JPS6117155B2 - - Google Patents

Info

Publication number
JPS6117155B2
JPS6117155B2 JP55162469A JP16246980A JPS6117155B2 JP S6117155 B2 JPS6117155 B2 JP S6117155B2 JP 55162469 A JP55162469 A JP 55162469A JP 16246980 A JP16246980 A JP 16246980A JP S6117155 B2 JPS6117155 B2 JP S6117155B2
Authority
JP
Japan
Prior art keywords
solar cell
gaas
type
layer
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55162469A
Other languages
Japanese (ja)
Other versions
JPS5785270A (en
Inventor
Kotaro Mitsui
Susumu Yoshida
Takao Oda
Yoshinori Yukimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55162469A priority Critical patent/JPS5785270A/en
Publication of JPS5785270A publication Critical patent/JPS5785270A/en
Publication of JPS6117155B2 publication Critical patent/JPS6117155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は、光エネルギーを電気エネルギーに
変換する太陽電池、特に人工衛星の電源等として
宇宙空間において使用するに適した太陽電池の構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell that converts light energy into electrical energy, and particularly to a structure of a solar cell suitable for use in outer space as a power source for an artificial satellite.

このような宇由用太陽電池としては、現在主と
してシリコン太陽電池が用いられている。しか
し、人工衛生等での使用に際しては、限られた領
域内でより多くの電力を得るために、高い変換効
率をもつた太陽電池が要求される。さらに、宇宙
空間においては放射線が降りそそいでいるので、
放射線損傷により特性が劣化しないことが要求さ
れる。このような要求に対して、現在最も高い変
換効率を有し、耐放射線性にも優れている砒化ガ
リウム(GaAs)太陽電池が注目されている。
Currently, silicon solar cells are mainly used as such solar cells. However, when used in artificial hygiene and the like, solar cells with high conversion efficiency are required in order to obtain more power within a limited area. Furthermore, since radiation is pouring down in outer space,
It is required that the characteristics do not deteriorate due to radiation damage. In response to these demands, gallium arsenide (GaAs) solar cells, which currently have the highest conversion efficiency and excellent radiation resistance, are attracting attention.

GaAs太陽電池の従来例を第1図、第2図に示
す。第1図は平面図であり、第2図は第1図の
−線における断面図である。従来の太陽電池で
は、n形GaAs基板1上にp形GaAs層2を形成
し、これにより両者間にp−n接合面3が形成さ
れており、さらにp形GaAs層2上にp形
GaAlAs層4が形成されている。また、n形電極
5はn形GaAs基板1の裏面に形成され、p形電
極6はp形GaAlAs層4の表面に部分的に形成さ
れている。そしてp形GaAlAs層4の表面には、
反射防止膜7が形成されている。
Conventional examples of GaAs solar cells are shown in FIGS. 1 and 2. FIG. 1 is a plan view, and FIG. 2 is a sectional view taken along the - line in FIG. 1. In a conventional solar cell, a p-type GaAs layer 2 is formed on an n-type GaAs substrate 1, thereby forming a p-n junction surface 3 between the two, and a p-type layer 2 is formed on the p-type GaAs layer 2.
A GaAlAs layer 4 is formed. Further, the n-type electrode 5 is formed on the back surface of the n-type GaAs substrate 1, and the p-type electrode 6 is partially formed on the surface of the p-type GaAlAs layer 4. And on the surface of the p-type GaAlAs layer 4,
An antireflection film 7 is formed.

