用と効果が「加工しな
がら加工熱で昇温させる」と言う独自の逆変態加工熱処
理技術に凝縮されている訳である。
As described above, when reverse transformation is performed from the ferrite phase to the austenite phase, the temperature is increased by the processing heat while performing plastic processing. The reasons are as follows: a) Refinement of ferrite grains by processing in the ferrite region, and b) Work hardening. This is for the purpose of working-induced generation of fine austenite grains from ferrite grains, c) miniaturization by processing austenite grains, and further promoting strain-induced transformation of fine ferrite grains from work-hardened austenite grains. The various actions and effects are condensed into a unique reverse transformation processing heat treatment technology of "raising the temperature by processing heat while processing".

ところで、炭化物を形成する鋼種では、加工しながら
加工熱で昇温させる過程で鋼片中の炭化物は機械的に破
砕され微細分散するが、この炭化物がフェライトからオ
ーステナイトへの逆変態の核となって超微細な逆変態オ
ーステナイト組織化が促進されるので、この現象を積極
的に利用することもできる。
By the way, in the steel type that forms carbide, the carbide in the slab is mechanically crushed and finely dispersed in the process of raising the temperature by the processing heat while processing, but this carbide becomes the core of the reverse transformation from ferrite to austenite. This promotes the formation of an ultrafine inverse transformed austenite structure, so that this phenomenon can be positively utilized.

更に、本発明では、場合によっては加工しながらAc1
点以上或いはAc3点以上の温度域に昇温してからAe1点以
上或いはAe3点以上の温度域に保持することが推奨され
るが、これは均一にして微細なオーステナイト組織を確
実に実現するために極めて有効な手立てとなる。
Further, in the present invention, Ac 1
It is recommended that the temperature be raised to a temperature range of not less than the temperature of at least 3 points or at least 3 points of Ac, and then maintained at a temperature of not less than 1 point of Ae or not less than 3 points of Ae. It is a very effective means to realize it.

即ち、継目無鋼管の製造プロセスでは加工速度が速く
て急速昇温になりがちであることから、現実には、先に
説明した逆変態現象の通りにオーステナイトへの逆変態
が進行する時間的余裕が乏しいことが懸念される。これ
では本発明が狙いとする前述の作用効果が得られず、本
発明の目的を十二分に果たし得ない。従って、この場合
には、所要の条件で圧延を終了した後に誘導加熱装置等
により圧延材をAe1点以上或いはAe3点以上の温度域に保
持すると、加工歪を内蔵したフェライト粒がオーステナ
イトへ逆変態するための時間的余裕ができ、所期の目的
が確実に達せられることとなる。なお、この時の保持時
間は圧延条件や鋼種によって著しく相違しており、高純
度鉄の場合にはほゞ瞬時とも言える秒単位で十分である
が、高合金になると約10分程度を要するものもある。
That is, in the process of manufacturing a seamless steel pipe, since the processing speed is high and the temperature tends to rise rapidly, in reality, there is a time margin for the reverse transformation to austenite to proceed as described above. Is scarce. In this case, the above-mentioned functions and effects aimed at by the present invention cannot be obtained, and the object of the present invention cannot be sufficiently achieved. Therefore, in this case, when the rolled material is kept in a temperature range of one point or more of Ae or three or more points of Ae by an induction heating device or the like after the completion of the rolling under the required conditions, the ferrite grains with built-in processing strain become austenite. There is enough time for reverse transformation, and the intended purpose can be reliably achieved. The holding time at this time varies significantly depending on the rolling conditions and the type of steel, and in the case of high-purity iron, a unit of seconds that can be said to be almost instantaneous is sufficient, but about 10 minutes is required for a high alloy. There is also.

続いて、本発明の効果を実施例により更に具体的に説
明するが、本実施例では継目無鋼管の最も典型的な製造
プロセスであるマンネスマン−マンドレルミル工程に従
ったものであるため、まず、このマンネスマン−マンド
レルミル工程の概要について説明する。
Subsequently, the effects of the present invention will be described more specifically with reference to examples.However, in this example, since it is in accordance with the Mannesmann-mandrel mill process which is the most typical manufacturing process of a seamless steel pipe, first, The outline of the Mannesmann-mandrel mill process will be described.

