JP2590690B2 - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JP2590690B2 JP2590690B2 JP5168606A JP16860693A JP2590690B2 JP 2590690 B2 JP2590690 B2 JP 2590690B2 JP 5168606 A JP5168606 A JP 5168606A JP 16860693 A JP16860693 A JP 16860693A JP 2590690 B2 JP2590690 B2 JP 2590690B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- layer
- semiconductor device
- silicon layer
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Element Separation (AREA)
- Light Receiving Elements (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はSOI基板を用いた半導
体装置に関し、特にフォトダイオードに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using an SOI substrate, and more particularly to a photodiode.
【0002】[0002]
【従来の技術】従来のフォトダイオード半導体装置は、
図2に示すように、多結晶シリコン21を支持体とし
て、ダイオード素子1つ1つを絶縁分離する酸化膜22
で単結晶シリコン層1を取り囲んだ誘電体分離構造を有
している。これはダイオード素子を直列に直接し、高い
起電力を得るため、ダイオード素子領域1つ1つを分離
する必要があるためである。この従来の誘電体分離構造
は、400μm程度の厚い多結晶シリコンを有している
ため、コストが高くなる、基板の反りが大きくなるなど
の問題があった。2. Description of the Related Art A conventional photodiode semiconductor device is:
As shown in FIG. 2, an oxide film 22 for insulating and separating each diode element by using polycrystalline silicon 21 as a support.
And has a dielectric isolation structure surrounding the single crystal silicon layer 1. This is because it is necessary to separate each diode element region in order to directly connect the diode elements in series and obtain a high electromotive force. Since this conventional dielectric isolation structure has polycrystalline silicon having a thickness of about 400 μm, there are problems such as an increase in cost and an increase in substrate warpage.
【0003】これらの問題を解決するために、図3に示
すような特開平3−180070号や特開平3−136
346号などによるSOI基板を用いたものが、提案さ
れている。ここでフォトダイオード素子1つ1つの光電
流を高めるために、光結合するキャリアの総量を多くす
る必要があり、各フォトダイオード素子領域のシリコン
層厚さ1を厚くすることで対応している。図2に示す誘
電体分離基板では、シリコン層1の厚さを厚くすること
は容易であるが、図3に示すSOI基板はシリコン層1
の厚さを厚くすると絶縁分離領域3及び4の形成が困難
になるため、シリコン層1厚さを薄くしても、起電力を
高めることができるように、特開昭63−132460
号に示されるように、シリコン層1と絶縁膜31との界
面に高不純物濃度層2を設けていた。In order to solve these problems, Japanese Patent Application Laid-Open Nos. 3-180070 and 3-136 shown in FIG.
No. 346 using an SOI substrate has been proposed. Here, in order to increase the photocurrent of each photodiode element, it is necessary to increase the total amount of carriers to be optically coupled. This is dealt with by increasing the silicon layer thickness 1 in each photodiode element region. In the dielectric isolation substrate shown in FIG. 2, it is easy to increase the thickness of the silicon layer 1, but the SOI substrate shown in FIG.
When the thickness of the silicon layer 1 is increased, it becomes difficult to form the insulating isolation regions 3 and 4. Therefore, even if the thickness of the silicon layer 1 is reduced, the electromotive force can be increased.
As shown in the figure, the high impurity concentration layer 2 was provided at the interface between the silicon layer 1 and the insulating film 31.
【0004】[0004]
【発明が解決しようとする課題】この従来のSOI基板
では、シリコン層が薄いため、絶縁膜を光が透過しやす
く、起電効率を高めるために高不純物濃度層を形成して
も、あまり起電効率が上らないという問題があった。In this conventional SOI substrate, since the silicon layer is thin, light is easily transmitted through the insulating film. There was a problem that power efficiency did not increase.
