JP2580806B2 - Electrolytic dressing method and apparatus - Google Patents

Electrolytic dressing method and apparatus

Info

Publication number
JP2580806B2
JP2580806B2 JP1302713A JP30271389A JP2580806B2 JP 2580806 B2 JP2580806 B2 JP 2580806B2 JP 1302713 A JP1302713 A JP 1302713A JP 30271389 A JP30271389 A JP 30271389A JP 2580806 B2 JP2580806 B2 JP 2580806B2
Authority
JP
Japan
Prior art keywords
dressing
grindstone
electrode
grinding
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1302713A
Other languages
Japanese (ja)
Other versions
JPH03166056A (en
Inventor
務 高橋
尚登 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1302713A priority Critical patent/JP2580806B2/en
Publication of JPH03166056A publication Critical patent/JPH03166056A/en
Application granted granted Critical
Publication of JP2580806B2 publication Critical patent/JP2580806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、導電性結合剤を使用した砥石に電解ドレッ
シングを施すための方法および装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method and an apparatus for electrolytically dressing a grindstone using a conductive binder.

「従来の技術」 シリコン、フェライト、セラミックス等の硬質脆性材
料の切断または研削を行なう場合には、砥石の耐摩耗性
を高めるために、砥粒として超砥粒を使用するととも
に、結合剤として金属を使用したメタルボンド砥石また
は電鋳砥石等が使用されることが多い。
"Prior art" When cutting or grinding hard brittle materials such as silicon, ferrite, and ceramics, use super-abrasive grains as abrasives and use metal as a binder to increase the wear resistance of the grindstone. In many cases, a metal-bonded grindstone or an electroformed grindstone, etc., using a steel is used.

ところで、この種のメタルボンド砥石または電鋳砥石
では、上記のような硬質脆性材料の切断を行なうと、結
合剤の摩耗速度に比して超砥粒の摩耗が早く、研削開始
後の早期に研削面における超砥粒の切刃が平坦化すると
ともに超砥粒の突出量が小さくなり、切れ味の低下が著
しいという問題があった。
By the way, in this kind of metal bond grindstone or electroformed grindstone, when cutting such a hard brittle material, the wear of the superabrasive grains is faster than the wear rate of the binder, and it is early after the start of grinding. There has been a problem that the cutting edge of the superabrasive grains on the ground surface is flattened and the amount of projection of the superabrasive grains is reduced, resulting in a marked decrease in sharpness.

このため従来では、切れ味の回復を図るために、SiC
やAl2O3砥粒を用いたドレッシング砥石を用い、研削の
合間に頻繁にあるいは研削と同時に砥石の研削面に当
て、ドレッシングを行なう方法が採られていた。
For this reason, conventionally, in order to recover sharpness, SiC
, Al 2 O 3, or the use of a dressing stone using abrasives, against the grinding surface of the frequent or grinding at the same time as the grinding wheel in between the grinding method for performing dressing has been employed.

しかし、この方法では、結合剤とともに超砥粒をも破
損するため、砥粒層の摩耗が激しく、砥石寿命が大幅に
短縮するうえ、ドレッシング作業によって研削盤の稼働
率が制限され、作業効率の低下を招く欠点があった。
However, in this method, the superabrasive grains are also damaged together with the binder, so that the abrasive layer is severely worn, the life of the grindstone is significantly shortened, and the operating rate of the grinding machine is limited by the dressing operation, thereby reducing the work efficiency. There is a drawback that causes a decrease.

そこで、第5図に示すように、研削と並行して研削面
の電解ドレッシングを行なう方法が一部で提案されてい
る。
Therefore, as shown in FIG. 5, a method of performing electrolytic dressing of a ground surface in parallel with grinding has been proposed in part.

図中符号1は円板状の切断砥石で、研削盤のスピンド
ル軸2に装着され、この砥石1の外周の一部を覆って電
極3が配置されている。
In the figure, reference numeral 1 denotes a disk-shaped cutting grindstone, which is mounted on a spindle shaft 2 of a grinding machine, and an electrode 3 is arranged so as to cover a part of the outer periphery of the grindstone 1.

この電極3は全体が銅などの金属で成形され、一対の
三日月状の側板3Aと、これら側板3Aを平行に固定する天
板部3Bとからなり、天板部3Bの中央には給液路4が接続
されている。
The electrode 3 is entirely formed of a metal such as copper, and includes a pair of crescent-shaped side plates 3A and a top plate portion 3B for fixing these side plates 3A in parallel. 4 are connected.