第4図は、マンネスマン−マンドレルミル工程の概略
工程図であるが、通常のプロセスでは、中実丸鋼片が回
転炉床式加熱炉(1)において1200〜1250℃の温度に加
熱され、傾斜圧延方式の穿孔圧延機(2)で穿孔されて
中空厚肉のホローピースとなり、次いでマンドレルミル
(3)で管内面にマンドレルバーを挿入したまま連続圧
延されて主として肉厚減少加工がなされる。次に、マン
ドレルバーが取り除かれたホローシェルは再加熱炉
(4)で900℃前後に再加熱され、ストレッチレデュー
サ(5)にて外径を絞って所定の外径,肉厚に仕上げら
れてから冷却床上にて放冷される。
FIG. 4 is a schematic process diagram of the Mannesmann-mandrel mill process. In a normal process, a solid round slab is heated to a temperature of 1200 to 1250 ° C. in a rotary hearth type heating furnace (1) and is tilted. A hollow thick hollow piece is pierced by a piercing and rolling mill (2) of a rolling system, and then continuously rolled by a mandrel mill (3) with a mandrel bar inserted into the inner surface of the pipe to mainly perform thickness reduction. Next, the hollow shell from which the mandrel bar has been removed is reheated to about 900 ° C. in a reheating furnace (4), and the outer diameter is reduced to a predetermined outer diameter and wall thickness by a stretch reducer (5). It is left to cool on the cooling floor.

なお、ストレッチレデューサ(5)は最近では3ロー
ル型が普及しており、“おむすび形状”を“逆おむすび
形状”に絞り圧延しながら仕上パスで真円に近付けて行
く方式が採られる。24スタンドのストレッチレデューサ
が最も普及しているが、28スタンドのものも使用される
ようになった。何れも、一般に各スタンドは独立駆動さ
れるようになっており、最大で変形抵抗の85%近いスタ
ンド間張力を与えるように各スタンドのロール回転数を
設定し、外径を減ずると同時にかなりの肉厚調整ができ
るようになっている。
As the stretch reducer (5), a three-roll type has recently become widespread, and a method is adopted in which a “diaper shape” is drawn close to a perfect circle by a finishing pass while being squeezed and rolled into a “reverse diaper shape”. Twenty-four stand stretch reducers are the most popular, but 28-stand stretch reducers have come into use. In each case, each stand is generally driven independently, and the roll rotation speed of each stand is set so as to give a tension between stands of at most 85% of the deformation resistance. The thickness can be adjusted.

ところで、本発明例の実施に際しては、第4図にも示
したように、マンネスマン−マンドレルミルラインのス
トレッチレデューサ(5)の直後に誘導加熱装置(6)
を特別配置しておいた。
By the way, when the embodiment of the present invention is carried out, as shown in FIG. 4, the induction heating device (6) is provided immediately after the stretch reducer (5) of the Mannesmann-mandrel mill line.
Was specially arranged.

以下の実施例は、全て上記誘導加熱装置(6)を特別
配置したマンネスマン−マンドレルミル工程に従って実
施されたものである。
The following examples were all carried out according to the Mannesmann-mandrel mill process in which the induction heating device (6) was specially arranged.