【0005】[0005]
【課題を解決するための手段】本発明は、単結晶シリコ
ン基板と、前記単結晶シリコン基板の一表面上に設けら
れた複合絶縁膜と、前記複合絶縁膜上に設けられた単結
晶シリコン層と、側面を接して設けられた絶縁膜と、前
記絶縁膜間を充填する多結晶シリコン層とを有し、前記
複合絶縁膜は少なくとも下層、中間層、上層からなる積
層構造であり、下層および上層の厚さは中間層より厚い
ことを特徴とする半導体装置である。また、本発明は、
上記の半導体装置において、複合絶縁膜が、2種類以上
の異なる材質の絶縁膜で構成されることを特徴とするも
のである。The present invention provides a single crystal silicon substrate, a composite insulating film provided on one surface of the single crystal silicon substrate, and a single crystal silicon layer provided on the composite insulating film. And an insulating film provided in contact with the side surface, and a polycrystalline silicon layer filling the space between the insulating films, wherein the composite insulating film has a laminated structure including at least a lower layer, an intermediate layer, and an upper layer. The semiconductor device is characterized in that the upper layer is thicker than the intermediate layer. Also, the present invention
In the above semiconductor device, the composite insulating film is formed of two or more kinds of insulating films of different materials.
【0006】[0006]
【作用】本発明においては、SOI基板を用いた半導体
装置は、フォトダイオードを形成するシリコン層と、各
ダイオードを分離する絶縁領域と、光反射効率を高める
複合絶縁膜と、シリコン層底部に設けられた高濃度不純
物層と、支持基板となるシリコン基板とを備えており、
シリコン層の表面上から光を受け、シリコン層(シリコ
ン単結晶領域)を透過してP−N接合境界付近で吸収さ
れた光エネルギーは光電流となり、残りの光エネルギー
は透過して複合絶縁膜に到達する。複合絶縁膜は、光エ
ネルギーを高効率で反射し、再びP−N接合に達して、
光電流に変換されるという作用をするものである。According to the present invention, a semiconductor device using an SOI substrate includes a silicon layer forming a photodiode, an insulating region separating each diode, a composite insulating film for improving light reflection efficiency, and a silicon layer provided at the bottom of the silicon layer. High-concentration impurity layer, and a silicon substrate serving as a support substrate,
Light energy is received from the surface of the silicon layer, the light energy transmitted through the silicon layer (silicon single crystal region) and absorbed near the PN junction boundary becomes a photocurrent, and the remaining light energy is transmitted and the composite insulating film is transmitted. To reach. The composite insulating film reflects light energy with high efficiency, reaches the PN junction again,
It has a function of being converted into a photocurrent.
【0007】[0007]
【実施例】次に本発明の実施例について、図面を参照し
て説明する。図1は、本発明の一実施例の半導体装置の
断面図である。支持体となる単結晶基板5上に絶縁酸化
膜6及び8と窒化膜7で形成された複合絶縁膜上に、フ
ォトダイオードを形成するシリコン単結晶領域1及び高
濃度不純物層2が形成されており、各光フォトダイオー
ド素子は、絶縁酸化膜4と、多結晶シリコン層3とで絶
縁されている。シリコン単結晶領域1上には、アーノー
ド11、カソード12を有するフォトダイオードが形成
され、アルミ電極13で各フォトダイオードは直列に接
続されている。シリコン単結晶領域1の表面上から光を
受け、シリコン層を透過してP−N接合境界付近で吸収
された光エネルギーは、光電流となり、残りの光エネル
ギーは透過して複合絶縁膜に到達する。複合絶縁膜は、
光エネルギーを高効率で反射し、再びP−N接合に達し
て、光電流に変換される。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device according to one embodiment of the present invention. A silicon single crystal region 1 and a high-concentration impurity layer 2 forming a photodiode are formed on a composite insulating film formed of insulating oxide films 6 and 8 and a nitride film 7 on a single crystal substrate 5 serving as a support. Each of the photodiode elements is insulated by the insulating oxide film 4 and the polycrystalline silicon layer 3. A photodiode having an arnode 11 and a cathode 12 is formed on the silicon single crystal region 1, and the photodiodes are connected in series by an aluminum electrode 13. Light energy received from the surface of the silicon single crystal region 1 and transmitted through the silicon layer and absorbed near the PN junction boundary becomes a photocurrent, and the remaining light energy is transmitted and reaches the composite insulating film. I do. The composite insulating film is
The light energy is reflected with high efficiency, reaches the PN junction again, and is converted into a photocurrent.
