JP2833004B2 - Fine grain pearlite steel - Google Patents

Fine grain pearlite steel

Info

Publication number
JP2833004B2
JP2833004B2 JP12625489A JP12625489A JP2833004B2 JP 2833004 B2 JP2833004 B2 JP 2833004B2 JP 12625489 A JP12625489 A JP 12625489A JP 12625489 A JP12625489 A JP 12625489A JP 2833004 B2 JP2833004 B2 JP 2833004B2
Authority
JP
Japan
Prior art keywords
pearlite
steel
temperature
test
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12625489A
Other languages
Japanese (ja)
Other versions
JPH02305937A (en
Inventor
賢治 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14930622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2833004(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12625489A priority Critical patent/JP2833004B2/en
Priority to CA002004548A priority patent/CA2004548C/en
Priority to EP89122371A priority patent/EP0372465B1/en
Priority to AU45924/89A priority patent/AU615360B2/en
Priority to KR1019890017936A priority patent/KR930010321B1/en
Priority to DE68922075T priority patent/DE68922075T2/en
Priority to US07/446,457 priority patent/US5080727A/en
Priority to ES89122371T priority patent/ES2073422T3/en
Publication of JPH02305937A publication Critical patent/JPH02305937A/en
Publication of JP2833004B2 publication Critical patent/JP2833004B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、高加工度の冷間伸線や冷間圧延,曲げ,
ねじり,打ち抜き等の如き加工処理性が良好な、汎用性
に富む微細粒パーライト鋼材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to a high degree of work cold drawing, cold rolling, bending,
The present invention relates to a versatile fine-grained pearlite steel material having good workability such as twisting and punching.

〈従来技術とその課題〉 従来から“鋼材の諸特性{例えば加工性(塑性加工
性,切断特性,曲げ特性,溶接性等),低温靭性,耐食
性,超塑性など}はその組織が微細になるほど向上す
る」との事実が広く知られており、その認識のもとに各
種の技術をもって鋼の結晶粒を微細化したり粒成長を抑
制することが行われている。そして、例えばFe−13〜18
wt%Cr−8〜12wt%Niのオーステナイト系ステンレス鋼
を室温で冷間加工することでオーステナイトをマルテン
サイトに加工誘起変態させた後安定オーステナイト域に
加熱して焼鈍し、マルテンサイトをオーステナイトに逆
変態させることによって、粒径:0.5μmのオーステナイ
ト結晶組織を持つオーステナイト鋼材が得られるとの報
告〔鉄と鋼,第74年(1988年)第6号,第1052〜1057
頁〕や、低炭素鋼を変態点よりも上のオーステナイト領
域で強加工して微細フェライトを誘起させた後、直ちに
急冷することによって、1〜50%未満の割合で平均粒径
5〜3μmのフェライト結晶粒を含むと共に残部がマル
テンサイト又はベイナイトの焼入れ組織から成る熱間圧
延鋼材を得ようとの提案〔特公昭62−42021号〕もなさ
れた。
<Prior art and its problems> Conventionally, “the characteristics of steel materials, such as workability (plastic workability, cutting characteristics, bending characteristics, weldability, etc.), low-temperature toughness, corrosion resistance, superplasticity, etc.” have increased as the structure becomes finer. The fact that "improves" is widely known, and based on that recognition, various techniques are used to refine the crystal grains of steel and to suppress grain growth. And, for example, Fe-13 to 18
Austenitic stainless steel of 8wt% Cr-8 ~ 12wt% Ni is cold-worked at room temperature to transform austenite into martensite, then heated to a stable austenite region and annealed to reverse martensite to austenite. It is reported that an austenitic steel material having an austenitic crystal structure with a grain size of 0.5 μm can be obtained by transformation [Iron and Steel, 74th year (1988) No. 6, No. 1052-1057].
Page] or low-carbon steel is strongly worked in the austenite region above the transformation point to induce fine ferrite, and immediately quenched to obtain an average grain size of 5 to 3 μm at a ratio of less than 1 to 50%. It has also been proposed to obtain a hot-rolled steel material containing ferrite crystal grains and the remainder having a quenched structure of martensite or bainite (Japanese Patent Publication No. 62-42021).

しかしながら、これらの既知技術ではパーライトを主
体とした組織の鋼は得られない上、5μm以下の微細な
コロニー径のパーライト組織からなる鋼は全く未知であ
った。
However, with these known techniques, a steel having a structure mainly composed of pearlite cannot be obtained, and a steel having a pearlite structure having a fine colony diameter of 5 μm or less has not been known at all.

つまり、前記「“鉄と鋼",第74年(1988年)第6号」
の第1052〜1057頁」や特公昭62−42021号公報にも微細
粒鋼に関する記載がなされてはいるものの、前者はオー
ステナイト鋼に係るものであり、また後者は50〜99%の
マルテンサイト又はベイナイトの焼入れ組織からなる鋼
に係るものであって、何れも微細コロニー径からなるパ
ーライトを主体とした組織の鋼とは異なるものである。
In other words, the aforementioned “Iron and Steel”, 74th year (1988) No. 6
Nos. 1052 to 1057 "and JP-B-62-42021 also describe fine-grained steel, but the former relates to austenitic steel, and the latter relates to 50 to 99% martensite or The present invention relates to steel having a quenched structure of bainite, and is different from steel having a structure mainly composed of pearlite having a fine colony diameter.

ところで、パーライトを主体とした組織の高炭素鋼
は、その組織中に硬くて脆いセメンタイトを多量に含ん
でいるため加工性があまり良くないが、パーライト組織
におけるラメラ間隔(セメンタイト層とフェライト層と
の層間隔)を小さくすることによって強度と延性を改善
できることは良く知られている。しかし、もう1つのパ
ーライト組織因子であるパーライトコロニー径について
は“大きい方が良いとする説",“小さい方が良いとする
説",“全く関係がないとする説”などがあって、定説と
なるものが全くない状況である。しかも、そのコロニー
径が5μm以下のパーライト組織は未だ存在せず、こう
した微細パーライトについては完全に未知のままであっ
た。
By the way, high carbon steel having a structure mainly composed of pearlite has a large amount of hard and brittle cementite in the structure, and therefore has poor workability. However, the lamellar spacing in the pearlite structure (the difference between the cementite layer and the ferrite layer) It is well known that strength and ductility can be improved by reducing the layer spacing. However, regarding the pearlite colony diameter, another pearlite tissue factor, there are "theory that larger is better", "theory that smaller is better", and "theory that it has nothing to do". There is no such thing at all. Moreover, there was no pearlite structure having a colony diameter of 5 μm or less, and such fine pearlite remained completely unknown.

そこで、本発明者等は、パーライト鋼材におけるパー
ライトコロニー径を更に微細化することによる特性動向
を究明すべく、パーライトコロニーの平均コロニー径が
5μm以下の“パーライト粒を主体とした組織の鋼材”
の実現を目指して様々な観点からの研究を重ねた。
Therefore, the present inventors have investigated the “steel material having a structure mainly composed of pearlite grains” in which the average colony diameter of pearlite colonies is 5 μm or less in order to investigate the characteristic trend by further reducing the pearlite colony diameter in pearlite steel materials.
The research from various viewpoints was repeated aiming at realization of.

〈課題を解決するための手段〉 ここで、従来は存在することがなかったところの“パ
ーライトコロニーの平均コロニー径が5μm以下の“パ
ーライト粒を主体とした組織の鋼材”の実現を目指した
本発明者等が特に留意した点は、「従来一般的に採用さ
れていた鋼材組織微細化手段の如く、既に存在している
オーステナイト粒を熱間加工によって幾ら加工したとし
ても、新たなオーステナイト粒が熱間加工での再結晶に
よって生成される限りは高温相であるオーステナイトの
微細化には限度があり、従ってこのオーステナイト粒か
ら発生する変態生成組織も該オーステナイト粒径に拘束
されるため微細化に自ずと限界があるのを如何ともし難
い」との事実である。即ち、高炭素鋼のパーライトコロ
ニー径は結局は熱間加工前のオーステナイト粒の大きさ
に依存してしまうので、何らかの手段によって、加工を
受ける前のオーステナイト粒が徹底的に微細な状態で生
成するような手当てを講じることしか“従来技術が包含
していた鋼材組織微細化の限界”を打破することができ
ないとの観点に立って研究を進めた訳である。
<Means for Solving the Problems> Here, a book aimed at realizing a “steel material having a structure mainly composed of pearlite grains” having an average colony diameter of pearlite colonies of 5 μm or less, which had never existed before. The inventors noted that, `` Even if existing austenite grains are worked by hot working, as in the case of steel structure refining means generally used in the past, new austenite grains can be obtained. There is a limit to the refinement of austenite, which is a high-temperature phase, as long as it is generated by recrystallization in hot working. It is difficult to manage the limitations naturally. " That is, the pearlite colony diameter of high carbon steel ultimately depends on the size of the austenite grains before hot working, and by any means, austenite grains before being worked are generated in a completely fine state. The research was advanced from the standpoint that only such measures could overcome the "limit of microstructural refinement of steel materials included in the prior art".

その結果、本発明者等は次に示す如き全く新規な知見
を得るに至った。即ち、 (a) 鋼を熱間加工する場合、加工の前段階で既知の
熱間加工における如き熱履歴或いは加工履歴を経させ、
しかる後、一旦鋼組織の少なくとも一部が低温相組織を
呈するように温度管理等を行ってから、加工の最終段階
として塑性加工を加えながら温度を上げて変態点を超え
させ、前記低温相組織をオーステナイト組織に逆変態さ
せると、従来の制御圧延等では到底得られないような超
微細オーステナイト組織が実現できる。
As a result, the present inventors have obtained completely novel findings as described below. (A) In the case of hot working steel, a heat history or a working history as in known hot working is passed through before the working,
Thereafter, after performing temperature control or the like so that at least a part of the steel structure exhibits a low-temperature phase structure, the temperature is increased while applying plastic working as a final stage of the processing to exceed the transformation point, and the low-temperature phase structure is obtained. Is transformed into an austenitic structure, an ultrafine austenitic structure that cannot be obtained by conventional controlled rolling or the like can be realized.

(b) また、逆変態によって生じる上記超微細オース
テナイト組織は、上述のように、熱間加工が最終段階に
至る前の加工途中において一旦逆変態のための前組織
(低温相組織)が得られるような温度条件下に鋼材を置
き、続く加工の最終段階でこの低温相組織に塑性加工を
加えながら温度を上げて変態点に超えさせると言う処理
を施せば実現されるが、加工の最初の段階から逆変態に
よってオーステナイト組織とするための前組織(低温相
組織)を準備しておき、まずこれに冷間温度域や温間温
度域での加工を加えた後、加工の最終段階で「塑性加工
を加えながら温度を上げて変態点を超えさせる」と言う
処理を施すことによっても実現される。
(B) In the ultrafine austenite structure generated by the reverse transformation, as described above, a prestructure (low-temperature phase structure) for the reverse transformation is temporarily obtained during the working before the hot working reaches the final stage. This can be achieved by placing the steel material under such temperature conditions and performing a process of raising the temperature to exceed the transformation point while applying plastic working to this low-temperature phase structure at the final stage of the subsequent processing, A pre-structure (low-temperature phase structure) for preparing an austenitic structure by reverse transformation from the stage is prepared, and firstly, processing in a cold temperature range or a warm temperature range is performed. The temperature is raised while the plastic working is performed so that the temperature exceeds the transformation point. "

(c) 上述のように、低温相組織に塑性加工を加えな
がら温度を上げて変態点を超えさせてオーステナイト組
織へ逆変態させる場合、該逆変態を十分に完了させるた
めには、塑性加工を加えながら実施する温度上昇過程が
終った後、完全な平衡状態におけるA1変態点、即ちAe1
点の温度以上に一定時間保持する手段の採用も有利であ
る。
(C) As described above, in the case where the temperature is increased while performing plastic working on the low-temperature phase structure and the transformation point is exceeded to reversely transform to the austenite structure, in order to sufficiently complete the reverse transformation, plastic working must be performed. After the completion of the temperature increase process, the A 1 transformation point in a complete equilibrium state, that is, Ae 1
It is also advantageous to employ means for maintaining the temperature at or above the point for a certain period of time.

(d) このようにして得られた超微細粒オーステナイ
ト組織の熱間加工鋼材は、その後、製品に目的とする特
性を付与すべく従来から適用されている各種冷却手段
(例えば放冷,徐冷,保熱,加速冷却,多段冷却,加工
を加えながらの冷却,焼入,或いはそれらの組み合わせ
等)の何れによって冷却しても従来技術では得られない
均一で超微細な変態組織となる。
(D) The hot-worked steel material having the ultrafine-grained austenite structure obtained in this manner is then subjected to various cooling means (for example, cooling, gradual cooling) conventionally applied to impart the desired properties to the product. , Heat retention, accelerated cooling, multi-stage cooling, cooling with additional processing, quenching, or a combination thereof) results in a uniform and ultrafine transformed structure that cannot be obtained by the prior art.

(e) しかも、高炭素鋼をこのように処理して得られ
る“パーライト粒を主体とした鋼材”において、パーラ
イトコロニーの平均コロニー径が5μm以下になると、
鋼材の諸特性(特に加工性)が従来の知見からは予想さ
れなかった程に大幅な向上を見せる。
(E) Moreover, in the “steel material mainly composed of pearlite grains” obtained by treating high-carbon steel in this way, when the average colony diameter of pearlite colonies becomes 5 μm or less,
Various properties (especially workability) of the steel material show a remarkable improvement that was not expected from conventional knowledge.

この発明は、上記知見等に基づいてなされたもので、
「従来存在しなかったところの、極めて優れた加工性を
有する“パーライトコロニーの平均コロニー径が5μm
以下のパーライト粒を主体とした組織からなる超微細粒
パーライト鋼材を実現した点」に大きな特徴を有してい
る。
The present invention has been made based on the above findings and the like,
"It has extremely excellent processability, which has not been heretofore existed."
It has realized a very fine grain pearlite steel material having the following structure mainly composed of pearlite grains ".

なお、ここで言う「パーライトコロニー」とは、パー
ライト組織においてフェライト板(層)とセメンタイト
板(層)とが同一方向に平行に並んでいる領域と定義さ
れるものであり、「パーライトコロニー径」とは上記領
域を粒とみなしたときの粒直径を指す。また、「パーラ
イト粒を主体とした組織」とは組織中にパーライトが50
%以上含まれているものを言い、鋼材組織中においてパ
ーライトの占める比率が50%に達するとその鋼材の特性
は殆んどパーライトの特性に支配されるようになる。
Here, the term “pearlite colony” is defined as a region in which a ferrite plate (layer) and a cementite plate (layer) are arranged in parallel in the same direction in a pearlite structure, and “pearlite colony diameter”. Means a grain diameter when the above-mentioned region is regarded as a grain. In addition, “a structure mainly composed of pearlite grains” means that the structure contains 50% pearlite.
%, And when the percentage of pearlite in the steel structure reaches 50%, the characteristics of the steel material are almost dominated by the characteristics of pearlite.

また、本発明に係る鋼材の成分組成は、パーライトを
主体とする組織の得られるものであれば格別に制限され
るものではなく、共析変態によってパーライトが生成す
る炭素量範囲の成分、更にそれらに3wt%までのSiとAl,
18wt%までのMn,30wt%までのCr或いは必要に応じた量
のNiやMoを含む成分組成、また更にはこれらの合金鋼組
成のものにB,Ca,V,Nb,Ti,Zr,W,Ta等の1種以上の元素を
添加した成分組成であっても良いことは言うまでもな
い。勿論、目的に応じてLa,Ce等の希土類元素やS,Pb,Bi
及びSeを始めとする快削元素を添加した成分組成も対象
となるものである。
Further, the component composition of the steel material according to the present invention is not particularly limited as long as a structure mainly composed of pearlite can be obtained, and the components in the carbon content range in which pearlite is formed by eutectoid transformation, and further, Up to 3 wt% Si and Al,
B, Ca, V, Nb, Ti, Zr, W containing up to 18 wt% of Mn, up to 30 wt% of Cr, or Ni or Mo in necessary amounts, or even these alloy steel compositions Needless to say, the composition may be a composition in which one or more elements such as Ta and the like are added. Of course, depending on the purpose, rare earth elements such as La and Ce and S, Pb, Bi
In addition, the composition of components to which free-cutting elements including Se and Se are added is also an object.

次に、本発明の鋼材においてパーライトコロニーの平
均コロニー径を5μm以下とした理由、並びに本発明鋼
材の製造手段を説明する。
Next, the reason why the average colony diameter of the pearlite colony in the steel material of the present invention is set to 5 μm or less, and the means for producing the steel material of the present invention will be described.

〈作用〉 これまでも、パーライトコロニー径が微細化すると鋼
材の加工性が向上するとの報告は見られたが{“材料と
プロセス"Vol.2(1989),No.3,第896頁}、コロニー径
が10μm前後で加工特性は飽和する傾向が認められてお
り、5μm以下の微細コロニーでの特性変化は全く未知
であった。ところが、新規手段によって実現された微細
パーライトコロニー鋼材の検討により、該コロニー径が
5μm以下のパーライト鋼材ではコロニー径5μmを上
回るものに比べて加工性が予想を超えて飛躍的に向上
し、特に2μm以下になるとその向上効果は極めて顕著
となることが見出された。このため、パーライトが鋼材
組織の50%以上を占めて鋼材の性質を支配するところの
本発明パーライト鋼材では、パーライトコロニーの平均
コロニー径を5μm以下と限定したが、できれば2μm
以下であることが好ましい。
<Effects> There have been reports that the workability of steel materials improves when the pearlite colony diameter is reduced, but “Materials and Processes” Vol.2 (1989), No. 3, p. 896}, When the colony diameter was around 10 μm, the processing characteristics tended to be saturated, and the change in characteristics in a fine colony of 5 μm or less was completely unknown. However, according to the study of fine pearlite colony steel material realized by the new means, the workability of the pearlite steel material having a colony diameter of 5 μm or less is unexpectedly improved as compared with the pearlite steel material having a colony diameter of more than 5 μm, and is particularly improved by 2 μm It has been found that the improvement effect becomes extremely remarkable below. For this reason, in the pearlite steel material of the present invention in which pearlite accounts for 50% or more of the steel structure and controls the properties of the steel material, the average colony diameter of the pearlite colonies is limited to 5 μm or less, but preferably 2 μm.
The following is preferred.

ところで、本発明に係る鋼材は次のような製造手段に
よって実現される。即ち、素材鋼を少なくとも一部が低
温相(パーライト等)から成る組織状態としておき、こ
れに塑性加工を加えつつ変態点(Ac1点)以上の温度域
に昇温するか、この昇温に続いてAe1点以上の温度域に
一定時間保持して低温相から成る組織の一部又は全部を
一旦オーステナイトに逆変態させて超微細オーステナイ
ト粒を出現させ、その後冷却する手段である。
Incidentally, the steel material according to the present invention is realized by the following manufacturing means. That is, the material steel is at least partially made into a microstructure state composed of a low-temperature phase (such as pearlite), and the temperature is raised to a temperature above the transformation point (Ac 1 point) while being subjected to plastic working, or Subsequently, Ae is a means for maintaining a temperature region of at least one point for a certain period of time and temporarily transforming part or all of the structure composed of the low-temperature phase back to austenite to produce ultrafine austenite grains, and then cooling.

上記逆変態時に加えられる塑性加工方法としては、既
知の板圧延機,シームレス鋼管の各種圧延機,穿孔機,
条鋼・線材等のための孔型圧延機の他、周知のハンマ
ー,スエージャー,ストレッチ・レデューサー,ストレ
ッチャー,ねじり加工機,押出し機,引抜機等を使用す
ることで所要の温度域にて所要加工度の加工が行える方
法であれば何れも採用することができ、格別に制限され
るものではない。
As the plastic working method applied at the time of the above reverse transformation, known plate rolling mills, various rolling mills for seamless steel pipes, punching machines,
Required processing at required temperature range by using well-known hammers, swagers, stretch reducers, stretchers, twisting machines, extruders, drawing machines, etc., in addition to hole rolling mills for strip steel and wire rods. Any method can be adopted as long as the method can perform the processing of the degree, and there is no particular limitation.

なお、該塑性加工の歪量は次の三つの作用を生起させ
る点で重要である。一つは、低温相を加工することによ
り加工硬化した低温相から非常に微細なオーステナイト
の結晶粒が加工により誘起されて生成する作用であり、
二つ目は、低温相がオーステナイトに変態する変態点に
まで被加工材の温度を上昇させるための加工発熱を発生
する作用であり、三つ目は、生成した微細なオーステナ
イトの結晶を加工硬化させて、その後のパーライト組織
生成に際して更に微細なパーライトコロニーを加工誘起
変態生成させる作用である。このような観点から、該塑
性加工の歪量は20%以上、好ましくは50%以上とするの
が良い。
The amount of strain in the plastic working is important in that the following three actions occur. One is the effect that extremely fine austenite crystal grains are induced by processing from the low-temperature phase hardened by processing the low-temperature phase,
The second is the action of generating the heat generated during processing to raise the temperature of the workpiece to the transformation point where the low-temperature phase transforms to austenite.The third is work hardening of the fine austenite crystals that have been generated. This is the effect of forming a finer pearlite colony during the subsequent formation of a pearlite structure. From such a viewpoint, the amount of strain in the plastic working is preferably 20% or more, and more preferably 50% or more.

被加工鋼材の昇温温度は、低温相がオーステナイトに
逆変態する温度、即ちAc1点以上にまで上昇することが
必須である。勿論、Ac1点以上の温度域であってもその
温度がAc3点未満であると低温相とオーステナイトの二
相混合組織になるが、温度上昇させながら塑性加工を加
える方法によればAc3点未満の温度域であっても結晶粒
は加工と再結晶によって十分に微細化している。しかし
ながら、「低温相を加工することにより、加工硬化した
低温相組織から非常に微細なオーステナイトの結晶粒が
加工により誘起されて生成する」という特徴的な作用・
効果を十分に発揮させるためには、できればAc3点以上
にまで昇温することが望ましい。もっとも、製品によっ
ては低温相とオーステナイトとの二相組織にする必要が
あるものもあり、このような製品に対しては昇温温度を
Ac3点未満の温度域で留めておくことが必要であること
は言うまでもない。
It is essential that the temperature of the steel material to be processed rises to a temperature at which the low-temperature phase reversely transforms to austenite, that is, to the Ac 1 point or more. Of course, Ac although even one point or more temperature range that temperature becomes a two-phase mixed structure of low-temperature phase and austenite to be Ac less than 3 points, Ac 3 according to the method of applying the plastic working while the temperature rise Even in the temperature range below the point, the crystal grains are sufficiently refined by processing and recrystallization. However, the characteristic action of "working the low-temperature phase produces extremely fine austenite crystal grains from the work-hardened low-temperature phase structure induced by the processing."
In order to exert the effect sufficiently, it is desirable to raise the temperature to the Ac 3 point or more if possible. However, some products require a two-phase structure consisting of a low-temperature phase and austenite.
Needless to say, it is necessary to keep the temperature within the temperature range of less than Ac 3 points.

低温相からオーステナイト相へ逆変態させる際に塑性
加工を加えながら昇温するのは、先にも説明したように
“低温相域での加工による低温相組織粒微細化",“加工
硬化低温相組織からの微細オーステナイト粒の加工誘起
生成”並びに“オーステナイト粒の加工による微細
化”、更には“加工硬化オーステナイト粒からの微細低
温相組織の歪誘起変態促進”を図るためである。次い
で、本発明を実施例に基づいてより具体的に説明する。
As described above, the reason for raising the temperature while performing plastic working during the reverse transformation from the low-temperature phase to the austenite phase is as follows. This is for the purpose of "work-induced generation of fine austenite grains from the structure" and "refinement by processing of austenite grains" and "strain-induced transformation of fine low-temperature phase structure from work-hardened austenite grains". Next, the present invention will be described more specifically based on examples.

〈実施例〉 第1表に示した成分組成の鋼を誘導加熱溶解炉で溶製
し、次にこれらを熱間鍛造し放冷した後、950℃に加熱
して焼準処理を施した。そして、焼準材は所要の外径に
施削加工し、以後の圧延に供して微細粒パーライト鋼材
を試作した。
<Examples> Steels having the component compositions shown in Table 1 were melted in an induction heating melting furnace, then hot forged and allowed to cool, then heated to 950 ° C and subjected to normalizing treatment. Then, the normalized material was machined to a required outer diameter and subjected to subsequent rolling to produce a fine-grained pearlite steel material.

また、溶解材の一部は均熱分解圧延で120mm角を鋼片
とし、通常の線材圧延を施して鋼材を試作した。
In addition, a part of the molten material was made into a 120 mm square piece by soaking cracking and subjected to normal wire rolling to produce a steel material as a trial.

これらの試験例を以下に示す。 The test examples are shown below.

試験例 1 まず、試験番号1では、鋼Bから成る120mm×120mm断
面の鋼片に通常の熱間圧延を施し、圧延後直ちにステル
モアコンベア上で衝風冷却した5.5mmφ直接パテンティ
ング線材に次の処理を施した。即ち、上記直接パテンテ
ィング線材を冷間伸線で3.0mmφ(伸線加工度:70%)に
し、これを高周波加熱にて950℃に急速加熱(昇温速度:
90℃/sec)した後、鉛浴中に浸漬してパテンティング処
理を施した。
Test Example 1 In Test No. 1, first, a steel piece having a cross section of 120 mm × 120 mm made of steel B was subjected to normal hot rolling, and immediately after the rolling, a 5.5 mmφ direct patenting wire, which was blast-cooled on a Stellmore conveyor, was used. Was performed. That is, the direct patenting wire is cold drawn to 3.0 mmφ (drawing degree: 70%) and rapidly heated to 950 ° C. by high frequency heating (heating rate:
(90 ° C./sec), and immersed in a lead bath to apply a patenting treatment.

試験番号2〜4では、まず30mmφに外削加工した鋼B
の棒鋼を900℃に加熱後8スタンドタンデムミルで17.0m
mφに圧延し、圧延材が放冷で600℃まで温度低下するの
を待ってから、再度高周波加熱にて700℃まで昇温した
後、10スタンドタンデムミルで5.5mmφまで90%の圧下
を加えて圧延した。この際の圧延終了温度は、試験番号
2及び3では920℃にまで、また試験番号4では915℃に
までそれぞれ変態点を超えて上昇していた。
In Test Nos. 2 to 4, first, steel B externally machined to 30 mmφ
After heating steel bar to 900 ℃, 17.0m with 8 stand tandem mill
Rolled to mφ, wait for the temperature of the rolled material to drop to 600 ° C by allowing it to cool, then raise it to 700 ° C again by high-frequency heating, and apply a 90% reduction to 5.5mmφ with a 10-stand tandem mill. Rolled. At this time, the rolling end temperature increased to 920 ° C. in Test Nos. 2 and 3, and to 915 ° C. in Test No. 4, exceeding the transformation point.

圧延後は、試験番号2では噴霧水冷、試験番号2では
室温まで放冷、そして試験番号4は室温まで強制風冷し
た。
After rolling, test No. 2 was spray-water cooled, test No. 2 was allowed to cool to room temperature, and test No. 4 was forced air cooled to room temperature.

更に、試験番号3では、室温まで放冷した5.5mmφ線
材を高周波加熱で700℃まで急速昇温した後、2.0mmφま
で10スタンドタンデムミルで圧延(圧延終了温度:910
℃)し、圧延後直ちに強制風冷した。また、試験番号4
では、試験番号3と同様にして2.0mmφまで圧延(圧延
終了温度:910℃)した後、噴霧冷却した。
Further, in Test No. 3, a 5.5 mmφ wire that had been allowed to cool to room temperature was rapidly heated to 700 ° C. by high frequency heating, and then rolled to 2.0 mmφ in a 10-stand tandem mill (rolling end temperature: 910).
° C), and immediately after the rolling, forced air cooling. Test number 4
Then, after rolling to 2.0 mmφ (rolling end temperature: 910 ° C.) in the same manner as in Test No. 3, spray cooling was performed.

続いて、このようにして得られた試験番号1〜4の線
材についてその組織を観察すると共に、機械的性質を調
べた。
Subsequently, the structure of the thus obtained wire rods of Test Nos. 1 to 4 was observed and the mechanical properties were examined.

更に、これら線材を伸線機で伸線加工し、伸線加工限
界の調査を実施した。なお、伸線加工限界は、伸線中に
断線した伸線パスの1つ前の伸線パスをもって評価し
た。即ち、伸線加工限界の加工度(伸線限界)を なる対数歪で表示して評価した。
Furthermore, these wires were drawn by a wire drawing machine, and the limit of the drawing process was investigated. In addition, the drawing limit was evaluated using the drawing path immediately before the drawing path broken during the drawing. That is, the degree of wire drawing limit (drawing limit) The evaluation was made by displaying the logarithmic distortion.

加えて、試験番号1の処理で得られた5.5mmφ線材及
び試験番号2〜4の処理で得られた2.0mmφにつき、耐
摩耗性試験をも実施した。耐摩耗性試験は、2.0mmφの
線材についてはこれを1.9mmφの円筒にラッピング仕上
加工したものを用い、ベアリング鋼球をこすらせて、そ
の走行距離で試験片の重量減少を割った値を摩耗量(g/
cm)とした。
In addition, a wear resistance test was performed on the 5.5 mmφ wire obtained by the treatment of Test No. 1 and the 2.0 mmφ obtained by the treatments of Test Nos. 2 to 4. In the wear resistance test, for a 2.0 mmφ wire rod, this was wrapped into a 1.9 mmφ cylinder, rubbed with a bearing steel ball, and the value obtained by dividing the weight loss of the test piece by the distance traveled was used. Amount (g /
cm).

これらの試験結果を第2表に併せて示す。 The test results are shown in Table 2.

試験例 2 前記第1表の鋼A乃至Cの3種の鋼を使用し、試験例
1における試験番号3と同様の履歴を経させて5.5mmφ
の線材とした後、該線材を高周波加熱にて700℃まで急
速昇温し、続いて10スタンドタンデムミルでの圧延(圧
下率:86.8%)にて2.0mmφの線材とした。
Test Example 2 Using the three types of steels A to C shown in Table 1 above, the same history as Test No. 3 in Test Example 1 was passed, and 5.5 mmφ
After the wire was rapidly heated to 700 ° C. by high-frequency heating, it was rolled with a 10-stand tandem mill (reduction ratio: 86.8%) to obtain a 2.0 mmφ wire.

この時の圧延終了温度は、試験番号5及び6では915
℃に、そして試験番号7では910℃となり、共に変態点
以上にまで上昇した。
The rolling end temperature at this time was 915 in Test Nos. 5 and 6.
° C and 910 ° C in Test No. 7, both rising to above the transformation point.

2.0mmφ圧延後の冷却は、試験番号5及び6では噴霧
冷却、試験番号7では強制風冷とした。
The cooling after the 2.0 mmφ rolling was spray cooling in Test Nos. 5 and 6, and forced air cooling in Test No. 7.

このようにして得られた試験番号5〜7での線材につ
いて、その組織と機械的性質を調べると共に、伸線限界
及び耐摩耗性をも調査し、その結果を試作条件と共に第
3表に示した。
With respect to the wires obtained in Test Nos. 5 to 7 obtained in this way, the structure and mechanical properties were examined, and the drawing limit and wear resistance were also examined. The results are shown in Table 3 together with the trial production conditions. Was.

なお、伸線限界並びに耐摩耗性の調査は試験例1にお
けると同様に実施した。
The drawing limit and wear resistance were examined in the same manner as in Test Example 1.

前記第2表及び第3表に示される結果からも次のこと
が確認できる。
The following can also be confirmed from the results shown in Tables 2 and 3.

即ち、鋼Bのように100%パーライト組織になる鋼で
あって、試験番号2〜4で得られるようなパーライトコ
ロニー径が5μm以下の鋼材では、試験番号1における
従来鋼材に比べて強度及び延性が大幅に優れており、特
に伸線限界の向上が顕著であることが明らかである。ま
た、その特性はパーライトコロニー径が2μm以下,1μ
m以下となるにつれて大幅に向上しており、超微細パー
ライト鋼の加工性が従来の知見を遥かに超えたもので あることが分かる。
That is, a steel having a 100% pearlite structure like steel B and having a pearlite colony diameter of 5 μm or less as obtained in Test Nos. 2 to 4 has strength and ductility as compared with the conventional steel in Test No. 1. Is remarkably excellent, and it is apparent that the improvement of the wire drawing limit is particularly remarkable. The characteristics are as follows: the pearlite colony diameter is 2 μm or less, 1 μm
m, the workability of ultra-fine pearlite steel far exceeds the conventional knowledge. You can see that there is.

更に、試験番号5〜7の結果に見られるように、パー
ライトコロニー径が5μm以下に微細化されると、パー
ライト量が60%程度の鋼Aから過共析の鋼Cまで、炭素
鋼,合金鋼共に優れた特性向上効果を確保できることも
明らかである。
Furthermore, as can be seen from the results of Test Nos. 5 to 7, when the pearlite colony diameter was reduced to 5 μm or less, carbon steel, alloys from steel A having a pearlite amount of about 60% to hypereutectoid steel C were obtained. It is also clear that both steels can have excellent properties-improving effects.

ところで、第2表及び第3表には、得られた鋼材の耐
摩耗性試験結果も示したが、従来の共析鋼が3.7×10-6g
/cmの値であるのに対して、本発明に係る微細パーライ
ト鋼では1×10-6g/cm以下となり、特にパーライトコロ
ニー径が1μm以下になると従来鋼の約1/10に減少して
いることが確認でき、こうしたパーライト組織微細化に
よる特性向上効果は単に加工性のみに止まらないことも
明らかである。
By the way, Tables 2 and 3 also show the results of the wear resistance test of the obtained steel material, but the conventional eutectoid steel was 3.7 × 10 −6 g.
/ cm, whereas the fine pearlite steel according to the present invention has a value of 1 × 10 −6 g / cm or less, and especially when the pearlite colony diameter is 1 μm or less, it is reduced to about 1/10 of the conventional steel. It is clear that the effect of improving the properties by the refinement of the pearlite structure is not limited to the workability.