このような構造のGaAs太陽電池11において
は、光電流発生に有効な光キヤリヤは、ほとんど
p形GaAs層2内で発生する。また、該p形GaAs
層2上にはp形GaAlAs層4が設けられているた
め、発生した光キヤリアのp形GaAs層2表面で
の再結合による損失をかなり防ぐことができ、高
効率の太陽電池が実現されている。さらに、空乏
層領域及びn形GaAs層1内のp−n接合面3か
らホールの拡散長さ程度の距離までの領域内で発
生した光キヤリアも光電流発生に寄与することが
できる。これより奥深いn形GaAs層1内で発生
する光キヤリアは非常にわずかであり、このよう
な光キヤリアはp−n接合面3に達することはな
く、光電流発生には寄与しない。また、p形
GaAlAs層4内で発生する光キヤリアは、表面再
結合により光電流発生には寄与できないので、こ
の層4内での光の吸収はできるだけ少なくするべ
きであり、そのためこの層4の厚みは1μm以下
と薄くされている。通常、p形GaAs層2の厚み
は数μm以下、空乏層の厚みは1μm以下、n形
GaAs層1中のホールの拡散長さは数μm以下で
あり、有効受光領域はp形GaAlAs層4とp形
GaAs層2の界面から10μm程度、深くても20μ
m以下と極めて薄い。このため、表面から10〜20
μm以下の所で生じる放射線照射による損傷は変
換効率には影響せず、表面から200〜300μmの有
効受光領域を有するシリコン太陽電池に比べて、
GaAs太陽電池は耐放射線性に優れていると言え
る。
In the GaAs solar cell 11 having such a structure, most of the optical carriers effective for photocurrent generation are generated within the p-type GaAs layer 2. In addition, the p-type GaAs
Since the p-type GaAlAs layer 4 is provided on the layer 2, loss due to recombination of generated optical carriers on the surface of the p-type GaAs layer 2 can be significantly prevented, and a highly efficient solar cell can be realized. There is. Furthermore, optical carriers generated within the depletion layer region and the region within the n-type GaAs layer 1 from the p-n junction surface 3 to a distance approximately equal to the hole diffusion length can also contribute to photocurrent generation. Very few optical carriers are generated in the n-type GaAs layer 1 deeper than this, and such optical carriers do not reach the pn junction surface 3 and do not contribute to photocurrent generation. Also, p-type
Since the optical carriers generated within the GaAlAs layer 4 cannot contribute to photocurrent generation due to surface recombination, the absorption of light within this layer 4 should be minimized, and therefore the thickness of this layer 4 should be 1 μm or less. It is thinned out. Usually, the p-type GaAs layer 2 has a thickness of several μm or less, the depletion layer has a thickness of 1 μm or less, and the n-type
The diffusion length of holes in the GaAs layer 1 is several μm or less, and the effective light receiving area is the p-type GaAlAs layer 4 and the p-type
About 10μm from the interface of GaAs layer 2, at least 20μm deep
Extremely thin, less than m. For this reason, 10 to 20
Damage caused by radiation irradiation that occurs below µm does not affect the conversion efficiency, and compared to silicon solar cells, which have an effective light-receiving area of 200 to 300 µm from the surface,
It can be said that GaAs solar cells have excellent radiation resistance.

このようにGaAs太陽電池11は、宇宙用太陽
電池として優れた特性を有しているが、GaAsは
シリコンに比して比重が大きいため、同じ寸法の
シリコン太陽電池より重くなる。これに人工衛生
打上げち際して重大な欠点となる。
As described above, the GaAs solar cell 11 has excellent characteristics as a space solar cell, but since GaAs has a higher specific gravity than silicon, it is heavier than a silicon solar cell of the same size. This is a serious drawback when launching artificial satellites.

また、GaAs太陽電池の有効受光領域は10〜20
μmであるので、この程度の厚みの太陽電池が得
られれば、重量が非常に軽減されて好ましい。し
かしながら、宇宙用太陽電池の標準寸方である2
cm×2cmの大きさの受光面に対して、上記厚みの
結晶のみを得ることは、現在の技術ではかなり困
難であり、たとえばこのような結晶が得られたと
しても非常に割れやすく、電極形成等の太陽電池
製作工程において取り扱いが極めて困難であり、
事実上、上記厚みの結晶のみより形成された太陽
電池を得ることは不可能と言つても良い。
In addition, the effective light receiving area of GaAs solar cells is 10 to 20
Since the thickness is .mu.m, if a solar cell with this thickness can be obtained, the weight will be greatly reduced, which is preferable. However, the standard size of space solar cells is 2.
With current technology, it is quite difficult to obtain a crystal with the above thickness for a light-receiving surface measuring cm x 2 cm. Even if such a crystal were obtained, it would be extremely easy to break, making it difficult to form electrodes. It is extremely difficult to handle in the solar cell manufacturing process such as
In fact, it may be said that it is impossible to obtain a solar cell formed only from crystals having the above-mentioned thickness.

この発明は、このような点に鑑みてなされたも
ので、光の入射面と反対の面に外周壁及びこれに
つながる隔壁を残すよう複数の凹陥部を設け、上
記すべての凹陥部が外周壁及び隔壁の連通路によ
り外部と連通するようにすることにより、軽量で
かつ充分な機械的強度を有し、かつ信頼性の高い
太陽電池を提供することを目的とする。
This invention has been made in view of the above points, and includes providing a plurality of recesses so as to leave the outer peripheral wall and the partition wall connected thereto on the surface opposite to the light incident surface, and all the recesses mentioned above are connected to the outer peripheral wall. It is also an object of the present invention to provide a solar cell that is lightweight, has sufficient mechanical strength, and is highly reliable, by communicating with the outside through communication passages in the partition walls.

第3図、第4図にこの発明の一実施例を示す。
第3図はこの発明による一実施例の太陽電池の裏
面を示す図であり、第4図は第3図の−線に
おける断面図である。n形GaAs基板1上のp形
GaAs層2、p−n接合面3、p形GaAlAs層
4、p形電極6及び反射防止膜7は、従来構造の
太陽電池と同様に形成されているが、n形GaAs
基板1の構造が全く異なつている。
An embodiment of the present invention is shown in FIGS. 3 and 4.
FIG. 3 is a diagram showing the back side of a solar cell according to an embodiment of the present invention, and FIG. 4 is a sectional view taken along the - line in FIG. 3. p-type on n-type GaAs substrate 1
The GaAs layer 2, the p-n junction surface 3, the p-type GaAlAs layer 4, the p-type electrode 6, and the anti-reflection film 7 are formed in the same way as a solar cell with a conventional structure, but the n-type GaAlAs
The structure of the substrate 1 is completely different.

即ち、従来構造においては、n形GaAs基板1
は板状であるのに対し、この実施例の構造におい
ては、n形GaAs基板1に数多くの凹陥部8が形
成されており、これらの凹陥部8は、n形GaAs
基板1の底面にまで達する側壁(外周壁90及び
隔壁9)によつて完全には包囲されていない。即
ち、となり合う凹陥部8は、少なくとも1つの隔
壁10の連通路10で連結され、最外周の凹陥部
8のうち少なくとも1つは、外周壁の連通路10
によつて素子外部の空間と連結されている。従つ
て、外周壁90及び隔壁9の下面に設けられたn
形電極5を平坦な基板(図示せず)に接着するこ
とにより、この実施例の太陽電池21を前記基板
に固定しても、内部のいかなる凹陥部8も、素子
外部の空間と連通していることになる。
That is, in the conventional structure, the n-type GaAs substrate 1
is plate-like, whereas in the structure of this example, a number of recesses 8 are formed in the n-type GaAs substrate 1;
It is not completely surrounded by the side walls (outer peripheral wall 90 and partition wall 9) that reach the bottom surface of the substrate 1. That is, adjacent recesses 8 are connected by a communication path 10 of at least one partition wall 10, and at least one of the outermost recesses 8 is connected by a communication path 10 of the outer peripheral wall.
It is connected to the space outside the element by. Therefore, the n provided on the lower surface of the outer peripheral wall 90 and the partition wall 9
By bonding the shaped electrode 5 to a flat substrate (not shown), even if the solar cell 21 of this embodiment is fixed to said substrate, any recesses 8 inside will not be in communication with the space outside the device. There will be.

上記の如き凹陥部8及び連通路10は、適当な
写真製版技術、蝕刻技術等を用いて、容易に形成
することができる。このような凹陥部は、従来構
造のGaAs太陽電池の如く、一度n形GaAs基板1
の裏面全面にn形電極5を形成した後に形成して
もよく、また、このような凹陥部8の形成後に、
n形電極5を形成しても良い。
The recessed portion 8 and communication path 10 as described above can be easily formed using appropriate photolithography, etching, or the like. Such a recessed portion is once formed in the n-type GaAs substrate 1, as in the conventional GaAs solar cell.
It may be formed after the n-type electrode 5 is formed on the entire back surface of the
An n-type electrode 5 may also be formed.

また、この実施例においては、素子の周辺部あ
るいは凹陥部8と凹陥部8との間に存するn形
GaAs基板1よりなる外周壁90あるいは隔壁9
により素子の機械的強度が保たれる。よつて、凹
陥部8の全底面積に占める割合及び凹陥部8の深
さは、適当な値に選定される。一例として素子の
厚みが300μmの場合、凹陥部8の面積を全底面
の50%、凹陥部8の深さを200μm程度として
も、充分な機械的強度を有するGaAs太陽電池を
得ることができた。この場合、第1図、第2図に
示す従来構造のGaAs太陽電池11と比べて、機
械的強度をそれほど損なうことなく、同一受光面
積当りの重量を、2/3に低減ことができる。
In addition, in this embodiment, the n-type
Outer peripheral wall 90 or partition wall 9 made of GaAs substrate 1
This maintains the mechanical strength of the element. Therefore, the ratio of the recessed portion 8 to the total bottom area and the depth of the recessed portion 8 are selected to be appropriate values. As an example, when the thickness of the device is 300 μm, a GaAs solar cell with sufficient mechanical strength could be obtained even if the area of the recess 8 was 50% of the total bottom surface and the depth of the recess 8 was about 200 μm. . In this case, compared to the GaAs solar cell 11 of the conventional structure shown in FIGS. 1 and 2, the weight per same light-receiving area can be reduced to 2/3 without significantly deteriorating the mechanical strength.

ここで、上記凹陥部8の深さは、太陽電池の変
換効率を損なわない程度に設定されており、かつ
この制約は、上記機械的強度を保証する条件内に
含まれており、以下このことについて述べる。
Here, the depth of the recessed portion 8 is set to an extent that does not impair the conversion efficiency of the solar cell, and this restriction is included in the conditions for guaranteeing the mechanical strength, and hereinafter this will be explained. Let's talk about.

凹陥部8の形成されている部分のn形GaAs層
1の厚みは、薄くなつているが、機械的強度を保
つに必要な厚みを有しており、この厚みは通常、
n形GaAsにおけるホールの拡散長さより厚くな
つている。即ち、n形GaAs中におけるホールの
拡散長さは数μm程度であるのに対して、この実
施例では凹陥部8の形成された部分のn形GaAs
層厚みは100μm強となつている。従つて、凹陥
部8の形成により、機械的強度を損なつたり、有
効受光領域が影響を受け変換効率が低下したりす
ることがない。
Although the thickness of the n-type GaAs layer 1 in the portion where the recessed portion 8 is formed is thinner, it has a thickness necessary to maintain mechanical strength, and this thickness is usually
It is thicker than the hole diffusion length in n-type GaAs. That is, while the diffusion length of holes in n-type GaAs is approximately several μm, in this embodiment, the diffusion length of holes in n-type GaAs in the area where the recess 8 is formed
The layer thickness is over 100 μm. Therefore, the formation of the concave portion 8 does not impair mechanical strength or affect the effective light receiving area and reduce conversion efficiency.

さて、このようなGaAs太陽電池は、大気圧の
下で、地球上で組立てられる。もし軽量化を目的
として設けられた凹陥部8のうち1つでも、基板
1の底面にまで達する前記凹陥部8の側壁(外周
壁90及び隔壁9)によつて完全に包囲されたも
のがあると、上記太陽電池が平坦な部分にマウン
トされた場合、前記凹陥部8中に大気がとじこめ
られてしまうことになる。このようにしてマウン
トされたGaAs太陽電池が、人工衛生に搭載され
て大気圏外に打上げられると、常時かなりの高真
空中に置かれ、このため凹陥部8が形成され薄く
なつている部分は圧力差により、変形もしくは破
損するおそれがあり、太陽電池の機能が低下もし
くは停止してしまう可能性がある。人工衛生等に
用いられる宇宙用太陽電池は極めて高信頼性が要
求されるので、上記の如き現象は問題となる。
Now, such GaAs solar cells are assembled on Earth under atmospheric pressure. If even one of the recesses 8 provided for the purpose of weight reduction is completely surrounded by the side wall (outer peripheral wall 90 and partition wall 9) of the recess 8 that reaches the bottom surface of the substrate 1. If the solar cell is mounted on a flat surface, the atmosphere will be trapped in the recess 8. When a GaAs solar cell mounted in this way is mounted on an artificial satellite and launched outside the atmosphere, it is constantly placed in a fairly high vacuum, so the concave portion 8 is formed and the thinned portion is under pressure. Due to the difference, there is a risk of deformation or damage, and the function of the solar cell may deteriorate or stop. Since space solar cells used for artificial sanitation and the like are required to have extremely high reliability, the above phenomenon poses a problem.

この実施例のGaAs太陽電池21においては、
軽量化を目的として設けられたいかなる前記凹陥
部8も、n形GaAs基板1の底面にまで達する側
壁(外周壁90及び隔壁9)によつて完全に包囲
されていないため、平坦な部分へのマウントによ
り、閉じ込められた空間は存在しない。従つて、
大気中での組立により凹陥部8内に存在している
大気は、大気圏外に置かれた場合、連通路10を
通して完全に掃き出されるため、凹陥部8内部と
外部間に圧力差は生じない。従つて、この実施例
の構造によれば、上記の問題点は解決され、高信
頼性のGaAs太陽電池を得ることができる。
In the GaAs solar cell 21 of this example,
Any of the recessed portions 8 provided for the purpose of weight reduction is not completely surrounded by the side walls (outer wall 90 and partition wall 9) that reach the bottom surface of the n-type GaAs substrate 1. With the mount, there is no confined space. Therefore,
The atmosphere existing in the recess 8 due to assembly in the atmosphere is completely swept out through the communication path 10 when placed outside the atmosphere, so no pressure difference occurs between the inside and outside of the recess 8. . Therefore, according to the structure of this example, the above problems are solved and a highly reliable GaAs solar cell can be obtained.

なお、上記実施例の凹陥部の形状は、太陽電池
の変換効率及び機械的強度を損なわないものであ
れば第3図、第4図に示すもの以外のものでも良
いことは言うまでもない。
It goes without saying that the shape of the recessed portion in the above embodiment may be other than that shown in FIGS. 3 and 4 as long as it does not impair the conversion efficiency and mechanical strength of the solar cell.

また、本発明は第1図及び第2図に示す特定の
構造のGaAs太陽電池だけでなく、他の任意の構
造のGaAs太陽電池にも適用することができる。
Furthermore, the present invention can be applied not only to GaAs solar cells having the specific structures shown in FIGS. 1 and 2, but also to GaAs solar cells having any other structure.

以上詳述したように、この発明に係る太陽電池
によれば、光の入射面と反対面の面に、外周壁及
びこれにつながる隔壁を残すよう複数の凹陥部を
設け、いかなる上記凹陥部も連通路を介して外部
に連通するようにしたので、機械的強度を損なわ
ずに軽量化でき、かつ信頼性の高いものが得られ
る効果がある。
As described in detail above, according to the solar cell according to the present invention, a plurality of recesses are provided on the surface opposite to the light incident surface so as to leave the outer peripheral wall and the partition walls connected thereto, and any of the recesses are removed. Since the device is communicated with the outside via the communication path, it is possible to reduce the weight without sacrificing mechanical strength, and it is possible to obtain a highly reliable product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のGaAs太陽電池の一例を示す平
面図、第2図は第1図の−線における断面
図、第3図はこの発明によるGaAs太陽電池の一
実施例の裏面を示す平面図、第4図は第3図の
−線における断面図である。 図中、1はn形GaAs基板、2はp形GaAs層、
3はp−n接合面、8は凹陥部、9は隔壁、90
は外周壁、10は連通路である。なお図中同一符
号は同一又は相当部分を示す。
FIG. 1 is a plan view showing an example of a conventional GaAs solar cell, FIG. 2 is a sectional view taken along the - line in FIG. 1, and FIG. 3 is a plan view showing the back side of an example of the GaAs solar cell according to the present invention. , FIG. 4 is a sectional view taken along the - line in FIG. 3. In the figure, 1 is an n-type GaAs substrate, 2 is a p-type GaAs layer,
3 is a p-n junction surface, 8 is a recessed portion, 9 is a partition wall, 90
1 is an outer peripheral wall, and 10 is a communication path. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 光の入射によつて電気エネルギーを発生する
太陽電池において、 光が入射する面と反対の面に、所定の深さの複
数の凹陥部を形成するよう外周壁及びこれにつな
がる隔壁が設けられ、 上記すべての凹陥部は隣接する凹陥部間を連通
する上記隔壁に設けられた連通路及び上記外周壁
に設けられた連通路を介して外部と連通している
ことを特徴する太陽電池。
[Claims] 1. In a solar cell that generates electrical energy by the incidence of light, an outer peripheral wall and its outer peripheral wall are arranged to form a plurality of recesses of a predetermined depth on a surface opposite to the surface on which light enters. A partition wall connected to the wall is provided, and all of the recessed portions communicate with the outside through a communication path provided in the partition wall and a communication path provided in the outer peripheral wall that communicate between adjacent recessed portions. Features of solar cells.
JP55162469A 1980-11-17 1980-11-17 Solar cell Granted JPS5785270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55162469A JPS5785270A (en) 1980-11-17 1980-11-17 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55162469A JPS5785270A (en) 1980-11-17 1980-11-17 Solar cell

