JPS6322474B2 - - Google Patents

Info

Publication number
JPS6322474B2
JPS6322474B2 JP55177830A JP17783080A JPS6322474B2 JP S6322474 B2 JPS6322474 B2 JP S6322474B2 JP 55177830 A JP55177830 A JP 55177830A JP 17783080 A JP17783080 A JP 17783080A JP S6322474 B2 JPS6322474 B2 JP S6322474B2
Authority
JP
Japan
Prior art keywords
type
region
substrate
semiconductor light
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55177830A
Other languages
Japanese (ja)
Other versions
JPS57100761A (en
Inventor
Yoshihiro Arimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55177830A priority Critical patent/JPS57100761A/en
Publication of JPS57100761A publication Critical patent/JPS57100761A/en
Publication of JPS6322474B2 publication Critical patent/JPS6322474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は半導体受光装置に関り、特に高出力電
圧が得られる直列もしくは直並列接続構造のモノ
リシツク型半導体受光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light receiving device, and more particularly to a monolithic semiconductor light receiving device having a series or series-parallel connection structure capable of obtaining a high output voltage.

半導体集積回路(IC)等に形成される
MOSFETのゲートを制御するためには、通常5
〔V〕前後の電圧が必要である。従つて光制御IC
を形成する際には、該ICの光制御電源として少
くとも5〔V〕以上の出力電圧がとり出せる半導
体受光素子(例えば太陽電池)が必要となる。然
し従来の太陽電池に於ては1〔チツプ〕から取り
出し得る電圧は0.5〔V〕前後であるために、上記
光制御ICは少くとも10〔個〕以上の太陽電池チツ
プを直列に接続するハイブリツド構造で形成せざ
るを得ず、該光制御ICの外形寸法が大型になる
という不都合があつた。又別の方法では、DC―
DCコンバータにより所望の電圧を得る方法があ
るが、パワーロスおよび構成が複雑になる等の欠
点があつた。
Formed in semiconductor integrated circuits (IC), etc.
To control the gate of a MOSFET, typically 5
A voltage around [V] is required. Therefore, the light control IC
When forming an IC, a semiconductor light-receiving element (for example, a solar cell) that can output an output voltage of at least 5 [V] is required as an optically controlled power source for the IC. However, in conventional solar cells, the voltage that can be extracted from one [chip] is around 0.5 [V], so the above-mentioned light control IC is a hybrid system in which at least 10 [solar cell] chips are connected in series. However, there was a disadvantage that the external dimensions of the light control IC became large. In another method, DC-
There is a method of obtaining a desired voltage using a DC converter, but it has drawbacks such as power loss and a complicated configuration.

本発明は上記問題点に鑑み、1〔チツプ〕上に、
互に絶縁分離された複数個の半導体受光素子を形
成し、該受光素子を該チツプ上に於て金属配線層
により直列に接続し、モノリシツク構造で高出力
電圧が得られる半導体受光装置を提供する。
In view of the above problems, the present invention has the following features:
To provide a semiconductor light receiving device which can obtain a high output voltage with a monolithic structure by forming a plurality of semiconductor light receiving elements which are insulated and separated from each other, and connecting the light receiving elements in series through a metal wiring layer on the chip. .

即ち本発明は半導体受光装置に於て、半導体基
板面に設けられた複数の凹部内に、該凹部の内面
に形成されたマグネシア・スピネル(MgO・
Al2O3)層を介し互いに分離されて埋込まれた複
数の単結晶シリコン領域の各々に、該凹部の内面
に沿い且つ端部が該単結晶シリコン領域の表面に
露出して配設された高濃度一導電型領域と該高濃
度一導電型領域に囲まれた低濃度一導電型領域及
び該低濃度一導電型領域内に形成された反対導電
型領域よりなる半導体受光素子が形成され、該複
数の半導体受光素子が該基板上に於て金属配線に
より直列もしくは直並列に接続されてなることを
特徴とする。
That is, the present invention provides a semiconductor light receiving device in which magnesia spinel (MgO.
In each of the plurality of single-crystal silicon regions that are buried and separated from each other via an Al 2 O 3 ) layer, a plurality of single-crystal silicon regions are provided along the inner surface of the recess and with the end portions exposed on the surface of the single-crystal silicon region. A semiconductor light-receiving element is formed, which includes a highly-concentrated one-conductivity type region, a low-concentration one-conductivity type region surrounded by the high-concentration one-conductivity type region, and an opposite conductivity type region formed within the low-concentration one-conductivity type region. , the plurality of semiconductor light-receiving elements are connected in series or in series and parallel on the substrate by metal wiring.