【0008】複合絶縁膜は、光エネルギーを効率的に反
射するために、絶縁酸化膜6〜8の材質、厚さを入射光
の波長合わせ変更を行う。例えば、第1の実施例におい
ては絶縁酸化膜6及び8の膜厚を1.0μm、絶縁膜7
は、シリコン窒化膜0.1μmを用い、第2の実施例で
は、絶縁酸化膜6及び8は2.0μmを用い、絶縁膜7
を多結晶シリコン膜0.1μmを用いるなどである。第
2の実施例は第1の実施例と構造は同じでものである。In the composite insulating film, the material and thickness of the insulating oxide films 6 to 8 are changed so as to adjust the wavelength of incident light in order to efficiently reflect light energy. For example, in the first embodiment, the thickness of the insulating oxide films 6 and 8 is 1.0 μm,
Uses a silicon nitride film of 0.1 μm. In the second embodiment, the insulating oxide films 6 and 8 use 2.0 μm.
Using a polycrystalline silicon film of 0.1 μm. The structure of the second embodiment is the same as that of the first embodiment.
【0009】[0009]
【発明の効果】以上説明したように、本発明は、絶縁分
離膜を異なった屈折率を持った材質のものを組み合わせ
て複合化し構成することにより、入射光の反射効率を高
めて光エネルギーを再吸収させ、エネルギー変換効率を
向上させることができる。As described above, the present invention enhances the reflection efficiency of incident light and reduces the light energy by combining and configuring the insulating separation film by combining materials having different refractive indexes. It can be re-absorbed and the energy conversion efficiency can be improved.
【図1】本発明の一実施例の断面図FIG. 1 is a cross-sectional view of one embodiment of the present invention.
【図2】従来の誘電体分離基板の半導体装置の断面図FIG. 2 is a cross-sectional view of a conventional semiconductor device having a dielectric isolation substrate.
【図3】従来のSOI基板の半導体装置の断面図FIG. 3 is a cross-sectional view of a conventional semiconductor device having an SOI substrate.
1 単結晶シリコン層 2 高濃度不純物層 3 多結晶シリコン層 4 絶縁酸化膜 5 単結晶シリコン基板 6 絶縁酸化膜 7 絶縁膜 8 絶縁酸化膜 11 アノード 12 カソード 13 アルミ電極 21 多結晶シリコン層 22 絶縁酸化膜 31 絶縁酸化膜 DESCRIPTION OF SYMBOLS 1 Single crystal silicon layer 2 High concentration impurity layer 3 Polycrystalline silicon layer 4 Insulating oxide film 5 Single crystal silicon substrate 6 Insulating oxide film 7 Insulating film 8 Insulating oxide film 11 Anode 12 Cathode 13 Aluminum electrode 21 Polycrystalline silicon layer 22 Insulating oxidation Film 31 Insulating oxide film
Claims (2)
コン基板の一表面上に設けられた複合絶縁膜と、前記複
合絶縁膜上に設けられた単結晶シリコン層と、側面を接
して設けられた絶縁膜と、前記絶縁膜間を充填する多結
晶シリコン層とを有し、前記複合絶縁膜は少なくとも下
層、中間層、上層からなる積層構造であり、下層および
上層の厚さは中間層より厚いことを特徴とする半導体装
置。1. A single-crystal silicon substrate, a composite insulating film provided on one surface of the single-crystal silicon substrate, and a single-crystal silicon layer provided on the composite insulating film are provided so that side surfaces thereof are in contact with each other. Insulating film, and a polycrystalline silicon layer filling between the insulating films, the composite insulating film has a laminated structure of at least a lower layer, an intermediate layer, an upper layer, the thickness of the lower layer and the upper layer is larger than that of the intermediate layer A semiconductor device characterized by being thick.