Publications (2)

Publication Number Publication Date
JPS5785270A JPS5785270A (en) 1982-05-27
JPS6117155B2 true JPS6117155B2 (en) 1986-05-06

Family

ID=15755209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55162469A Granted JPS5785270A (en) 1980-11-17 1980-11-17 Solar cell

Country Status (1)

Country Link
JP (1) JPS5785270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247157A (en) * 1986-04-18 1987-10-28 Yamaha Motor Co Ltd Air-coolled engine for motorcycle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2579832B1 (en) * 1985-03-26 1987-11-06 Centre Nat Etd Spatiales METHOD FOR LIGHTENING SOLAR CELLS AND CELLS THUS OBTAINED
JPH0690014A (en) * 1992-07-22 1994-03-29 Mitsubishi Electric Corp Thin solar cell and its production, etching method and automatic etching device, and production of semiconductor device
DE69435205D1 (en) * 1993-12-14 2009-05-28 Spectrolab Inc Thin semiconductor device and manufacturing method
JP6243292B2 (en) * 2014-05-19 2017-12-06 株式会社ブリヂストン Seal member and seat pad manufacturing method using the seal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247157A (en) * 1986-04-18 1987-10-28 Yamaha Motor Co Ltd Air-coolled engine for motorcycle

Also Published As

Publication number Publication date
JPS5785270A (en) 1982-05-27

Similar Documents

Publication Publication Date Title
US5096505A (en) Panel for solar concentrators and tandem cell units
US4818337A (en) Thin active-layer solar cell with multiple internal reflections
JP3904558B2 (en) Light emitting or receiving semiconductor module and method for manufacturing the same
US5322572A (en) Monolithic tandem solar cell
US20200161490A1 (en) Interconnection of solar cells in a solar cell module
US4547622A (en) Solar cells and photodetectors
US4745451A (en) Photodetector array and a method of making same
JP2867983B2 (en) Photodetector and method of manufacturing the same
JP2008124381A (en) Solar battery
CN109698248B (en) Method for manufacturing silicon detector array device for enhancing blue light efficiency
KR20080100473A (en) Photodiode having increased proportion of light-sensitive area to ligth-insensitive area
CN109712998B (en) Visible light silicon gain receiver array with high short wave detection efficiency
JP3269668B2 (en) Solar cell
JP3006266B2 (en) Solar cell element
US20120060918A1 (en) Energy conversion device for photovoltaic cells
CN115176346B (en) Single photon avalanche diode device
JPS6117155B2 (en)
JP2004071763A (en) Photovoltaic element
US20010039082A1 (en) Solar cell
US4112457A (en) Photovoltaic device having an extended PN junction
CN217740536U (en) Semiconductor device and packaging structure thereof
US20110056548A1 (en) Wafer-Based Solar Cell with Deeply Etched Structure
US4301463A (en) Demultiplexing photodetector
JP2004071828A (en) Solar cell
US4420650A (en) Wedged channel vertical junction silicon solar cell