以下本発明を、第1図に示す一実施例に於ける
構造断面図、第2図a乃至fに示す同実施例に於
ける製造工程断面図、第3図に示す一適用例の構
造断面図を用いて詳細に説明する。
The present invention will be described below with reference to a structural cross-sectional view of an embodiment shown in FIG. 1, a manufacturing process cross-sectional view of the same embodiment shown in FIGS. This will be explained in detail using figures.

本発明の構造を有する半導体受光装置は、例え
ば第1図に示すように、該半導体受光装置と並設
される半導体素子に適した所望の導電型を有する
シリコン(Si)基板1の主面に、半導体受光装置
の電流容量を考慮した所望の大きさを有する深さ
数〔μm〕〜数10〔μm〕程度の複数個の凹部2が
設けられており、該凹部2の内面には例えば1
〔μm〕程度の厚さを有する単結晶マグネシア・ス
ピネル(MgO・Al2O3)層3が形成されている。
そして該MgO・Al2O3層3に覆われた複数個の凹
部2内にはMgO・Al2O3層3に接する領域が、数
〔μm〕程度の厚さを有する高不純物濃度のN+
シリコン(Si)エピタキシヤル層4で囲まれ該凹
部2を充たすように形成された数〔μm〕〜数10
〔μm〕程度の厚さを有する低不純物濃度のN型Si
エピタキシヤル領域5と、該N型Siエピタキシヤ
ル領域5表面に形成された例えば1000〔Å〕程度
の深さを有するP型拡散領域6とからなる太陽電
池7が形成されており、これら複数個の太陽電池
7が該基板上に形成された二酸化シリコン
(SiO2)等からなる絶縁膜8上に形成されたアル
ミニウム(Al)等の金属配線層9によりコンタ
クト窓10を介して直列に接続されてなつてい
る。
For example, as shown in FIG. 1, the semiconductor photodetector having the structure of the present invention has a main surface of a silicon (Si) substrate 1 having a desired conductivity type suitable for a semiconductor element arranged in parallel with the semiconductor photodetector. A plurality of recesses 2 having a depth of several [μm] to several tens [μm] and having a desired size in consideration of the current capacity of the semiconductor photodetector are provided on the inner surface of the recess 2, for example.
A single crystal magnesia spinel (MgO.Al 2 O 3 ) layer 3 having a thickness of about [μm] is formed.
In the plurality of recesses 2 covered with the MgO.Al 2 O 3 layer 3, a region in contact with the MgO.Al 2 O 3 layer 3 is filled with highly impurity-concentrated N having a thickness of several μm. Number [μm] to number 10 surrounded by + type silicon (Si) epitaxial layer 4 and formed to fill the recess 2
Low impurity concentration N-type Si with a thickness of about [μm]
A solar cell 7 is formed of an epitaxial region 5 and a P-type diffusion region 6 formed on the surface of the N-type Si epitaxial region 5 and having a depth of, for example, about 1000 Å. solar cells 7 are connected in series through a contact window 10 by a metal wiring layer 9 made of aluminum (Al) or the like formed on an insulating film 8 made of silicon dioxide (SiO 2 ) or the like formed on the substrate. It's bright.