そして砥石1を回転させ、被削材Wを研削しつつ、砥
石1のスピンドル軸2に電源の陽極を、電極3に陰極を
接続し、同時に給液路4から電解液を供給することによ
り、回転する砥石1の砥粒層の金属結合剤を徐々に溶出
させる。
By rotating the grindstone 1 and grinding the workpiece W, the anode of the power supply is connected to the spindle shaft 2 of the grindstone 1 and the cathode is connected to the electrode 3, and at the same time, the electrolytic solution is supplied from the liquid supply path 4. The metal binder in the abrasive layer of the rotating grindstone 1 is gradually eluted.

この方法によれば、砥粒を残して結合剤だけを除去す
るから、超砥粒を損傷することなく、その発刃を促進し
て切れ味を良好に維持する効果が得られる。
According to this method, since only the binder is removed while leaving the abrasive grains, the effect of promoting the cutting of the superabrasive grains and maintaining good sharpness without damaging the superabrasive grains can be obtained.

「発明が解決しようとする課題」 ところが上記のドレッシング方法では、砥石1に陽極
を直接接続しているうえ、電極3が側板部3Aを有するた
め、これら側板部3Aと対向する砥石の側面部においても
ドレッシングが進行する。このため、この方法を特に半
導体素子の加工などに使用される極薄刃砥石に使用する
と、砥石の薄肉化が無視できず、切断幅の精度が低下す
る欠点があった。
[Problems to be Solved by the Invention] However, in the above dressing method, the anode is directly connected to the grindstone 1 and the electrode 3 has the side plate portions 3A. Dressing also proceeds. For this reason, when this method is used especially for an ultra-thin blade whetstone used for processing a semiconductor element, etc., there is a disadvantage that the thickness of the whetstone cannot be neglected and the cutting width accuracy is reduced.

また、上記の方法では、電極3と砥石1との間隙量は
数mmから数cm程度の比較的大きな値に制定せざるを得な
いから、砥石の研削面の凹凸を形状修正する効果は小さ
く、ツルーイングは別途行なわねばならなかった。
Further, in the above method, the gap between the electrode 3 and the grindstone 1 has to be set to a relatively large value of about several mm to several cm, so that the effect of correcting the irregularities of the grinding surface of the grindstone is small. Truing had to be done separately.

さらに、スピンドル軸2に直接大電流を流すため、切
り込み量の制御を被削材Wと砥石1との間の抵抗値で制
御する方式の研削盤に使用した場合には、漏れ電流が誤
作動等を引き起こし、悪影響を及ぼすおそれがあった。
Furthermore, since a large current is directly passed through the spindle shaft 2, when a cutting machine is used for a grinding machine in which the cut amount is controlled by a resistance value between the work material W and the grindstone 1, the leakage current may malfunction. Etc., which may have an adverse effect.

「課題を解決するための手段」 本発明は上記の各課題を解決するためになされたもの
で、まず本発明の電解ドレッシング方法は、一対の電極
の間および周辺に絶縁体を配置し、これら電極の先端を
露出してなるドレッシング治具を、各電極の先端が砥石
の研削面と一定間隔を空けて対向するように配置し、各
電極と研削面との間に電解研削液を供給するとととも
に、電極の少なくとも一方と砥粒層との抵抗値を測定
し、この抵抗値が一定範囲の値をとるようにドレッシン
グ治具を砥石に対し進退させつつ、各電極間に通電する
ことを特徴とする。
"Means for Solving the Problems" The present invention has been made to solve the above-mentioned problems, and the electrolytic dressing method of the present invention firstly arranges an insulator between and around a pair of electrodes, A dressing jig that exposes the tip of the electrode is arranged so that the tip of each electrode faces the grinding surface of the grindstone at a certain interval, and supplies the electrolytic grinding liquid between each electrode and the grinding surface. At the same time, the resistance between at least one of the electrodes and the abrasive layer is measured, and a current is applied between the electrodes while moving the dressing jig toward and away from the grindstone so that the resistance takes a value within a certain range. And

なお、電解ドレッシングに先立ち各電極の先端を絶縁
体で覆っておき、この絶縁体に対しドレッシングすべき
砥石で切り込むことにより、前記砥石の肉厚より僅かに
開口幅の大きいスリットを形成し、このスリットの底部
で各電極の先端面を露出させてもよい。
Prior to electrolytic dressing, the tip of each electrode was covered with an insulator, and the insulator was cut with a grindstone to be dressed, thereby forming a slit having a slightly larger opening width than the thickness of the grindstone. The tip surface of each electrode may be exposed at the bottom of the slit.

一方、本発明に係わる電解ドレッシング装置は、一対
の電極を絶縁状態で支持し、これら電極の先端面を露出
させたドレッシング治具と、前記電極の少なくとも一方
と前記砥粒層との抵抗値を測定する離間量検出機構と、
前記ドレッシング治具を各電極の先端面が砥石の研削面
と対向するように支持するとともに、前記離間量検出機
構からの出力信号に応じてドレッシング治具を砥石に向
けて進退させる離間量調整機構と、各電極と研削面との
間隙に電解研削液を供給するための給液手段と、各電極
間に通電する給電機構とを具備したことを特徴とする。
On the other hand, the electrolytic dressing apparatus according to the present invention supports a pair of electrodes in an insulated state, and adjusts the resistance value of at least one of the electrodes and the abrasive layer with the dressing jig exposing the tip surfaces of these electrodes. A separation amount detecting mechanism for measuring,
A separation amount adjusting mechanism that supports the dressing jig such that the tip end surface of each electrode faces the grinding surface of the grindstone, and moves the dressing jig toward and away from the grindstone in accordance with an output signal from the separation amount detection mechanism. And a liquid supply means for supplying an electrolytic grinding liquid to a gap between each electrode and the grinding surface, and a power supply mechanism for supplying electricity between the electrodes.

なお、前記ドレッシング治具は、絶縁体に一対の電極
を互いに離間して埋設し、前記絶縁体の先端に砥石の外
周部の肉層より大きい幅のスリットを形成し、前記各電
極の先端を前記スリットの底面に間隔を空けて露出させ
てなり、前記スリットに砥石の外周部を差し入れた状態
で電解ドレッシングを行なうようにしてもよい。
In addition, the dressing jig embeds a pair of electrodes in the insulator at a distance from each other, forms a slit having a width larger than the thickness of the outer peripheral portion of the grindstone at the tip of the insulator, and forms a tip of each electrode. Electrolytic dressing may be performed with the slit being exposed on the bottom surface of the slit at an interval, and an outer peripheral portion of a grindstone inserted into the slit.

また、前記ドレッシング治具には、前記各電極の間に
給液手段として給液路が形成されていてもよい。
In the dressing jig, a liquid supply path may be formed as a liquid supply means between the electrodes.

「作 用」 上記の電解ドレッシング方法および装置によれば、ド
レッシング速度は通電量を調整することによりフィード
バック制御可能なので、研削と同時進行してドレッシン
グを行なうことにより、研削面での砥粒摩耗速度とドレ
ッシング速度を均衡させることが可能で、長期に亙って
良好な研削効率を維持できる。
[Operation] According to the above-described electrolytic dressing method and apparatus, the dressing speed can be feedback-controlled by adjusting the amount of current. Therefore, by performing dressing simultaneously with grinding, the abrasive wear rate on the ground surface can be reduced. And the dressing speed can be balanced, and good grinding efficiency can be maintained over a long period of time.

また、砥石の研削面と対向して配置した一対の電極間
に通電するため、一方の電極から出た電流は研削液を伝
わって砥石に入り、砥石の研削面の表面部分を流れて、
他方の電極と対向する研削面から流れ出て、最終的に他
方の電極に電流が入る。その際に、砥石の研削面から金
属結合剤が溶出し、ドレッシングが進行する。したがっ
て、砥粒層の側面部分には殆ど電流が流れず、砥粒層の
側面は殆どドレッシングされることがないから、砥粒層
の薄肉化を防いで、長期に亙って良好な研削精度が維持
できる。
In addition, since current flows between a pair of electrodes arranged opposite to the grinding surface of the grindstone, the current output from one electrode travels through the grinding fluid and enters the grindstone, flows through the surface portion of the grinding surface of the grindstone,
The current flows out from the grinding surface facing the other electrode, and finally, the current enters the other electrode. At that time, the metal binder elutes from the grinding surface of the grindstone, and the dressing proceeds. Therefore, almost no current flows on the side surface of the abrasive layer, and the side surface of the abrasive layer is hardly dressed. Therefore, the thickness of the abrasive layer is prevented from being reduced, and the grinding accuracy is improved over a long period of time. Can be maintained.