〈効果の総括〉 以上に説明した如く、この発明によれば、従来技術で
は実際上実現することが出来なかった超微細粒パーライ
ト鋼材を提供することができ、加工性を始めとしてこれ
までにない優れた諸特性を有する鋼材を安定供給するこ
とが可能となるなど、産業上極めて有用な効果がもたら
される。
<Summary of Effects> As described above, according to the present invention, it is possible to provide an ultra-fine grained pearlite steel material that could not be actually realized by the conventional technology, and it has never before been possible including workability. Industrially extremely useful effects such as a stable supply of steel having excellent various properties can be obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パーライトコロニーの平均ロロニー径が5
μm以下のパーライト粒を主体とした組織からなること
を特徴とする、加工性に富んだ微細粒パーライト鋼材。
1. The pearlite colony having an average rolony diameter of 5
A fine-grained pearlite steel material having excellent workability, characterized by having a structure mainly composed of pearlite grains of μm or less.
JP12625489A 1988-12-05 1989-05-19 Fine grain pearlite steel Expired - Lifetime JP2833004B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP12625489A JP2833004B2 (en) 1989-05-19 1989-05-19 Fine grain pearlite steel
CA002004548A CA2004548C (en) 1988-12-05 1989-12-04 Metallic material having ultra-fine grain structure and method for its manufacture
KR1019890017936A KR930010321B1 (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
AU45924/89A AU615360B2 (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
EP89122371A EP0372465B1 (en) 1988-12-05 1989-12-05 Method for manufacture of a metallic material having ultrafine grain structure
DE68922075T DE68922075T2 (en) 1988-12-05 1989-12-05 Process for the production of a metallic material with an ultrafine grain structure.
US07/446,457 US5080727A (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
ES89122371T ES2073422T3 (en) 1988-12-05 1989-12-05 METHOD TO MANUFACTURE A METALLIC MATERIAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12625489A JP2833004B2 (en) 1989-05-19 1989-05-19 Fine grain pearlite steel

Publications (2)

Publication Number Publication Date
JPH02305937A JPH02305937A (en) 1990-12-19
JP2833004B2 true JP2833004B2 (en) 1998-12-09

Family

ID=14930622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12625489A Expired - Lifetime JP2833004B2 (en) 1988-12-05 1989-05-19 Fine grain pearlite steel

Country Status (1)

Country Link
JP (1) JP2833004B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050386B2 (en) * 2006-03-31 2012-10-17 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof
JP6104163B2 (en) * 2010-09-16 2017-03-29 ポスコPosco High carbon hot-rolled steel sheet, cold-rolled steel sheet and method for producing the same
KR101262462B1 (en) * 2010-11-19 2013-05-08 주식회사 포스코 Non heat treatment cold drawn wire rod having excellent impact property and method for manufacturing the same
JP6354481B2 (en) * 2014-09-12 2018-07-11 新日鐵住金株式会社 Steel wire and method for manufacturing steel wire
JP6394319B2 (en) * 2014-11-21 2018-09-26 新日鐵住金株式会社 Hot forging
JP6497156B2 (en) * 2015-03-24 2019-04-10 新日鐵住金株式会社 Steel wire with excellent conductivity
US10975452B2 (en) * 2016-05-20 2021-04-13 Nippon Steel Corporation Hot forged product

Also Published As

Publication number Publication date
JPH02305937A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
EP0372465B1 (en) Method for manufacture of a metallic material having ultrafine grain structure
JP3506033B2 (en) Method of manufacturing hot-rolled steel bars or wires
JP2833004B2 (en) Fine grain pearlite steel
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JP3252905B2 (en) Fine grain martensitic steel
JP2808675B2 (en) Fine grain bainite steel
JPH02301540A (en) Fine grained ferrite steel
JP2591234B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
CN107779783B (en) Low-carbon low-alloy high-strength plastic steel and preparation method thereof
JP2576254B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JPH08246049A (en) Production of steel material composed of superfine structure
JPS6220824A (en) Production of extra fine wire
JP2913115B2 (en) Manufacturing method of steel bars with ultrafine structure
JPH0213004B2 (en)
JPH02274810A (en) Production of high tensile untempered bolt
JPH0414167B2 (en)
JPH0375309A (en) Production of steel material having superfine structure
JPS6220820A (en) Cold working method
JPS60238419A (en) Manufacture of steel rod or wire and products thereby
JPH02301516A (en) Production of hot working steel stock having superfine structure
CN114855098A (en) High-strength medium manganese steel for engineering machinery and preparation method thereof
JPS5942055B2 (en) Manufacturing method for high-tensile steel wires and steel bars
JPH02301515A (en) Method for refining high-temperature phase structure of metallic material
JP4581066B2 (en) Ultrafine ferritic steel and its manufacturing method
JPH0772294B2 (en) High strength and high ductility wire drawing method