なお、太陽電池7が形成される低不純物濃度の
N型Siエピタキシヤル領域5の周囲を、端部が上
面に露出した高不純物濃度のN+型Siエピタキシ
ヤル層4で囲んだのは、該太陽電池7の内部抵抗
を減少させると同時に、N型領域に対してオーミ
ツク性が優れ且つ低コンタクト抵抗を有する配線
接続を可能にして該太陽電池7の実効的な光電変
換効率を高めるためである。
The reason why the N type Si epitaxial region 5 with a low impurity concentration, in which the solar cell 7 is formed, is surrounded by the N + type Si epitaxial layer 4 with a high impurity concentration and whose end portions are exposed on the upper surface is that This is to reduce the internal resistance of the solar cell 7, and at the same time, to enable wiring connection with excellent ohmic properties and low contact resistance to the N-type region, thereby increasing the effective photoelectric conversion efficiency of the solar cell 7. .

上記実施例の構造を有する太陽電池は次のよう
な方法によつて形成される。即ち第2図aに示す
ように先ず該太陽電池と並設される例えばPチヤ
ネルMOSFETを形成するに適したN型Si基板
1′の主面に、水酸化ナトリウム(NaOH)等か
らなる異方性エツチング液を用いて数〔μm〕〜
数10〔μm〕程度の所望の深さを有する所望の大き
さの複数個の凹部2を形成する。次いで通常の
MgO・Al2O3の気相エピタキシヤル成長(VPE)
法を用いて第2図bに示すように前記基板上に1
〔μm〕前後の厚さを有する単結晶MgO・Al2O3
3を形成する。次いで通常のSiのVPE法を用い
て第2図cに示すように例えば1018〜1019〔atm/
cm3)程度の高りん(或るいは砒素)濃度を有する
数〔μm〕程度の厚さを有するN+型Siエピタキシ
ヤル層4及び前記凹部2を完全に埋める厚さを有
する例えば1014〜1017〔atm/cm3〕程度の低りん
(或るいは砒素)濃度のN型Siエピタキシヤル層
5′を形成する。なお単結晶MgO・Al2O3層上に
は該エピタキシヤル成長に於て単結晶Si層が成長
する。
The solar cell having the structure of the above embodiment is formed by the following method. That is, as shown in FIG. 2a, an anisotropic film made of sodium hydroxide (NaOH) or the like is first applied to the main surface of an N-type Si substrate 1' suitable for forming, for example, a P-channel MOSFET, which is installed in parallel with the solar cell. Several [μm] ~ using etching solution
A plurality of recesses 2 of a desired size and a desired depth of approximately several tens of micrometers are formed. then normal
Vapor phase epitaxial growth (VPE) of MgO・Al 2 O 3
1 on the substrate as shown in FIG.
A single crystal MgO.Al 2 O 3 layer 3 having a thickness of about [μm] is formed. Next, as shown in Fig. 2c, using the usual Si VPE method, for example, 10 18 to 10 19 [atm/
an N + type Si epitaxial layer 4 having a thickness of several [μm] and having a high phosphorus (or arsenic) concentration of the order of cm 3 ) and a thickness of, for example, 10 14 to 10 14 cm, to completely fill the recess 2; An N-type Si epitaxial layer 5' having a low phosphorus (or arsenic) concentration of about 10 17 [atm/cm 3 ] is formed. Note that a single crystal Si layer is grown on the single crystal MgO.Al 2 O 3 layer during the epitaxial growth.