の絶縁膜で構成されることを特徴とする請求項1に記載
の半導体装置。2. The semiconductor device according to claim 1, wherein the composite insulating film is composed of two or more different types of insulating films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5168606A JP2590690B2 (en) | 1993-06-15 | 1993-06-15 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5168606A JP2590690B2 (en) | 1993-06-15 | 1993-06-15 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0774240A JPH0774240A (en) | 1995-03-17 |
JP2590690B2 true JP2590690B2 (en) | 1997-03-12 |
Family
ID=15871180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5168606A Expired - Fee Related JP2590690B2 (en) | 1993-06-15 | 1993-06-15 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2590690B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002005738A (en) * | 2000-06-23 | 2002-01-09 | Matsushita Electric Works Ltd | Illuminance sensor |
US7442629B2 (en) | 2004-09-24 | 2008-10-28 | President & Fellows Of Harvard College | Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate |
US7057256B2 (en) | 2001-05-25 | 2006-06-06 | President & Fellows Of Harvard College | Silicon-based visible and near-infrared optoelectric devices |
US7576404B2 (en) * | 2005-12-16 | 2009-08-18 | Icemos Technology Ltd. | Backlit photodiode and method of manufacturing a backlit photodiode |
JP2010041011A (en) * | 2008-08-08 | 2010-02-18 | Hamamatsu Photonics Kk | Photodetecting device |
US9673243B2 (en) | 2009-09-17 | 2017-06-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
US8692198B2 (en) | 2010-04-21 | 2014-04-08 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
WO2011160130A2 (en) | 2010-06-18 | 2011-12-22 | Sionyx, Inc | High speed photosensitive devices and associated methods |
US9496308B2 (en) | 2011-06-09 | 2016-11-15 | Sionyx, Llc | Process module for increasing the response of backside illuminated photosensitive imagers and associated methods |
US20130016203A1 (en) | 2011-07-13 | 2013-01-17 | Saylor Stephen D | Biometric imaging devices and associated methods |
US9064764B2 (en) * | 2012-03-22 | 2015-06-23 | Sionyx, Inc. | Pixel isolation elements, devices, and associated methods |
US9209345B2 (en) | 2013-06-29 | 2015-12-08 | Sionyx, Inc. | Shallow trench textured regions and associated methods |
KR102444733B1 (en) * | 2016-10-27 | 2022-09-16 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | Imaging devices and electronic devices |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02219252A (en) * | 1989-02-20 | 1990-08-31 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1993
- 1993-06-15 JP JP5168606A patent/JP2590690B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0774240A (en) | 1995-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2590690B2 (en) | Semiconductor device | |
JP3717104B2 (en) | Photo detector with built-in circuit | |
US6458619B1 (en) | Process for producing an isolated planar high speed pin photodiode with improved capacitance | |
US5991487A (en) | Silicon-based semiconductor photodetector with an improved thin optical waveguide layer | |
WO1999040616A1 (en) | A planar dielectrically isolated high speed pin photodiode and process for producing same | |
US6303967B1 (en) | Process for producing an isolated planar high speed pin photodiode | |
JP2003158291A (en) | Semiconductor device with built-in light-receiving element and method for manufacturing the same | |
US20080272418A1 (en) | Semiconductor component comprising a buried mirror | |
CN117766460A (en) | Germanium wafer on sapphire and manufacturing method thereof, array chip and manufacturing method thereof | |
JPS63276279A (en) | Semiconductor device | |
US6043426A (en) | Thermophotovoltaic energy conversion system having a heavily doped n-type region | |
JPS6322474B2 (en) | ||
CN113363275B (en) | Hybrid imaging structure | |
JP2007103591A (en) | Cmos image sensor | |
JP2004095669A (en) | Photoelectric conversion element | |
JPH10117005A (en) | Solar battery | |
JP2005005376A (en) | Photovoltaic device | |
JPS6117155B2 (en) | ||
JPH07302890A (en) | Light receiving element, and photocoupler using the light receiving element, and light insulation type solid relay | |
JP2001077400A (en) | Semiconductor photo-device | |
JPS6095980A (en) | Photoelectric conversion device | |
JPH10223878A (en) | Semiconductor device | |
JPH07335920A (en) | Photovoltaic element | |
JP3295725B2 (en) | Photoelectric conversion element | |
CN118588781A (en) | Germanium-based sensor structure, manufacturing method thereof and wafer bonding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |