JP2576254B2 - Manufacturing method of seamless steel pipe with ultrafine structure - Google Patents

Manufacturing method of seamless steel pipe with ultrafine structure

Info

Publication number
JP2576254B2
JP2576254B2 JP2034627A JP3462790A JP2576254B2 JP 2576254 B2 JP2576254 B2 JP 2576254B2 JP 2034627 A JP2034627 A JP 2034627A JP 3462790 A JP3462790 A JP 3462790A JP 2576254 B2 JP2576254 B2 JP 2576254B2
Authority
JP
Japan
Prior art keywords
temperature
temperature range
ferrite
point
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2034627A
Other languages
Japanese (ja)
Other versions
JPH03240921A (en
Inventor
千博 林
富夫 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2034627A priority Critical patent/JP2576254B2/en
Publication of JPH03240921A publication Critical patent/JPH03240921A/en
Application granted granted Critical
Publication of JP2576254B2 publication Critical patent/JP2576254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/06Rolling hollow basic material, e.g. Assel mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、均一で超微細な組織を有する継目無鋼管
を工業的規模で安定して製造する方法に関する。
The present invention relates to a method for stably producing a seamless steel pipe having a uniform and ultrafine structure on an industrial scale.

〈従来技術とその課題〉 従来から、継目無鋼管の諸特性(例えば低温靭性,延
性,降伏強度,耐食性,超塑性等)はその組織が微細に
なるほど向上することが広く知られており、そのため、
例えば成分組成調整に応じて熱間圧延時の圧延条件を規
制した所謂“制御圧延技術”が著しく発展し、該技術に
関する多くの提案がなされている。更に、最近では、制
御圧延後の冷却速度をも調整してオーステナイトから変
態精製するフェライト結晶粒の核生成数を増大させ、そ
の作用を加味してより一層の結晶粒微細化を図ろうとし
た所謂“加速冷却技術”も開発されるに至っている。
<Prior art and its problems> It has been widely known that the properties (eg, low-temperature toughness, ductility, yield strength, corrosion resistance, superplasticity, etc.) of a seamless steel pipe improve as its structure becomes finer. ,
For example, a so-called "controlled rolling technique" in which the rolling conditions during hot rolling are regulated in accordance with the adjustment of the component composition has remarkably developed, and many proposals relating to the technique have been made. Furthermore, recently, the cooling rate after controlled rolling was also adjusted to increase the number of nuclei generated in the ferrite crystal grains to be transformed and refined from austenite, and the so-called attempt was made to further refine the crystal grains by taking the action into account. "Accelerated cooling technology" has also been developed.

しかしながら、“制御圧延”に“加速冷却”を組み合
わせた技術をもってしても“冷却によって変態する前の
オーステナイトの最終粒径”には自ずと限界があり、こ
の限界を打破した均一超微細オーステナイト組織を得る
ことは不可能であった。しかも、この組織を基にして形
成される“冷却後の組織”の微細化度にも限界が生じる
のを如何ともし難かったのである。なぜなら、元のオー
ステナイト粒自体を微細化しない限りは、それを冷却し
た際に生成されるマルテンサイト粒を狙い通りに微細化
することは極めて困難であり、例えば加速冷却の効果を
高めようとして冷却を強化すると、意に反した“フェラ
イトとマルテンサイトから成る半焼入組織”しか得られ
ないと言う致命的な問題を招くのみであったからであ
る。
However, even with the technology that combines "controlled rolling" with "accelerated cooling", there is naturally a limit to the "final grain size of austenite before transformation by cooling". It was impossible to get. In addition, it was difficult for the "structure after cooling" formed on the basis of this structure to have a limit to the degree of fineness. Because, unless the original austenite grains themselves are refined, it is extremely difficult to refine the martensite grains produced when they are cooled as intended. Is only a fatal problem that only an unexpected "semi-quenched structure composed of ferrite and martensite" can be obtained.

勿論、制御圧延や加速冷却の他にも結晶粒微細化に関
する種々の提案がなされてはいるが、何れも“冷却によ
り変態する前のオーステナイト粒”の微細化に限界があ
ることから、最終製品の微細化,均一化に係わる従来の
限界を打破する技術とはなり得なかった。つまり、これ
ら従来技術に見られる問題は「熱間加工によって作り出
されるオーステナイト粒は、或る程度まで微細になると
実際上もはやそれ以上にまで微細化することができなく
なる」と言う従来の制御圧延技術の限界に由来するもの
であり、十分に微細化されていないオーステナイト組織
から加速冷却によって無理に微細なフェライト組織を生
成させようとしても、到底、満足し得る均一な超微細組
織は得られない訳である。
Of course, various proposals have been made regarding grain refinement in addition to controlled rolling and accelerated cooling, but in any case, there is a limit to the refinement of “austenite grains before transformation by cooling”, so the final product is limited. It could not be a technology that breaks down the conventional limits related to the miniaturization and uniformity of semiconductors. In other words, the problem found in these conventional techniques is that the austenitic grains produced by hot working become practically no longer finer to a certain degree when they become finer to a certain degree. The reason is that even if an attempt is made to forcibly produce a fine ferrite structure from an austenite structure that is not sufficiently refined by accelerated cooling, a satisfactory uniform ultrafine structure cannot be obtained at all. It is.

従って、格別な手段により継目無鋼管素材の熱間加工
時におけるオーステナイト組織そのものをより一段と超
微細な組織にしないと、最終製品段階での組織の超微細
化や均一化に係わる前記限界を抜本的に拭い去ることは
できないものと考えられた。
Therefore, unless the austenitic structure itself during hot working of the seamless steel pipe material is made to be an ultra-fine structure by special means, the above-mentioned limit relating to the ultra-fine and uniform structure of the structure at the final product stage is drastically reduced. Was considered impossible to wipe off.

このようなことから、本発明が主目的としたのは、継
目無鋼管製造工程の熱間加工段階で従来技術では不可能
であった均一超微細なオーステナイト組織(平均オース
テナイト結晶粒径:15μm以下)を実現し得る手段を見
出し、これを基に“超微細組織(平均フェライト粒径:1
0μm以下)を有する継目無鋼管”の工業的量産手段を
確立することであった。
For these reasons, the main object of the present invention is to provide a uniform ultra-fine austenitic structure (average austenite crystal grain size: 15 μm or less) which was impossible in the prior art in the hot working stage of the seamless steel pipe manufacturing process. ) Was found, and based on this, the “ultrafine structure (average ferrite grain size: 1
0 μm or less).

〈課題を解決するための手段〉 そして、本発明者等は、上記目的を達成すべく様々な
観点に立って鋭意研究を重ね本発明を完成するに至った
訳であるが、まず本発明の契機となった2つの基礎実験
結果について紹介する。研究用の“傾斜圧延方式の穿孔
圧延機”を用いたこれらの実験は、継目無鋼管熱間圧延
時におけるオーステナイト組織そのものを画期的に微細
化する手段となって結実したもので、次のようなものて
あった。
<Means for Solving the Problems> The present inventors have conducted intensive studies from various viewpoints in order to achieve the above object, and have completed the present invention. Here are the results of the two basic experiments that triggered this. These experiments using the “inclined rolling type piercing mill” for research were realized as a means of remarkably refining the austenitic structure itself during hot rolling of seamless steel pipes. There was something like that.

実験1 直径70φの中実丸鋼片を供試材とし、加熱温度と穿孔
比(穿孔後のホローピースの長さと穿孔前の中実丸鋼片
との長さの比)を変えて穿孔圧延実験を行い、穿孔圧延
機に入る寸前の入側温度,穿孔圧延直後の出側温度を計
測し、穿孔圧延で発熱する加工熱を実測した。ここで、
加熱温度は所定の入側温度が得られるように調節した。
Experiment 1 A 70 mm diameter solid round steel slab was used as a test material, and the piercing and rolling experiment was performed by changing the heating temperature and the drilling ratio (the ratio of the length of the hollow piece after drilling to the length of the solid round slab before drilling). Then, the inlet temperature just before entering the piercing mill and the outlet temperature immediately after piercing rolling were measured, and the processing heat generated by piercing rolling was actually measured. here,
The heating temperature was adjusted so as to obtain a predetermined inlet temperature.

なお、供試材の材質はSCM430相当材(Fe−0.29%C−
0.22%Si−0.64%Mn−1.08%Cr−0.24%Mo)であり(以
降、成分割合を表わす%は重量%とする)、そのAe1
は725℃,Ac1点は730℃,Ae3点は790℃,Ac3点は795℃であ
った。
The material of the test material was SCM430 equivalent material (Fe-0.29% C-
0.22% Si-0.64% Mn- 1.08% Cr-0.24% Mo) and is (hereinafter,% represents the component ratio is the weight%), the Ae 1 point is 725 ° C., Ac 1 point is 730 ° C., Ae 3 The point was 790 ° C and the Ac 3 point was 795 ° C.

そして、穿孔実験にはコーン型主ロール(交叉角:15
゜,傾斜角:12゜)を使用し、拡管比(穿孔後のホロー
ピースの外径と穿孔前の中実丸鋼片の外径との比)は1.
05前後に揃え、穿孔圧延機への入側温度は6つの水準
(1150℃,1050℃,950℃,850℃,750℃及び650℃)で、穿
孔比は5つの水準(1.5,2,3,4及び5)で変化させて実
験した。ここで、コーン型主ロールを採用して交叉角を
与えた理由は、低温穿孔時における変形能の劣化によっ
て内面疵が発生するのを防ぐためである。
In the drilling experiment, the cone-shaped main roll (intersection angle: 15
傾斜, tilt angle: 12 ゜) and the expansion ratio (ratio of the outer diameter of the hollow piece after drilling to the outer diameter of the solid round steel piece before drilling) is 1.
Approximately 05, the inlet temperature to the pier mill was 6 levels (1150 ° C, 1050 ° C, 950 ° C, 850 ° C, 750 ° C and 650 ° C), and the piercing ratio was 5 levels (1.5, 2, 3). , 4 and 5). Here, the reason why the cross angle is given by adopting the cone-shaped main roll is to prevent the occurrence of internal flaws due to the deterioration of the deformability at the time of low-temperature drilling.

この実験によって得られた「入側温度と出側温度との
関係」を示したのが第1図であり、「入側温度と加工熱
との関係」を示したのが第2図である(何れも穿孔比を
パラメータにとって整理されている) この実験から以下の知見が得られた。即ち、 (a) 入側温度が低下するほど加工熱の発生は顕著と
なり、その傾向は穿孔比が大きいほどより顕著に現われ
る。例えば、入側温度650℃,穿孔比が2の場合の加工
熱による昇温はほゞ200℃であり、穿孔比が4の場合は
それはほゞ300℃に達する。また、入側温度が750℃,穿
孔比が2の場合の加工熱による昇温はほゞ150℃,穿孔
比が4の場合のそれはほゞ225℃である。
Fig. 1 shows the "relationship between the inlet side temperature and the outlet side temperature" obtained by this experiment, and Fig. 2 shows the "relationship between the inlet side temperature and the processing heat". (All are organized using the piercing ratio as a parameter.) The following findings were obtained from this experiment. That is, (a) the generation of the processing heat becomes more remarkable as the entry-side temperature decreases, and this tendency appears more remarkably as the drilling ratio increases. For example, when the inlet temperature is 650 ° C. and the piercing ratio is 2, the temperature rise due to the processing heat is approximately 200 ° C., and when the piercing ratio is 4, it reaches approximately 300 ° C. When the inlet temperature is 750 ° C. and the piercing ratio is 2, the temperature rise by the processing heat is approximately 150 ° C., and when the piercing ratio is 4, it is approximately 225 ° C.

(b) 注目すべきは入側温度(素材加熱温度)であ
り、加熱温度と穿孔比の選定如何によってはAc1点以下
の温度域からAc1点上の温度域へ、Ac1点以上でかつAc3
点以下の温度域からAc3点以上の温度域へ、更にはAc1
以下の温度域から一挙にAc3点以上の温度域への逆変態
が実現可能である点である。例えば、入側温度を680℃
にできれば、穿孔比1.5でAc1点以下の温度域からAc1
以上の温度域へ、穿孔比2でAc1点以下の温度域からAc3
点以上への逆変態は十分に可能であり、また、入側温度
を770℃にできるならば、穿孔比1.5でAc1点以上でかつA
c3点以下の温度域からAc3点以上の温度域への逆変態も
十分に可能となる。
(B) note is the entry side temperature (Material heating temperature), the temperature range of less than Ac 1 point by selecting whether the heating temperature and the piercing ratio to the temperature range of the Ac 1 point, Ac at one point or more And Ac 3
To a temperature range of not lower than Ac 3 point from the temperature range point, even a point reverse transformation from a temperature range below Ac 1 point to at once Ac temperature range above points 3 can be realized. For example, if the inlet temperature is 680 ° C
If the perforation ratio to the temperature range of not lower than Ac 1 point from Ac 1 point below the temperature range at 1.5, Ac 3 from a temperature range of less than Ac 1 point in piercing ratio 2
Reverse transformation of the above points is quite possible, also, if possible entry side temperature of 770 ° C., the Ac 1 point or more piercing ratio 1.5 and A
reverse transformation from c 3 points below the temperature range to a temperature range of not lower than Ac 3 point is also sufficiently possible.

実験2 直径70φのSCM430相当中実丸鋼を供試材とすると共
に、穿孔比を2.5に固定し、入側温度を1200℃から50℃
毎に600℃まで変化させ、穿孔圧延直後のオーステナイ
ト結晶粒度と冷却後のフェライト結晶粒度を観察調査し
た。なお、その他の実験条件は“実験1"の場合に準じて
いる。
Experiment 2 A solid round steel equivalent to SCM430 with a diameter of 70φ was used as the test material, the piercing ratio was fixed at 2.5, and the inlet temperature was 1200 ° C to 50 ° C.
Each time the temperature was changed to 600 ° C., the austenitic grain size immediately after piercing and rolling and the ferrite grain size after cooling were observed and investigated. The other experimental conditions are the same as those in "Experiment 1".

この実験によって得られた「穿孔圧延直後のオーステ
ナイト結晶粒度と冷却後のフェライト結晶粒度に及ぼす
入側温度の影響」を第3図に整理して示した。
FIG. 3 summarizes the "Effects of the inlet temperature on the austenite grain size immediately after piercing and rolling and the ferrite grain size after cooling" obtained in this experiment.

この実験から以下の知見が得られた。即ち、 (a) 穿孔圧延直後のオーステナイト結晶粒度及び冷
却後のフェライト結晶粒度に及ぼす穿孔圧延機入側温度
の影響は明瞭であり、入側温度が低いほど結晶粒径は顕
著に小さくなる。
The following findings were obtained from this experiment. (A) The effect of the temperature on the inlet side of the piercing mill on the austenite grain size immediately after piercing and rolling and the ferrite grain size after cooling is clear, and the crystal grain size becomes significantly smaller as the inlet side temperature is lower.

(b) 特に、Ac1点以下の温度域からAc3点以上の温度
域へ一挙に逆変態させた場合のオーステナイト結晶粒径
は粒度番号で16近くなるまで微細化され、冷却後のフェ
ライト粒度は16以上を示している。また、Ac1点以上で
かつAc3点以下の温度域からAc3点以上の温度域への逆変
態によっても粒度番号で13近傍のフェライト粒度が得ら
れており、これらの逆変態加工熱処理によって冷却後の
フェライト粒径を5μm以下とすることは十分に可能で
ある。
(B) In particular, the austenite grain size in the case of reverse transformation from the temperature range of less than Ac 1 point to the temperature range of more than Ac 3 points at a time is refined to a grain size number near 16 and the ferrite grain size after cooling. Indicates 16 or more. In addition, a ferrite grain size near 13 by the grain size number is also obtained by the reverse transformation from the temperature range of 1 point or more of Ac and the temperature range of 3 points or less to the temperature range of 3 points or more of Ac, and these reverse transformation heat treatments It is sufficiently possible to reduce the ferrite particle size after cooling to 5 μm or less.

なお、この実験では、穿孔比を2.5に統一して行って
いるため、結果的に全ての温度域の穿孔圧延でAc3点以
上の温度域まで昇温してしまっているが、穿孔比の低い
場合のAc1点以下の温度域からAc1点以上の温度域への逆
変態によっても冷却後のフェライト粒径を10μmとする
ことは十分可能なように思われる。
In this experiment, since the piercing ratio was unified to 2.5, as a result, the temperature was raised to a temperature range of three or more Ac by piercing rolling in all temperature ranges. also the ferrite grain diameter after cooling 10μm by reverse transformation from the temperature range below Ac 1 point of the lower case to the Ac 1 point or more temperature range appears to be sufficiently possible.

さて、上記2つの基礎実験を契機として、本発明者等
は逆変態加工熱処理の本格的研究を積み重ね、次の
(A)〜(D)に示す結論を得るに至ったのである。
Now, with the above two basic experiments, the present inventors accumulated full-scale research on reverse transformation working heat treatment and came to the following conclusions (A) to (D).

(A) 鋼種によってAc1変態点,Ac3変態点は異なるも
のの、加熱温度と穿孔比を適切に選べばAc1点以下の温
度域からAc1点以上の温度域へ、或いはAc1点以上でかつ
Ac3点以下の温度域からAc3点以上の温度域へ、更にはAc
1点以下の温度域から一挙にAc3点以上の温度域への逆変
態は可能であり、この逆変態加工熱処理によって従来の
制御圧延等では到底得ることのできなかったような超微
細オーステナイト組織が実現できる。
(A) Ac 1 transformation point of steel species, although Ac 3 transformation point are different, if properly choose the heating temperature and piercing ratio to a temperature range of not lower than Ac 1 point from Ac 1 point below the temperature range, or Ac 1 or more points And
From the temperature range below Ac 3 points to the temperature range above Ac 3 points,
Reverse transformation from the temperature range of 1 point or less to the temperature range of 3 points or more of Ac is possible at once, and the ultra-fine austenite structure that could not be obtained by conventional controlled rolling etc. by this reverse transformation processing heat treatment Can be realized.

(B) なお、上述のようにフェライト組織に塑性加工
を加えながら加工熱で昇温し、変態点を超えさせてオー
ステナイト組織へ逆変態させる場合、該逆変態を十分に
完了させるには、加工熱による温度上昇の過程が終わっ
た後、完全な平衡状態におけるA1変態点(即ちAe1点)
或いはA3変態点(即ちAe3点)以上に一定時間保持する
ことが好ましい。
(B) As described above, when the temperature is raised by the working heat while plastic working is performed on the ferrite structure and the transformation is performed to exceed the transformation point and reversely transforms to the austenite structure, it is necessary to complete the reverse transformation sufficiently. after completion process of temperature rise due to heat, a 1 transformation point in complete equilibrium (i.e. Ae 1 point)
Alternatively, it is preferable that the temperature is kept at or above the A 3 transformation point (ie, Ae 3 point) for a certain period of time.

(C) このようにして得られた超微細オーステナイト
組織は、各種の冷却手段(例えば放冷,徐冷,保熱後冷
却,加速冷却,焼入れ,或いは加工を加えながらの冷却
等)の何れによって冷却しても従来技術では到底得られ
なかった“均一で極めて微細な等方性の変態組織”とな
る。
(C) The ultra-fine austenite structure obtained in this manner can be obtained by any of various cooling means (for example, cooling, slow cooling, cooling after heat retention, accelerated cooling, quenching, or cooling while applying processing). Even when cooled, it becomes a "uniform and extremely fine isotropic transformed structure" which could not be obtained by the prior art.

(D) しかも、上述のような逆変態加工熱処理の手段
によれば、材料は「フェライト→オーステナイト→フェ
ライト」の相変態を潜るので、塑性加工中に析出した炭
化物や窒化物の利用をもくろめば、脆化を伴わずに鋼を
強化することも可能である。
(D) In addition, according to the above-mentioned means of reverse transformation working heat treatment, since the material is immersed in the phase transformation of “ferrite → austenite → ferrite”, the use of carbides and nitrides precipitated during plastic working is also intended. For example, it is possible to strengthen the steel without embrittlement.

本発明は、上記知見事項等に基づいて完成されたもの
であり、 「傾斜圧延機にて“少なくとも一部がフェライトから
成る組織の中実又は中空の丸鋼片”に穿孔比或いは延伸
比で1.5以上の塑性加工を加えつつ、その際発生する加
工熱によりAc1点以下の温度域からAc1点以上の温度域
へ、或いはAc1点以上でかつAc3点以下の温度域からAc3
点以上の温度域へ、より望ましくはAc1点以下の温度域
から一挙にAc3点以上の温度域まで昇温し、更に要すれ
ば、この昇温に続いてAe1点以上、望ましくはAe3点以上
の温度域に保持することで前記フェライトから成る組織
の一部又は全部をオーステナイトに逆変態させ、これに
よって均一超微細なオーステナイト組織を実現すると共
に、その後の冷却により超微細組織(フェライト粒径が
10乃至は5μm以下)を有し、優れた強度,靭性,延
性,耐食性等を備えた熱間圧延継目無鋼管を安定して製
造できるようにした点」 に特徴を有するものである。
The present invention has been completed on the basis of the above findings and the like, and describes a method of forming a solid or hollow round steel slab at least partially composed of ferrite on an inclined rolling mill at a piercing ratio or a stretching ratio. while applying plastic working than 1.5, Ac 3 this time to a temperature range of not lower than Ac 1 point from Ac 1 point below the temperature range by the processing heat generated, or Ac at one point or more and a temperature range below Ac 3 point
To the temperature range above the temperature, more preferably, the temperature is raised from the temperature range below the Ac 1 point to the temperature range above the Ac 3 point at a stroke, and if necessary, following this temperature rise, the Ae 1 point or more, preferably Ae A part or all of the structure composed of ferrite is reverse-transformed to austenite by maintaining the temperature range of three or more points, thereby realizing a uniform ultrafine austenite structure, and further cooling the ultrafine structure ( Ferrite grain size
(10 to 5 μm or less) to stably produce a hot-rolled seamless steel pipe having excellent strength, toughness, ductility, corrosion resistance, and the like ”.

なお、ここで言う“フェライト組織”とは、オーステ
ナイト相に対するフェライト相から成る組織を意味して
おり、等方的なフェライト組織ばかりでなく、針状フェ
ライト組織,パーライト組織,ベイナイト組織,マルテ
ンサイト組織,焼戻しマルテンサイト組織等、フェライ
ト相を構成要素とする何れの形態のフェライト組織をも
含むものである。
The term “ferrite structure” as used herein means a structure composed of a ferrite phase with respect to an austenite phase. Not only an isotropic ferrite structure but also a needle-like ferrite structure, a pearlite structure, a bainite structure, a martensite structure. And any form of ferrite structure containing a ferrite phase as a constituent element, such as a tempered martensite structure.

また、本発明が対象とする丸鋼片素材は、少なくとも
一部がフェライトから成る組織(即ち、フェライト単独
組織又はフェライトを含む混合組織)の鋼であればその
他の構成成分や組成を問うものではなく、炭素鋼であっ
ても合金鋼であっても一向に差し支えがない。即ち、本
発明によれば、商用の低炭素鋼から純鉄に至るまで超微
細組織が得られる上、炭素鋼ばかりでなく、各種の合金
鋼,ステンレス鋼等においても合金成分に格別に影響さ
れることなく組織を著しく微細化できることから、対象
とする素材鋼のC含有量並びにC以外の成分の組成範囲
を特に制限する必要がない訳である。ただ、C含有量が
余り多くなると巨大な共晶セメンタイトやグラファイト
が現れて組織の均一化,微細化が困難になる傾向がある
ことから、好ましくはC含有量:1.5%以下の素材を適用
するのが良い。
Further, the round billet material targeted by the present invention does not ask for other constituent components and compositions as long as the steel has a structure at least partially composed of ferrite (that is, a ferrite single structure or a mixed structure containing ferrite). There is no problem with carbon steel or alloy steel. That is, according to the present invention, an ultrafine structure can be obtained from commercial low carbon steel to pure iron, and in addition to carbon steel, various alloy steels, stainless steels and the like are particularly affected by alloy components. Since the microstructure can be remarkably refined without the need, the C content of the target material steel and the composition range of components other than C need not be particularly limited. However, if the C content is too large, huge eutectic cementite or graphite appears, and it tends to be difficult to homogenize and refine the structure. Therefore, it is preferable to use a material having a C content of 1.5% or less. Is good.

以下、本発明をその作用と共により詳細に説明する。 Hereinafter, the present invention will be described in more detail together with its operation.

〈作用〉 本発明において、「適用する丸鋼片素材の組織が“フ
ェライト単独組織”又は“フェライトを含む混合組織”
である」ことを前提としたのは、前述した如く、本発明
が「塑性加工を加えながらフェライト相からオーステナ
イト相へ逆変態を起こさせる」ことを重要な要件として
いるからであり、これによって従来技術では例を見ない
微細オーステナイト粒が生成し、その後の冷却により該
微細オーステナイト粒から均一で超微細な変態組織が発
達するようになるからである。
<Action> In the present invention, the "structure of the round billet material to be applied is" a ferrite single structure "or" a mixed structure containing ferrite "
The reason for this is that, as described above, the present invention has an important requirement that "the reverse transformation from the ferrite phase to the austenite phase occurs while performing plastic working". This is because fine austenite grains, which are unprecedented in the art, are formed, and a uniform and ultrafine transformed structure is developed from the fine austenite grains by subsequent cooling.

そして、この時の塑性加工によって加えられる歪量は
次の3つの作用を生起させるに十分な量であることが重
要である。
It is important that the amount of strain applied by the plastic working at this time is an amount sufficient to cause the following three actions.

第1は、加工が加えられて加工硬化したフェライトか
ら非常に微細なオーステナイトの結晶粒が加工により誘
起されて生成する作用である。
The first effect is that very fine austenite crystal grains are generated from the ferrite that has been subjected to the work and hardened by the work.

第2は、フェライトがオーステナイトに逆変態する変
態点まで被加工材の温度を上昇させるための加工発熱の
作用である。
The second is the effect of the heat generated during processing for raising the temperature of the workpiece to the transformation point at which the ferrite reversely transforms into austenite.

第3は、生成した微細なオーステナイトの結晶粒を加
工硬化せしめて、その後のフェライト生成に際して更に
微細なフェライト粒を加工誘起変態生成させる作用であ
る。
The third function is to work harden the generated fine austenite crystal grains and to generate work-induced transformation to generate finer ferrite grains during the subsequent ferrite generation.

しかるに、継目無鋼管の製造プロセスでは、塑性加工
の歪量が33%未満の場合、即ち穿孔比又は延伸比が1.5
未満の場合には、加工歪が小さくて加工熱の発生が不足
気味であり、被加工材の温度をフェライトからオーステ
ナイトへ逆変態する温度に到達させることが困難とな
る。また、例えばフェライトからオーステナイトへ逆変
態させ得たとしても、微細なオーステナイト粒の加工に
よる誘起生成が不十分となり、生成するオーステナイト
粒径を目標とする15μm以下とすることが難しくなる。
つまり、フェライトからオーステナイトへ逆変態させる
時の塑性加工の歪量を穿孔比又は延伸比で1.5以上とす
ることによって初めて、平均粒径15μm以下の均一な微
細オーステナイト組織が比較的容易に実現できる。しか
しながら、あらゆる鋼種を勘案し現場的に安定して均一
な微細オーステナイト組織を実現するためには、フェラ
イト相からオーステナイト相に逆変態させる際に加える
塑性加工の歪量は穿孔比又は延伸比で2以上とすること
が望ましい。
However, in the process of manufacturing a seamless steel pipe, when the strain amount of plastic working is less than 33%, that is, when the piercing ratio or the stretching ratio is 1.5% or less.
If it is less than 1, the processing strain is small and the generation of processing heat tends to be insufficient, making it difficult to reach the temperature of the workpiece to the temperature at which the ferrite is transformed into austenite. Further, for example, even if a reverse transformation from ferrite to austenite can be performed, the induced generation by processing of fine austenite grains becomes insufficient, and it becomes difficult to reduce the generated austenite grain size to a target of 15 μm or less.
That is, a uniform fine austenite structure having an average grain size of 15 μm or less can be relatively easily realized only by setting the strain amount of the plastic working at the time of reverse transformation from ferrite to austenite to 1.5 or more in the piercing ratio or the stretching ratio. However, in order to realize a uniform and fine austenitic structure that is stable and uniform in the field in consideration of all types of steel, the amount of plastic working strain to be applied during the reverse transformation from the ferrite phase to the austenite phase is 2% by the piercing ratio or the stretching ratio. It is desirable to make the above.

次に、被加工材の昇温温度についてであるが、該昇温
温度が“フェライトがオーステナイトに逆変態する温度
域(即ちAc1点以上の温度域)”であったとしてもその
温度がAc3点未満である場合にはフェライトとオーステ
ナイトの二相混合組織となるが、本発明では温度を上昇
させながら加工を加えるので、昇温温度がAc1点以上に
なりさえすればAc3点未満の温度域であったとしても結
晶粒は加工と再結晶により十分微細化される。勿論、本
発明の作用効果を十二分に発揮させるためにはAc3点以
上の温度域にまで昇温することが望ましいが、二相ステ
ンレス鋼等、製品によってはフェライトとオーステナイ
トの二相組織にする必要のあるものもあり、このような
製品に対しては昇温温度はAc3点未満の温度域で留めて
おく必要があることは言うまでもない。
Next, regarding the temperature rise temperature of the workpiece, even if the temperature rise temperature is “the temperature range in which the ferrite reversely transforms to austenite (ie, the temperature range of one or more points of Ac)”, the temperature becomes Ac If it is less than 3 points, it becomes a two-phase mixed structure of ferrite and austenite, but in the present invention, processing is performed while increasing the temperature, so that as long as the temperature rise temperature is 1 point or more, less than Ac 3 points Even in this temperature range, the crystal grains are sufficiently refined by processing and recrystallization. Of course, in order to fully exert the effects of the present invention, it is desirable to raise the temperature to a temperature range of Ac 3 points or more, but depending on the product such as duplex stainless steel, the dual phase structure of ferrite and austenite is required. Needless to say, it is necessary to keep the heating temperature of such a product in a temperature range lower than the Ac 3 point.

そして、前述したように、フェライト相からオーステ
ナイト相へ逆変態させる際に塑性加工を加えながら加工
熱で昇温させるのは イ)フェライト域での加工によるフェライト粒の微細
化, ロ)加工硬化したフェライト粒からの微細オーステナイ
ト粒の加工誘起生成, ハ)オーステナイト粒の加工による微細化と、更には加
工硬化したオーステナイト粒からの微細フェライト粒の
歪誘起変態の促進, を図るためであり、これらの諸作用と効果が「加工しな
がら加工熱で昇温させる」と言う独自の逆変態加工熱処
理技術に凝縮されている訳である。
As described above, when reverse transformation is performed from the ferrite phase to the austenite phase, the temperature is raised by the processing heat while applying plastic working. A) The ferrite grains are refined by processing in the ferrite region, and b) the work hardening occurs. This is for the purpose of working-induced generation of fine austenite grains from ferrite grains, and c) to refine the austenite grains by working, and to promote strain-induced transformation of fine ferrite grains from work-hardened austenite grains. The various actions and effects are condensed into a unique reverse transformation processing heat treatment technology of "raising the temperature by processing heat while processing".

ところで、炭化物を形成する鋼種では、加工しながら
加工熱で昇温させる過程で鋼片中の炭化物は機械的に破
砕され微細分散するが、この炭化物がフェライトからオ
ーステナイトへの逆変態の核となって超微細な逆変態オ
ーステナイト組織化が促進されるので、この現象を積極
的に利用することもできる。
By the way, in the steel type that forms carbide, the carbide in the slab is mechanically crushed and finely dispersed in the process of raising the temperature by the processing heat while processing, but this carbide becomes the core of the reverse transformation from ferrite to austenite. This promotes the formation of an ultrafine inverse transformed austenite structure, so that this phenomenon can be positively utilized.

更に、本発明では、場合によっては加工しながらAc1
点以上或いはAc3点以上の温度域に昇温してからAe1点以
上或いはAe3点以上の温度域に保持することが推奨され
るが、これは均一にして微細なオーステナイト組織を確
実に実現するために極めて有効な手立てとなる。
Further, in the present invention, Ac 1
It is recommended that the temperature be raised to a temperature range of not less than the temperature of at least 3 points or at least 3 points of Ac, and then maintained at a temperature of not less than 1 point of Ae or not less than 3 points of Ae. It is a very effective means to realize it.

即ち、継目無鋼管の製造プロセスでは加工速度が速く
て急速昇温になりがちであることから、現実には、先に
説明した逆変態現象の通りにオーステナイトへの逆変態
が進行する時間的余裕が乏しいことが懸念される。これ
では本発明が狙いとする前述の作用効果が得られず、本
発明の目的を十二分に果たし得ない。従って、この場合
には、所要の条件で圧延を終了した後に再加熱炉や誘導
加熱装置等により圧延材をAe1点以上或いはAe3点以上の
温度域に保持すると、加工歪を内蔵したフェライト粒が
オーステナイトへ逆変態するための時間的余裕ができ、
所期の目的が確実に達せられることとなる。なお、この
時の保持時間は圧延条件や鋼種によって著しく相違して
おり、高純度鉄の場合にはほゞ瞬時とも言える秒単位で
十分であるが、高合金になると約10分程度を要するもの
もある。
That is, in the process of manufacturing a seamless steel pipe, since the processing speed is high and the temperature tends to rise rapidly, in reality, there is a time margin for the reverse transformation to austenite to proceed as described above. Is scarce. In this case, the above-mentioned functions and effects aimed at by the present invention cannot be obtained, and the object of the present invention cannot be sufficiently achieved. Therefore, in this case, if the rolled material is kept in a temperature range of one or more Ae points or three or more points of Ae by a reheating furnace, an induction heating device, etc. after the completion of the rolling under the required conditions, the ferrite with a built-in processing strain. Allows time for the grains to transform back to austenite,
The intended purpose will be reliably achieved. The holding time at this time varies significantly depending on the rolling conditions and the type of steel, and in the case of high-purity iron, a unit of seconds that can be said to be almost instantaneous is sufficient, but about 10 minutes is required for a high alloy. There is also.

続いて、本発明の効果を実施例により更に具体的に説
明するが、本実施例は継目無鋼管の最も典型的な製造プ
ロセスであるマンネスマン−マンドレルミル工程に従っ
たものであるため、まず、このマンネスマン−マンドレ
ルミル工程の概要について説明する。
Subsequently, the effects of the present invention will be described more specifically with reference to examples.Because this example is in accordance with the Mannesmann-mandrel mill process, which is the most typical manufacturing process of a seamless steel pipe, first, The outline of the Mannesmann-mandrel mill process will be described.

第4図は、マンネスマン−マンドレルミル工程の概略
工程図であるが、通常のプロセスでは、中実丸鋼片が回
転炉床式加熱炉(1)において1200〜1250℃の温度に加
熱され、傾斜圧延方式の穿孔圧延機(2)で穿孔されて
中空厚肉のホローピースとなり、次いでマンドレルミル
(3)で管内面にマンドレルバーを挿入したまま連続圧
延されて主として肉厚減少加工がなされる。次に、マン
ドレルバーが取り除かれたホローシェルは再加熱炉
(4)にて再加熱され、ストレッチレデューサ(5)に
て外径を絞って所定の外径に仕上げられる。
FIG. 4 is a schematic process diagram of the Mannesmann-mandrel mill process. In a normal process, a solid round slab is heated to a temperature of 1200 to 1250 ° C. in a rotary hearth type heating furnace (1) and is tilted. A hollow thick hollow piece is pierced by a piercing and rolling mill (2) of a rolling system, and then continuously rolled by a mandrel mill (3) with a mandrel bar inserted into the inner surface of the pipe to mainly perform thickness reduction. Next, the hollow shell from which the mandrel bar has been removed is reheated in a reheating furnace (4), and the outer diameter is reduced to a predetermined outer diameter by a stretch reducer (5).

以下の実施例は、全て上記マンネスマン−マンドレル
ミル工程に従って実施されたものである。
The following examples were all performed according to the Mannesmann-Mandrel Mill process.

〈実施例〉 実施例 1 SCM430相当材(Fe−0.29%C−0.22%Si−0.64%Mn−
1.08%Cr−0.24%Moで、Ae1変態点:725℃,Ac1変態点:73
0℃,Ae3変態点:790℃,Ac3変態点:795℃)の187φ丸鋼片
を供試材として、回転炉床式加熱炉でこれを700℃に加
熱し、入側温度:675℃で、ロール交叉角:7゜,傾斜角:1
5゜の条件で穿孔して186φ×27.5tのホローピースとな
し、これを8スタンドのマンドレルミルで延伸圧延して
主として肉厚を減じ、158φ×15tのホローシェルとし
た。次いで、マンドレルバーをストリッピングしてから
870℃の再加熱炉に装入し、15分間保熱した後、ストレ
ッチレデューサにより88.9φ×15tに絞り圧延して冷却
床上に放冷した。
<Example> Example 1 SCM430 equivalent material (Fe-0.29% C-0.22% Si-0.64% Mn-
1.08% Cr-0.24% Mo, Ae 1 transformation point: 725 ° C, Ac 1 transformation point: 73
Using a 187φ round slab of 0 ° C, Ae 3 transformation point: 790 ° C, Ac 3 transformation point: 795 ° C) as a test material, this was heated to 700 ° C in a rotary hearth heating furnace, and the inlet temperature: 675 At ℃, roll crossing angle: 7 °, tilt angle: 1
A hollow piece of 186φ × 27.5t was formed by drilling under the condition of 5 °, and this was drawn and rolled with an eight-stand mandrel mill to reduce the thickness mainly to obtain a 158φ × 15t hollow shell. Then strip the mandrel bar
After charging in a reheating furnace at 870 ° C. and keeping the heat for 15 minutes, it was squeezed and rolled to 88.9 × 15 ton by a stretch reducer and allowed to cool on a cooling floor.

なお、この時の穿孔比は2.0であり、穿孔圧延直後の
ホローピースの温度は870℃であった。従って、この加
工により素材はAc1点以下の温度域からAc1点を飛び越
え、一挙にAc3点以上の温度域まで確実に昇温してお
り、フェライト相からオーステナイト相への逆変態は十
分であった。
The piercing ratio at this time was 2.0, and the temperature of the hollow piece immediately after piercing and rolling was 870 ° C. Therefore, by this processing, the material jumps over the Ac 1 point from the temperature range below the Ac 1 point and rises to the temperature range above the Ac 3 point at a stroke, and the reverse transformation from the ferrite phase to the austenite phase is sufficient. Met.

また、マンドレルミルによる延伸比は2.0,ストレッチ
レデューサによる延伸比は1.9であったが、厚肉製管な
のでマンドレルミルにおけるホローシェルの温度低下は
50℃以内に止まっていた。そして、ストレッチレデュー
サによる絞り圧延はほゞ通常圧延に近い条件で行われ
た。
The draw ratio by the mandrel mill was 2.0, and the draw ratio by the stretch reducer was 1.9.
It stopped within 50 ° C. Then, the reduction rolling by the stretch reducer was performed under conditions almost similar to normal rolling.

このようにして製造された継目無鋼管について冷却後
のフェライト粒をミクロ観察したところ、狙い通りに粒
径2μm,粒度番号15以上の極めて均一な超微細粒フェラ
イト組織が実現されていた。
Microscopic observation of the ferrite grains after cooling of the thus manufactured seamless steel pipe revealed that a very uniform ultrafine grain ferrite structure having a grain size of 2 μm and a grain size number of 15 or more was achieved as intended.

実施例 2 S50C相当材(Fe−0.5%C−0.25%Si−0.75%Mnで、A
e1変態点:720℃,Ac1変態点:730℃,Ae3変態点:765℃,Ac3
変態点:775℃)の187φ丸鋼片を供試材にすると共に、
回転炉床式加熱炉でこれを760℃に加熱し、740℃の入側
温度で穿孔して186φ×27.5tのホローピースとなした後
は、実施例1の場合に準じたパススケジュールに従って
8スタンドのマンドレルミルで延伸圧延し主として肉厚
を減じて158φ×15tのホローシェルとした。次いで、マ
ンドレルバーをストリッピングしてから870℃の再加熱
炉に装入し、15分間保熱した後、ストレッチレデューサ
により88.9φ×15tに絞り圧延して冷却床上に放冷し
た。
Example 2 S50C equivalent material (Fe-0.5% C-0.25% Si-0.75% Mn,
e 1 transformation point: 720 ° C, Ac 1 transformation point: 730 ° C, Ae 3 transformation point: 765 ° C, Ac 3
(Transformation point: 775 ° C)
This was heated to 760 ° C. in a rotary hearth heating furnace, and pierced at an inlet temperature of 740 ° C. to form a hollow piece of 186φ × 27.5 t. Then, 8 stands were prepared according to the pass schedule according to the case of Example 1. And rolled mainly by a mandrel mill to reduce the wall thickness to form a hollow shell of 158φ × 15t. Next, the mandrel bar was stripped, charged into a reheating furnace at 870 ° C., and kept for 15 minutes, then squeezed and rolled to 88.9 × 15 t by a stretch reducer, and allowed to cool on a cooling floor.

なお、この時の穿孔比は2.0であり、穿孔圧延直後の
ホローピースの温度は860℃であった。従って、この加
工により素材はAc1点以上Ac3点以下の温度域からAc3
以上の温度域まで確実に昇温しており、フェライト,オ
ーステナイト二相域からオーステナイト相への逆変態は
十分であった。
The piercing ratio at this time was 2.0, and the temperature of the hollow piece immediately after piercing and rolling was 860 ° C. Therefore, by this processing, the temperature of the material is surely raised from the temperature range of Ac 1 point or more to Ac 3 point or less to the temperature range of Ac 3 point or more, and the reverse transformation from ferrite and austenite two phase region to austenite phase is sufficient. Met.

このようにして製造された継目無鋼管について冷却後
のフェライト粒をミクロ観察したところ、粒径3.5,粒度
番号14近傍の超微細粒フェライト組織が実現されてい
た。
Microscopic observation of the ferrite grains after cooling of the thus produced seamless steel pipe revealed that an ultrafine grained ferrite structure with a grain size of 3.5 and a grain size number of around 14 was realized.

実施例 3 実施例1と全く同一のパススケジュールによりS10C相
当材(Fe−0.1%C−0.25%Si−0.45%Mnで、Ae1変態
点:720℃,Ac1変態点:730℃,Ae3変態点:865℃,Ac3変態
点:875℃)の187φ丸鋼片を供試材として188.9φ×15t
の継目無鋼管製品に仕上げた。
Example 3 The S10C equivalent material (Fe-0.1% C-0.25% Si-0.45% Mn, Ae 1 transformation point: 720 ° C., Ac 1 transformation point: 730 ° C., Ae 3) according to exactly the same pass schedule as in Example 1. (Transformation point: 865 ° C, Ac 3 transformation point: 875 ° C)
Finished into a seamless steel pipe product.

S10CはC含有量が少なく、変形抵抗も小さいので、穿
孔時の発熱はSCM430ほど高くなく、穿孔直後のホローピ
ースの温度は840℃程度であった。しかも、S10CのAc3
態点はSCM430のそれより約80℃高い。そのため、この場
合はAc1点以下の温度域からAc1点以上の温度には昇温し
たが、Ac3点(875℃)まで到達しなかった。
Since S10C has a low C content and low deformation resistance, the heat generation during drilling was not as high as that of SCM430, and the temperature of the hollow piece immediately after drilling was about 840 ° C. Moreover, the Ac 3 transformation point of S10C is about 80 ° C. higher than that of SCM430. Therefore, in this case was heated to a temperature above Ac 1 point from Ac 1 point below the temperature range, it did not reach the Ac 3 point (875 ° C.).

このようなこともあって、絞り圧延,冷却後における
継目無鋼管製品のフェライト粒は実施例1の場合ほど細
粒化されていないが、それでも粒径5μm,粒度番号で13
近傍の、従来の制御圧延技術では全く未経験のレベルで
超微細フェライト組織が得られていた。
For this reason, the ferrite grains of the seamless steel pipe product after drawing and cooling are not as fine as those in Example 1, but still have a grain size of 5 μm and a grain size of 13 μm.
An ultra-fine ferrite microstructure was obtained at a near-inexperienced level by the conventional control rolling technique.

これら実施例では、小,中径継目無鋼管の製造工程と
して最も典型的なマンネスマン−マンドレルミルライン
に基づいた例について説明したが、本発明に係る逆変態
加工熱処理法はマンネスマン−プラグミルライン,PPM
(プレスピアシングミミル)−プラグミルライン,PPM−
マンドレルミルラインその他の、継目無鋼管の製造ライ
ンにおける傾斜圧延方式穿孔圧延機は勿論、ロータリエ
ロンゲータ等にも適用できることは当然である。なお、
傾斜圧延方式の穿孔圧延機或いは延伸圧延機は2ロー
ル,3ロールの型式を問わないことも言を待たない。
In these embodiments, examples based on the most typical Mannesmann-mandrel mill line as a process for manufacturing small and medium diameter seamless steel pipes have been described. However, the reverse transformation heat treatment method according to the present invention is based on the Mannesmann-plug mill line, PPM
(Press piercing mimill)-Plug mill line, PPM-
Naturally, the present invention can be applied to a rotary elongator and the like as well as an inclined rolling piercing mill in a mandrel mill line and other seamless steel pipe production lines. In addition,
It goes without saying that the piercing rolling mill or the elongating rolling mill of the inclined rolling type may be of any type of two rolls or three rolls.