次いで通常用いられるケミカル・ポリツシング
法により該基板面の研摩を行い第2図dに示すよ
うにN型Si基板1′面を表出せしめ、該基板面に
MgO・Al2O3層3により絶縁分離された複数個の
周囲がN+型Siエピタキシヤル層4で囲まれたN
型Siエピタキシヤル領域5を形成する。次いで第
2図eに示すように該基板上に形成した熱酸化膜
11等をマスクとして通常のガス拡散法により硼
素等のP型不純物の選択拡散を行つて、前記N型
Siエピタキシヤル領域5の表面に所望の大きさを
有し、1020〜1021〔atm/cm3〕程度の硼素濃度を有
する数1000〔Å〕以下程度の浅いP+型拡散領域6
を形成する。なお太陽電池7は該P+型拡散領域
6と前記N型Siエピタキシヤル領域5の接合部に
形成される。次いで第2図fに示すように前記
P+型拡散領域6の形成が終つた基板上に形成さ
れている熱酸化膜11等からなる絶縁膜8に通常
の方法を用いて該基板面に形成されている複数個
のP+型拡散領域6及びN+型Siエピタキシヤル層
4の一部を表出するコンタクト窓10を形成した
後、通常の配線形成方法を用いて、該絶縁膜8上
に前記コンタクト窓10を介して複数個の太陽電
池7を直列に接続するAl等の金属配線層9を形
成する。
Next, the substrate surface is polished by a commonly used chemical polishing method to expose the N-type Si substrate 1' surface as shown in FIG. 2d.
A plurality of N layers insulated by MgO・Al 2 O 3 layers 3 are surrounded by an N + type Si epitaxial layer 4.
A type Si epitaxial region 5 is formed. Next, as shown in FIG. 2e, using the thermal oxide film 11 formed on the substrate as a mask, a P-type impurity such as boron is selectively diffused by an ordinary gas diffusion method, and the N-type impurity is selectively diffused.
A shallow P + -type diffusion region 6 having a desired size on the surface of the Si epitaxial region 5 and having a boron concentration of about 10 20 to 10 21 [atm/cm 3 ] and about several thousand Å or less.
form. Note that the solar cell 7 is formed at the junction between the P + -type diffusion region 6 and the N-type Si epitaxial region 5 . Then, as shown in FIG.
A plurality of P + type diffusions formed on the substrate surface using a normal method are applied to an insulating film 8 made of a thermal oxide film 11 etc. formed on the substrate on which the P + type diffusion region 6 has been formed. After forming a contact window 10 exposing the region 6 and a part of the N + type Si epitaxial layer 4, a plurality of contact windows 10 are formed on the insulating film 8 via the contact window 10 using a normal wiring forming method. A metal wiring layer 9 made of Al or the like is formed to connect the solar cells 7 in series.

上記実施例から明らかなように本発明の構造を
有する半導体受光装置に於ては半導体基板の凹部
内にそれぞれが基板と絶縁分離された状態で形成
され、且つ実効的な光電変換効率が高められた複
数個の太陽電池が該基板上で直列に接続されてお
り、高出力電圧が提供されるので、第3図に示す
適用例のように同一N型Si基板1′上にPチヤネ
ルMOS・FET15を形成し、該MOS・FET1
5のゲート電極16と半導体受光装置の所望の出
力端子17とを、基板上に於て金属配線層9等を
用いて直接接続することにより、従来のハイブリ
ツド構造に比べて著しく小型化されたモノリシツ
クの光制御ICを形成することができる。なお第
3図に於いて3はMgO・Al2O3層、4はN+型Si
エピタキシヤル層、5はN型Siエピタキシヤル領
域、6はP型拡散領域、7は太陽電池、8は絶縁
膜、18はP型ソース・ドレイン領域、19はソ
ース・ドレイン電極を表わす。又本発明の受光装
置は電流容量を増すために直並列接続にする場合
もある。
As is clear from the above embodiments, in the semiconductor photodetector having the structure of the present invention, each of the photodetectors is formed in the recess of the semiconductor substrate insulated and separated from the substrate, and the effective photoelectric conversion efficiency is increased. A plurality of solar cells are connected in series on the substrate, and a high output voltage is provided. Therefore, as in the application example shown in FIG. FET15 is formed, and the MOS/FET1
By directly connecting the gate electrode 16 of No. 5 and the desired output terminal 17 of the semiconductor photodetector on the substrate using a metal wiring layer 9, etc., a monolithic structure that is significantly smaller than the conventional hybrid structure can be realized. can be used to form optical control ICs. In Fig. 3, 3 is MgO・Al 2 O 3 layer, 4 is N + type Si
In the epitaxial layer, 5 is an N-type Si epitaxial region, 6 is a P-type diffusion region, 7 is a solar cell, 8 is an insulating film, 18 is a P-type source/drain region, and 19 is a source/drain electrode. Further, the light receiving device of the present invention may be connected in series and parallel to each other in order to increase the current capacity.

以上説明したように本発明によれば、高光電変
換効率を有するモノリシツク構造の高出力電圧半
導体受光装置が提供される。従つて光制御IC等
の制御用電源を大幅に縮小することができるので
これら半導体ICの小型化が図れる。
As described above, according to the present invention, a monolithic structure high output voltage semiconductor light receiving device having high photoelectric conversion efficiency is provided. Therefore, the control power supply for optical control ICs and the like can be significantly reduced, so that the size of these semiconductor ICs can be reduced.

なお本発明の半導体受光装置は上記実施例と逆
の導電型で形成することもできる。
Note that the semiconductor light receiving device of the present invention can also be formed with a conductivity type opposite to that of the above embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に於ける構造断面
図、第2図a乃至fは同実施例に於ける製造工程
断面図、第3図は本発明の一適用例の構造断面図
である。 図に於て、1はシリコン基板、1′はN型シリ
コン基板、2は凹部、3はマグネシア・スピネル
層、4はN+型シリコン・エピタキシヤル層、5
はN型シリコン・エピタキシヤル領域、5′はN
型シリコン・エピタキシヤル層、6はP+型拡散
領域、7は太陽電池、8は絶縁膜、9は金属配線
層、10はコンタクト窓、11は熱酸化膜、15
はPチヤネルMOSFET、16はゲート電極、1
7は出力端子、18はP型ソース・ドレイン領
域、19はソース・ドレイン電極を示す。
Fig. 1 is a structural sectional view of an embodiment of the present invention, Fig. 2 a to f are sectional views of the manufacturing process in the same embodiment, and Fig. 3 is a structural sectional view of an application example of the present invention. be. In the figure, 1 is a silicon substrate, 1' is an N-type silicon substrate, 2 is a recess, 3 is a magnesia spinel layer, 4 is an N + type silicon epitaxial layer, 5
is N type silicon epitaxial region, 5' is N
type silicon epitaxial layer, 6 is a P + type diffusion region, 7 is a solar cell, 8 is an insulating film, 9 is a metal wiring layer, 10 is a contact window, 11 is a thermal oxide film, 15
is a P-channel MOSFET, 16 is a gate electrode, 1
7 is an output terminal, 18 is a P-type source/drain region, and 19 is a source/drain electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板面に設けられた複数の凹部内に、 該凹部の内面に形成されたマグネシア・スピネ
ル(MgO・Al2O3)層を介し互いに分離されて埋
込まれた複数の単結晶シリコン領域の各々に、 該凹部の内面に沿い且つ端部が該単結晶シリコ
ン領域の表面に露出して配設された高濃度一導電
型領域と該高濃度一導電型領域に囲まれた低濃度
一導電型領域及び該低濃度一導電型領域内に形成
された反対導電型領域よりなる半導体受光素子が
形成され、 該複数の半導体受光素子が該基板上に於て金属
配線により直列もしくは直並列に接続されてなる
ことを特徴とする半導体受光装置。
[Claims] 1. Embedded in a plurality of recesses provided on the surface of a semiconductor substrate, separated from each other via a magnesia spinel (MgO.Al 2 O 3 ) layer formed on the inner surface of the recesses. In each of the plurality of single-crystal silicon regions, a highly-concentrated one-conductivity type region is provided along the inner surface of the recess with an end portion exposed to the surface of the single-crystal silicon region; A semiconductor light-receiving element is formed of a surrounded low-concentration region of one conductivity type and an opposite conductivity-type region formed within the low-concentration region of one conductivity type, and the plurality of semiconductor light-receiving elements are connected to metal wiring on the substrate. A semiconductor light receiving device characterized by being connected in series or in series and parallel.
JP55177830A 1980-12-16 1980-12-16 Semiconductor light sensitive device Granted JPS57100761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55177830A JPS57100761A (en) 1980-12-16 1980-12-16 Semiconductor light sensitive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55177830A JPS57100761A (en) 1980-12-16 1980-12-16 Semiconductor light sensitive device

Publications (2)

Publication Number Publication Date
JPS57100761A JPS57100761A (en) 1982-06-23
JPS6322474B2 true JPS6322474B2 (en) 1988-05-12

Family

ID=16037848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55177830A Granted JPS57100761A (en) 1980-12-16 1980-12-16 Semiconductor light sensitive device

Country Status (1)

Country Link
JP (1) JPS57100761A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922360A (en) * 1982-07-28 1984-02-04 Matsushita Electric Works Ltd Optical input mos type transistor
JPS5936263U (en) * 1982-08-30 1984-03-07 日本電気株式会社 semiconductor equipment
JPS6216568A (en) * 1985-07-15 1987-01-24 Sharp Corp Light-receiving element incorporated in circuit
US5360987A (en) * 1993-11-17 1994-11-01 At&T Bell Laboratories Semiconductor photodiode device with isolation region
US6228750B1 (en) 1994-12-30 2001-05-08 Lucent Technologies Method of doping a semiconductor surface
US6936495B1 (en) 2002-01-09 2005-08-30 Bridge Semiconductor Corporation Method of making an optoelectronic semiconductor package device
US7190060B1 (en) 2002-01-09 2007-03-13 Bridge Semiconductor Corporation Three-dimensional stacked semiconductor package device with bent and flat leads and method of making same
US6987034B1 (en) 2002-01-09 2006-01-17 Bridge Semiconductor Corporation Method of making a semiconductor package device that includes singulating and trimming a lead
US6891276B1 (en) 2002-01-09 2005-05-10 Bridge Semiconductor Corporation Semiconductor package device
US8410568B2 (en) * 2008-08-29 2013-04-02 Tau-Metrix, Inc. Integrated photodiode for semiconductor substrates
JP5780629B2 (en) * 2010-12-15 2015-09-16 学校法人 東洋大学 Semiconductor device

Also Published As

Publication number Publication date
JPS57100761A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
US6458619B1 (en) Process for producing an isolated planar high speed pin photodiode with improved capacitance
US4740826A (en) Vertical inverter
Nakagawa et al. Breakdown voltage enhancement for devices on thin silicon layer/silicon dioxide film
US6100570A (en) Semiconductor device having a semiconductor film of low oxygen concentration
US5053083A (en) Bilevel contact solar cells
US6027956A (en) Process for producing planar dielectrically isolated high speed pin photodiode
US4847210A (en) Integrated pin photo-detector method
US4926231A (en) Integrated pin photo-detector
JPS6159853A (en) Structure of silicon crystalline body
GB2148591A (en) Semiconductor device isolation grooves
US6303967B1 (en) Process for producing an isolated planar high speed pin photodiode
JPS6322474B2 (en)
JPS5951743B2 (en) semiconductor integrated device
US4846896A (en) Solar cell with integral reverse voltage protection diode
JPH04225285A (en) Silicon photodiode for monolithic integrated circuit use and its manufacture
US8828781B1 (en) Method for producing photovoltaic device isolated by porous silicon
US4788158A (en) Method of making vertical inverter
JP2001085731A (en) Photoelectric voltage generator
US8829332B1 (en) Photovoltaic device formed on porous silicon isolation
JP3103737B2 (en) Solar cell element
CN114566557B (en) Avalanche photodetector and preparation method thereof
JPH10209411A (en) Semiconductor device and manufacture thereof
JPH07142757A (en) Manufacture of semiconductor light sensor
JPH02377A (en) Photoelectric converting device
JPH01205565A (en) Optical semiconductor device and its manufacture