〈実施例〉 実施例 1 SCM430相当材(Fe−0.29%C−0.22%Si−0.64%Mn−
1.08%Cr−0.24%Moで、Ae1変態点:725℃,Ac1変態点:73
0℃,Ae3変態点:790℃,Ac3変態点:795℃)の丸鋼片を供
試材として、回転炉床式加熱炉でこれを1250℃に加熱
し、コーン型主ロールを有する傾斜圧延方式の穿孔圧延
機によって入側温度:1210℃,ロール交叉角:7℃,傾斜
角:12゜の条件で通常通り穿孔して228φ×17.5tのホロ
ピースとなし、これを8スタンドのマンドレルミルで延
伸圧延して主として肉厚を減じ、198φ×6.5tのホロー
シェルとし放冷した。次いで、これを700℃の温度に保
持された再加熱炉に装入し、15分間保熱した後、24スタ
ンドのストレッチレデューサにより76.2φ×6.0tに絞り
圧延した。
<Example> Example 1 SCM430 equivalent material (Fe-0.29% C-0.22% Si-0.64% Mn-
1.08% Cr-0.24% Mo, Ae 1 transformation point: 725 ° C, Ac 1 transformation point: 73
Using a round slab of 0 ° C, Ae 3 transformation point: 790 ° C, Ac 3 transformation point: 795 ° C) as a test material, it is heated to 1250 ° C in a rotary hearth heating furnace and has a cone-type main roll. A 228 mm x 17.5 t holographic piece was formed by drilling as usual under the conditions of an inlet side temperature of 1210 ° C, a roll crossing angle of 7 ° C, and an inclination angle of 12 ° by a piercing rolling mill of the inclined rolling method. The thickness was reduced mainly by elongating and rolling in a mill, and the hollow shell was allowed to cool as a hollow shell of 198φ × 6.5t. Next, this was charged into a reheating furnace maintained at a temperature of 700 ° C., and after keeping heat for 15 minutes, it was drawn and reduced to 76.2φ × 6.0 t by a stretch reducer of 24 stands.

なお、この時の穿孔圧延機での穿孔比は3.4,マンドレ
ルミルにおける延伸比は3.0,そしてストレッチレデュー
サにおける延伸比も3.0であった。
At this time, the piercing ratio in the piercing mill was 3.4, the stretching ratio in the mandrel mill was 3.0, and the stretching ratio in the stretch reducer was 3.0.

また、この時のストレッチレデューサの入側温度は68
5℃,出側温度は870℃であってAc1点以下の温度域からA
c3点以上の温度域まで確実に昇温しており、フェライト
相からオーステナイト相への逆変態が十分に起こったこ
とが確かめられた。
At this time, the inlet temperature of the stretch reducer is 68
5 ° C., the outlet side temperature of the following temperature range Ac 1 point a 870 ° C. A
c The temperature was surely raised to the temperature range of three or more points, confirming that the reverse transformation from the ferrite phase to the austenite phase occurred sufficiently.

このようにして製造された継目無鋼管について冷却床
で冷却後のフェライト粒をミクロ観察したところ、狙い
通りにフェライト粒径3μm,粒度番号14以上の極めて均
一な超微細粒フェライト組織が実現されていた。
Microscopic observation of the ferrite grains after cooling on the cooling floor of the seamless steel pipe manufactured in this way revealed that an extremely uniform ultrafine grain ferrite structure having a ferrite grain size of 3 μm and a grain size number of 14 or more was achieved as intended. Was.

実施例 2 S50C相当材(Fe−0.5%C−0.25%Si−0.75%Mnで、A
e1変態点:720℃,Ac1変態点:730℃,Ae3変態点:765℃,Ac3
変態点:775℃)の187φ丸鋼片を供試材にすると共に、
回転炉床式加熱炉でこれを1250℃に加熱し、傾斜圧延方
式の穿孔圧延機によって入側温度:1210℃,ロール交叉
角:7℃,傾斜角:12゜の条件で通常通り穿孔して186φ×
27.5tのホローピースとなし、続いて8スタンドのマン
ドレルミルで延伸圧延して主に肉厚を減じて158φ×15t
のホローシェルとし放冷した。次いで、760℃の温度に
保持された再加熱炉に装入し、15分間保熱した後、22ス
タンドのストレッチデューサにより88.9φ×15tに絞り
圧延した。そして、ストレッチデューサの直後に特設し
た誘導加熱装置により850℃に数秒間保持してから冷却
床上に放冷した。
Example 2 S50C equivalent material (Fe-0.5% C-0.25% Si-0.75% Mn,
e 1 transformation point: 720 ° C, Ac 1 transformation point: 730 ° C, Ae 3 transformation point: 765 ° C, Ac 3
(Transformation point: 775 ° C)
This was heated to 1250 ° C in a rotary hearth heating furnace, and was drilled by a piercing and rolling mill using an inclined rolling method under the conditions of an inlet temperature of 1210 ° C, a roll crossing angle of 7 ° C, and an inclination angle of 12 ° as usual. 186φ ×
27.5t hollow piece, followed by elongation rolling with an 8-stand mandrel mill to reduce the thickness mainly to 158φ × 15t
And allowed to cool. Next, it was charged into a reheating furnace maintained at a temperature of 760 ° C., kept for 15 minutes, and then drawn and reduced to 88.9φ × 15 t by a stretch stand of 22 stands. Immediately after the stretchducer, the temperature was maintained at 850 ° C. for a few seconds by a special induction heating device, and then cooled on a cooling floor.

なお、この時の穿孔圧延機での穿孔比は2.0、マンド
レルミルにおける延伸比も2.0、そしてストレッチデュ
ーサにおける延伸比は1.9であり、またこの時のストレ
ッチデューサの入側温度は745℃,出側温度は840℃であ
った。
At this time, the piercing ratio in the piercing mill was 2.0, the stretching ratio in the mandrel mill was 2.0, and the stretching ratio in the stretchducer was 1.9. At this time, the inlet temperature of the stretchducer was 745 ° C, and the outlet side was 745 ° C. The temperature was 840 ° C.

従って、このストレッチデューサでの加工により、材
料はAc1点以上Ac3点以下の温度域からAc3点以上の温度
域まで確実に昇温しており、フェライト+オーステナイ
ト二相域からオーステナイト相への逆変態が十分に起こ
ったことが確かめられた。
Therefore, by the processing with this stretch transducer, the temperature of the material is surely raised from the temperature range of 1 point or more Ac to 3 points of Ac to the temperature range of 3 points or more of Ac, and from the ferrite + austenite two phase region to the austenite phase. It was confirmed that the reverse transformation had sufficiently occurred.

このようにして製造された継目無鋼管について冷却床
で冷却後のフェライト粒をミクロ観察したところ、粒径
4.5μm,粒度番号13近傍の超微細粒フェライト組織が実
現されていた。
Microscopic observation of ferrite grains after cooling on a cooling bed of the seamless steel pipe thus manufactured showed
An ultrafine-grained ferrite structure with a size of 4.5 μm and a grain size of around 13 was realized.

実施例 3 実施例1と全く同一のパススケジュールによりS10C相
当材(Fe−0.1%C−0.25%Si−0.45%MnでAe1変態点:7
20℃,Ac1変態点:730℃,Ae3変態点:865℃,Ac3変態点:875
℃)の225φ丸鋼片の供試材として76.2φ×6.0tの継目
無鋼管を製造し、ストレッチレデューサ直後に特設した
誘導加熱装置により数秒間の保熱を行って製品に仕上げ
た。
Example 3 Example 1 and exactly the same pass schedule by S10C equivalent material (Fe-0.1% C-0.25 % Si-0.45% Mn at Ae 1 transformation point: 7
20 ° C, Ac 1 transformation point: 730 ° C, Ae 3 transformation point: 865 ° C, Ac 3 transformation point: 875
C), a 76.2φ × 6.0t seamless steel pipe was manufactured as a test material for 225φ round steel slabs, and heat retention was performed for several seconds by a special induction heating device immediately after the stretch reducer to complete the product.

なお、このときのストレッチレデューサ入側温度は68
5℃であったが、S10Cは絞り圧延時の加工熱の発生がSCM
430ほど高くなくてストレッチレデューサ出側温度は820
℃であった。そして、誘導加熱装置による保熱温度は83
0℃であった。
At this time, the stretch reducer inlet temperature is 68
Although it was 5 ° C, S10C generated SCM
Stretch reducer outlet temperature is 820, not as high as 430
° C. And the heat retention temperature of the induction heating device is 83
It was 0 ° C.

従って、この場合の絞り圧延時における材料温度は、
Ac1点以下の温度域からAc1点以上の温度には昇温した
が、Ac3点(875℃)まで到達しなかった。
Therefore, the material temperature during the rolling in this case is:
The temperature was raised from the temperature range of 1 point or less to the temperature of 1 point or more of Ac, but did not reach the 3 point of Ac (875 ° C.).

このようなこともあって、誘導加熱に続く冷却後にお
ける継目無鋼管製品のフェライト粒は実施例1の場合ほ
ど細粒化されていないが、それでも粒径6μm,粒度番号
で12近傍の、従来の制御圧延技術では全く未経験のレベ
ルの超微細フェライト組織が得られていた。
For this reason, the ferrite grains of the seamless steel pipe product after cooling following induction heating are not as fine as those of Example 1, but still have a grain size of 6 μm and a grain size number of about 12 in the prior art. In the controlled rolling technique, an ultra-fine ferrite structure of a completely inexperienced level was obtained.

これら実施例では、小,中径継目無鋼管の製造工程と
して最も典型的なマンネスマン−マンドレルミルライン
に基づいた例について説明したが、本発明に係る逆変態
加工熱処理法はマンネスマン−プラグミルライン,PPM
(プレスピアシングミミル)−プラグミルライン,PPM−
マンドレルミルラインその他の、継目無鋼管の製造ライ
ンにおけるストレッチレデューサは勿論、シンキングレ
デューサー或いはサイジングミル等にも適用できること
は当然である。なお、ストレッチレデューサー等の絞り
圧延機は2ロール,3ロール或いは4ロールの型式を問わ
ないことも言を持たない。
In these embodiments, examples based on the most typical Mannesmann-mandrel mill line as a process for manufacturing small and medium diameter seamless steel pipes have been described. However, the reverse transformation heat treatment method according to the present invention is based on the Mannesmann-plug mill line, PPM
(Press piercing mimill)-Plug mill line, PPM-
Naturally, it can be applied to a sinking reducer or a sizing mill as well as a stretch reducer in a mandrel mill line or other seamless steel pipe production line. It should be noted that the reduction rolling machine such as a stretch reducer is not limited to a 2-roll, 3-roll or 4-roll type.