〈効果の総括〉 以上に説明した如く、この発明によれば、不可能であ
った均一超微細な組織を有する継目無鋼管を工業的規模
で量産することが可能となり、優れた強度,靭性,延
性,耐食性等を備えた熱間圧延継目無鋼管の安定供給が
実現できるなど、産業上極めて有用な効果がもたらされ
る。
<Summary of Effects> As described above, according to the present invention, seamless steel pipes having a uniform and ultrafine structure, which were impossible, can be mass-produced on an industrial scale, and excellent strength, toughness, Industrially extremely useful effects can be obtained, such as a stable supply of a hot-rolled seamless steel pipe having ductility and corrosion resistance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、継目無鋼管素材の穿孔圧延機入側温度と出側
温度の関係を示したグラフである。 第2図は、継目無鋼管素材の穿孔圧延機入側温度と発生
する加工熱との関係を示したグラフである。 第3図は、継目無鋼管素材の穿孔圧延機入側温度と穿孔
圧延におけるオーステナイト結晶粒度及び冷却後のフェ
ライト粒度との関係を示したグラフである。 第4図は、マンネスマン−マンドレルミル工程の概略工
程図である。
FIG. 1 is a graph showing the relationship between the inlet side temperature and the outlet side temperature of a piercing mill for a seamless steel pipe material. FIG. 2 is a graph showing the relationship between the temperature on the piercing and rolling mill entrance side of the seamless steel pipe material and the generated processing heat. FIG. 3 is a graph showing the relationship between the temperature on the piercing and rolling mill side of a seamless steel pipe material, the austenite grain size in piercing rolling, and the ferrite grain size after cooling. FIG. 4 is a schematic process diagram of the Mannesmann-mandrel mill process.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】傾斜圧延機にて穿孔比又は延伸比を1.5以
上とし、“少なくとも一部がフェライトから成る組織の
中実又は中空の丸鋼片”を加工熱を利用してAc1点以下
の温度域からAc3点以上の温度域まで昇温させながら穿
孔又は延伸圧延し、フェライトから成る組織の全部を一
旦オーステナイトに逆変態させる工程を含むことを特徴
とする、超微細組織を有する継目無鋼管の製造法。
1. A piercing ratio or elongation ratio of 1.5 or more in an inclined rolling mill, and a single or hollow round steel slab having at least a part of ferrite structure is processed to 1 point of Ac or less using processing heat. Piercing or elongation rolling while raising the temperature from the temperature range of Ac to the temperature range of 3 or more points, and a step of once transforming all of the ferrite structure to austenite, characterized in that it includes a step of having a superfine structure. Manufacturing method of steelless pipe.
【請求項2】傾斜圧延機にて穿孔比又は延伸比を1.5以
上とし、“少なくとも一部がフェライトから成る組織の
中実又は中空の丸鋼片”を加工熱を利用してAc1点以上
でかつAc3点以下の温度域からAc3点以上の温度域まで昇
温させながら穿孔又は延伸圧延し、フェライトから成る
組織の全部を一旦オーステナイトに逆変態させる工程を
含むことを特徴とする、超微細組織を有する継目無鋼管
の製造法。
2. A piercing ratio or elongation ratio of 1.5 or more in an inclined rolling mill, and at least one point of Ac using a heat of processing a "solid or hollow round steel slab at least partially composed of ferrite". in and by drilling or elongation rolling while raising the temperature to a temperature range above 3 points Ac from temperature range following three Ac, characterized in that it comprises a step of temporarily reverse-transformed into austenite all tissues composed of ferrite, A method for producing a seamless steel pipe having an ultrafine structure.
【請求項3】Ac3点以上の温度域まで昇温させながら穿
孔又は延伸圧延した穿孔又は延伸材を、続いて加熱装置
でAe3点以上の温度域に保持してオーステナイトへの逆
変態を促す、請求項1又は2に記載の超微細組織を有す
る継目無鋼管の製造法。
3. A pierced or stretched material that has been pierced or stretched and rolled while being heated to a temperature range of 3 or more points of Ac, and then maintained in a temperature range of 3 or more points of Ae by a heating device to perform reverse transformation to austenite. A method for producing a seamless steel pipe having an ultrafine structure according to claim 1 or 2, which is promoted.
【請求項4】傾斜圧延機にて穿孔比又は延伸比を1.5以
上とし、“少なくとも一部がフェライトから成る組織の
中実又は中空の丸鋼片”を加工熱を利用してAc1点以下
の温度域からAc1点以上でかつAc3点以下の温度域まで昇
温させながら穿孔又は延伸圧延し、フェライトから成る
組織の一部を一旦オーステナイトに逆変態させる工程を
含むことを特徴とする、超微細組織を有する継目無鋼管
の製造法。
4. A piercing ratio or elongation ratio of 1.5 or more in an inclined rolling mill, and a single or hollow round steel bar having a structure composed of at least a part of ferrite is subjected to processing heat to obtain an Ac of 1 point or less. Piercing or elongation rolling while raising the temperature from the temperature range of Ac 1 point or more to the temperature range of Ac 3 points or less, comprising a step of once transforming part of the ferrite structure to austenite. , A method of manufacturing a seamless steel pipe having an ultrafine structure.
【請求項5】Ac1点以上でかつAc3点以下の温度域まで昇
温させながら穿孔又は延伸圧延した穿孔又は延伸材を、
続いて加熱装置でAe1点以上でかつAe3点以下の温度域に
保持してオーステナイトへの逆変態を促す、請求項4に
記載の超微細組織を有する継目無鋼管の製造法。
5. A pierced or stretched material which has been pierced or stretched and rolled while being heated to a temperature range of not less than Ac 1 point and not more than Ac 3 points,
5. The method for producing a seamless steel pipe having an ultrafine structure according to claim 4, wherein a reverse transformation to austenite is promoted by maintaining the temperature in a temperature range of 1 point or more and 3 points or less of Ae by a heating device.
JP2034627A 1990-02-15 1990-02-15 Manufacturing method of seamless steel pipe with ultrafine structure Expired - Lifetime JP2576254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034627A JP2576254B2 (en) 1990-02-15 1990-02-15 Manufacturing method of seamless steel pipe with ultrafine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034627A JP2576254B2 (en) 1990-02-15 1990-02-15 Manufacturing method of seamless steel pipe with ultrafine structure

Publications (2)

Publication Number Publication Date
JPH03240921A JPH03240921A (en) 1991-10-28
JP2576254B2 true JP2576254B2 (en) 1997-01-29

Family

ID=12419634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034627A Expired - Lifetime JP2576254B2 (en) 1990-02-15 1990-02-15 Manufacturing method of seamless steel pipe with ultrafine structure

Country Status (1)

Country Link
JP (1) JP2576254B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718865B2 (en) * 1992-12-08 1998-02-25 新日本製鐵株式会社 Manufacturing method of seamless steel pipe with fine grain structure
JP2672441B2 (en) * 1992-12-10 1997-11-05 新日本製鐵株式会社 Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP4900385B2 (en) * 2006-03-28 2012-03-21 住友金属工業株式会社 High alloy rolling mandrel bar, surface treatment method and manufacturing method thereof, and method of operating seamless steel pipe manufacturing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445618A (en) * 1977-09-16 1979-04-11 Kobe Steel Ltd Microcrystalization of steel structure
JPS644423A (en) * 1987-06-24 1989-01-09 Kobe Steel Ltd Manufacture of bar steel with fine-grain structure

Also Published As

Publication number Publication date
JPH03240921A (en) 1991-10-28

Similar Documents

Publication Publication Date Title
CN106868398B (en) 1300MPa grades of ultra-fine grained ferrites/low temperature bainite dual-phase steel and preparation method thereof
CN102080192B (en) Low-yield ratio, high-plasticity, ultrafine-grain and high-strength steel and manufacturing method thereof
KR20000035297A (en) Hot rolled steel sheet having an ultrafine grain structure and process for producing steel sheet
NZ212916A (en) Controlled rolling process for dual phase steels and application to rod, wire and sheet
JP3386726B2 (en) Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet
JP6171851B2 (en) Apparatus row for seamless steel pipe production and method for producing high-strength stainless steel seamless steel pipe for oil wells using the same
CN102277539A (en) High-strength steel with low yield ratio, high plasticity and ultrafine grain and preparation method thereof
JP2006274446A (en) Strain-induced transformation to ultrafine microstructure in steel
JP2002038242A (en) Stainless steel tube for structural member of automobile excellent in secondary working property
JP2591234B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JP2576254B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JP2833004B2 (en) Fine grain pearlite steel
JP2913115B2 (en) Manufacturing method of steel bars with ultrafine structure
JP2001131697A (en) Steel wire rod, steel wire and producing method therefor
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP3252905B2 (en) Fine grain martensitic steel
JP2808675B2 (en) Fine grain bainite steel
JPH0115563B2 (en)
JPH02301540A (en) Fine grained ferrite steel
WO2007132436A2 (en) Process for the production of fine-grained carbon steel strips and strips thus obtainable
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP4529307B2 (en) High-strength and high-workability steel pipe and method for producing the same
JPH0414167B2 (en)
JPH0233768B2 (en)
JP2004027351A (en) Method for producing high strength and high toughness martensitic stainless steel seamless pipe