〈効果の総括〉 以上に説明した如く、この発明によれば、従来不可能
であった均一超微細な組織を有する継目無鋼管を工業的
規模で量産することが可能となり、優れた強度,靱性,
延性,耐食性等を備えた熱間圧延継目無鋼管の安定供給
が実現できるなど、産業上極めて有用な効果がもたらさ
れる。
<Summary of Effects> As described above, according to the present invention, it is possible to mass-produce seamless steel pipes having a uniform ultra-fine structure, which was impossible in the past, on an industrial scale, and to obtain excellent strength and toughness. ,
Industrially extremely useful effects can be obtained, such as a stable supply of a hot-rolled seamless steel pipe having ductility and corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、継目無鋼管素材の絞り圧延機入側温度と出側
温度の関係を示したグラフである。 第2図は、継目無鋼管素材の絞り圧延機入側温度と発生
する加工熱との関係を示したグラフである。 第3図は、継目無鋼管素材の絞り圧延機入側温度と絞り
圧延直後におけるオーステナイト結晶粒度及び冷却後の
フェライト粒度との関係を示したグラフである。 第4図は、誘導加熱装置を特設したマンネスマン−マン
ドレルミル工程の概略工程図である。
FIG. 1 is a graph showing the relationship between the inlet side temperature and the outlet side temperature of a rolling mill of a seamless steel pipe material. FIG. 2 is a graph showing the relationship between the temperature on the inlet side of the rolling mill of the seamless steel pipe material and the generated processing heat. FIG. 3 is a graph showing the relationship between the inlet side temperature of the reduction rolling mill of the seamless steel pipe material, the austenite grain size immediately after the reduction rolling, and the ferrite grain size after cooling. FIG. 4 is a schematic process diagram of a Mannesmann-mandrel mill process in which an induction heating device is specially provided.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絞り圧延機により、延伸比を1.5以上とし
て“少なくとも一部がフェライトから成る薄肉中空のホ
ローシェル”を加工熱を利用しつつAc1点以下の温度域
からAc3点以上の温度域まで昇温させながら絞り圧延
し、フェライトから成る組織の全部を一旦オーステナイ
トに逆変態させた後冷却する工程を含むことを特徴とす
る、超微細組織を有する継目無鋼管の製造法。
1. A drawing mill with a draw ratio of 1.5 or more, and a thin hollow hollow shell made of at least a part of ferrite at a temperature of not more than 1 point of Ac and not less than 3 points of Ac while utilizing processing heat. A method for producing a seamless steel pipe having an ultrafine structure, comprising a step of drawing and rolling while raising the temperature to a temperature range, once transforming all of the ferrite structure into austenite, and then cooling.
【請求項2】絞り圧延機により、延伸比を1.5以上とし
て“少なくとも一部がフェライトから成る薄肉中空のホ
ローシェル”を加工熱を利用しつつAc1点以上でかつAc1
点以下の温度域からAc3点以上の温度域まで昇温させな
がら絞り圧延し、フェライトから成る組成の全部を一旦
オーステナイトに逆変態させた後冷却する工程を含むこ
とを特徴とする、超微細組織を有する継目無鋼管の製造
法。
2. A drawing mill having a draw ratio of 1.5 or more, and forming a thin hollow hollow shell at least partially made of ferrite at a temperature of 1 point or more and Ac 1
It is characterized in that it includes a step of drawing and rolling while raising the temperature from a temperature range below the Ac point to a temperature range above the Ac 3 point, and once transforming all of the ferrite composition back to austenite and then cooling. A method of manufacturing a seamless steel pipe having a structure.
【請求項3】Ac3点以上の温度域まで昇温させながら絞
り圧延した延伸材を、続いて加熱装置でAe3点以上の温
度域に保持してオーステナイトへの逆変態を促す、請求
項1又は2に記載の超微細組織を有する継目無鋼管の製
造法。
3. A drawn material which is drawn and rolled while raising the temperature to a temperature range of 3 points or more of Ac, and subsequently maintained in a temperature range of 3 points or more of Ae by a heating device to promote reverse transformation to austenite. 3. A method for producing a seamless steel pipe having an ultrafine structure according to 1 or 2.
【請求項4】絞り圧延機により、延伸比を1.5以上とし
て“少なくとも一部がフェライトから成る薄肉中空のホ
ローシェル”を加工熱を利用しつつAc1点以下の温度域
からAc1点以上でかつAc3点以下の温度域まで昇温させな
がら絞り圧延し、フェライトから成る組織の一部を一旦
オーステナイトに逆変態させた後冷却する工程を含むこ
とを特徴とする、超微細組織を有する継目無鋼管の製造
法。
4. A drawing mill with a draw ratio of 1.5 or more, forming a thin hollow hollow shell composed of at least a part of ferrite from a temperature range of 1 point or less of Ac and 1 point or more of Ac while utilizing processing heat. A process having an ultra-fine structure, characterized by including a step of subjecting a part of the structure composed of ferrite to reverse transformation to austenite once and cooling after elevating the temperature to a temperature range of 3 points or less. Manufacturing method of steel pipe.
【請求項5】Ac1点以上でかつAc3点以下の温度域まで昇
温させながら絞り圧延した延伸材を、続いて加熱装置で
Ae1点以上でかつAe3点以下の温度域に保持してオーステ
ナイトへの逆変態を促す、請求項4に記載の超微細組織
を有する継目無鋼管の製造法。
5. A drawn material which is drawn and rolled while raising the temperature to a temperature range of not less than Ac 1 point and not more than Ac 3 point, and subsequently heated by a heating device.
The method for producing a seamless steel pipe having an ultrafine structure according to claim 4, wherein the temperature is maintained at a temperature of 1 point or more and Ae 3 points or less to promote reverse transformation to austenite.
JP2069348A 1990-03-19 1990-03-19 Manufacturing method of seamless steel pipe with ultrafine structure Expired - Lifetime JP2591234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069348A JP2591234B2 (en) 1990-03-19 1990-03-19 Manufacturing method of seamless steel pipe with ultrafine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069348A JP2591234B2 (en) 1990-03-19 1990-03-19 Manufacturing method of seamless steel pipe with ultrafine structure

Publications (2)

Publication Number Publication Date
JPH03267316A JPH03267316A (en) 1991-11-28
JP2591234B2 true JP2591234B2 (en) 1997-03-19

Family

ID=13399959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069348A Expired - Lifetime JP2591234B2 (en) 1990-03-19 1990-03-19 Manufacturing method of seamless steel pipe with ultrafine structure

Country Status (1)

Country Link
JP (1) JP2591234B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940476B1 (en) * 1997-04-30 2005-06-29 JFE Steel Corporation Process for producing steel pipe having high ductility and strength
WO1999013123A1 (en) * 1997-09-11 1999-03-18 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
JP4240178B2 (en) * 1999-11-04 2009-03-18 住友金属工業株式会社 Manufacturing method of martensitic stainless steel pipe with excellent descalability and corrosion resistance
JP2004027368A (en) * 2000-09-20 2004-01-29 Sumitomo Metal Ind Ltd Electric resistance welded tube and its production method
JP6008062B1 (en) * 2014-11-27 2016-10-19 Jfeスチール株式会社 Method for producing duplex stainless steel seamless pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445618A (en) * 1977-09-16 1979-04-11 Kobe Steel Ltd Microcrystalization of steel structure
JPS644423A (en) * 1987-06-24 1989-01-09 Kobe Steel Ltd Manufacture of bar steel with fine-grain structure

Also Published As

Publication number Publication date
JPH03267316A (en) 1991-11-28

Similar Documents

Publication Publication Date Title
CN103215516B (en) A kind of 700MPa grade high-strength hot-rolled Q &amp; P steel and manufacture method thereof
US4619714A (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
CN102080192B (en) Low-yield ratio, high-plasticity, ultrafine-grain and high-strength steel and manufacturing method thereof
CN106868398B (en) 1300MPa grades of ultra-fine grained ferrites/low temperature bainite dual-phase steel and preparation method thereof
CN102277539A (en) High-strength steel with low yield ratio, high plasticity and ultrafine grain and preparation method thereof
CN1208143C (en) Method for mfg of high-quality seamless steel pipe
CN101658879A (en) Method for manufacturing seamless steel pipe
JP2006274446A (en) Strain-induced transformation to ultrafine microstructure in steel
CN107723602A (en) 750MPa levels hot-rolled ferrite-bainite dual-phase steel and its production method
JP3375554B2 (en) Steel pipe with excellent strength-ductility balance
CN113546960A (en) Micro-alloying-free rolling and cooling control method for slitting rolling of bar deformed steel bar
JP2591234B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JP2913115B2 (en) Manufacturing method of steel bars with ultrafine structure
JP2576254B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JPS5839738A (en) Manufacture of high tensile wire rod
JP2833004B2 (en) Fine grain pearlite steel
BRPI0620929A2 (en) process and device for adjusting specific combinations of properties in polyphase steels
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JPH02301540A (en) Fine grained ferrite steel
JP2808675B2 (en) Fine grain bainite steel
JP3252905B2 (en) Fine grain martensitic steel
JPH09287029A (en) Production of high strength seamless steel pipe excellent in toughness
JPH0115563B2 (en)
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP4529307B2 (en) High-strength and high-workability steel pipe and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 14