また、砥粒層と電極との間の抵抗値を直接あるいは間
接的に検出してドレッシング治具の位置を制御するの
で、研削面と電極との間隙を正確な極く小さい一定値に
保つことが容易である。このため、研削面の凹凸に対応
して鋭敏にドレッシング強度が変化し、研削面の形状修
正効果が高い。
In addition, since the position of the dressing jig is controlled by directly or indirectly detecting the resistance value between the abrasive layer and the electrode, the gap between the ground surface and the electrode must be kept at an extremely small constant value. Is easy. Therefore, the dressing strength changes sharply in response to the unevenness of the ground surface, and the effect of correcting the shape of the ground surface is high.

また、砥粒層には、各電極の間に対向する狭い範囲の
表層部分においてのみ通電されるので、砥石の他の部分
に余計な電流が流れず、研削盤の制御回路等の誤作動を
招くおそれがない。
In addition, since the abrasive layer is energized only in a narrow surface layer portion facing between the respective electrodes, unnecessary current does not flow to other portions of the grindstone, and a malfunction of the control circuit of the grinding machine or the like may occur. There is no possibility of inviting.

また、ドレッシング治具の先端にスリットが形成さ
れ、このスリットの底面に各電極の先端面が露出されて
いる場合には、スリットの両側壁面で砥石の砥粒層の側
面が電気的に遮蔽されるため、砥粒層の側面がドレッシ
ングされることが一層防止できる。
In addition, when a slit is formed at the tip of the dressing jig, and the tip surface of each electrode is exposed at the bottom of the slit, the side surfaces of the abrasive layer of the grindstone are electrically shielded on both side walls of the slit. Therefore, it is possible to further prevent the side surface of the abrasive grain layer from being dressed.

さらに、ドレッシング治具に各電極の間に給液路を形
成し、この給液路を通じて電解研削液を供給した場合に
は、各電極と研削面との狭い間隙に効果的に電解研削液
が供給できる。したがって、ドレッシング効率が高めら
れるとともに、研削面から溶出した金属イオンが電極表
面に析出しにくいという利点も得られる。
Further, when a liquid supply path is formed between the electrodes in the dressing jig, and the electrolytic grinding liquid is supplied through the liquid supply path, the electrolytic grinding liquid is effectively applied to the narrow gap between each electrode and the grinding surface. Can supply. Therefore, the dressing efficiency can be improved, and the metal ions eluted from the ground surface are not easily deposited on the electrode surface.

「実施例」 第1図は、本発明に係わる電解ドレッシング装置の一
実施例を示す概略図である。
Embodiment FIG. 1 is a schematic view showing an embodiment of an electrolytic dressing apparatus according to the present invention.

図中符号10は、導電性結合剤を使用したメタルボンド
砥石、電鋳砥石あるいは電着砥石等の切断砥石であり、
研削盤のスピンドル軸11に固定され、ワークテーブル12
上に固定されたワークWをノズル13から研削液を供給し
つつ切断する。
Reference numeral 10 in the figure is a cutting grindstone such as a metal bond grindstone using a conductive binder, an electroformed grindstone or an electrodeposited grindstone,
The work table 12 is fixed to the spindle shaft 11 of the grinding machine.
The workpiece W fixed above is cut while supplying the grinding liquid from the nozzle 13.

一方、符号14はドレッシング治具で、これは第2図に
示すように直方体状の絶縁体15と、この絶縁体15の内部
に間隔を空けて平行に埋設された一対の細長い板状の電
極16から構成されている。また、電極16はスリット18の
底面に対応する部分を除き、リード線を含めて、絶縁体
15および絶縁被覆によって絶縁されている。
On the other hand, reference numeral 14 denotes a dressing jig, which is a rectangular parallelepiped insulator 15 as shown in FIG. 2 and a pair of elongated plate-like electrodes embedded in the insulator 15 at intervals. It consists of 16 parts. The electrode 16 is an insulating material including a lead wire except for a portion corresponding to the bottom of the slit 18.
15 and insulated by insulating coating.

前記絶縁体15の中心には、各電極16の中間に沿って給
液孔17が形成されるとともに、絶縁体15の先端面の中央
には、砥石10の外周部がほぼ隙間なく入る幅のスリット
18が上下に向けて形成され、このスリット18の底面にお
いて前記各電極16の先端面の一部が露出している。
At the center of the insulator 15, a liquid supply hole 17 is formed along the middle of each electrode 16, and at the center of the distal end surface of the insulator 15, the width of the outer periphery of the grindstone 10 is almost completely inserted. slit
The slits 18 are formed up and down, and a part of the tip surface of each electrode 16 is exposed at the bottom surface of the slit 18.

このようなスリット18を形成するには、第4図に示す
ように、各電極16を基端部のみが露出し(ただし電気的
な絶縁被覆は施されている)、先端が揃った状態で絶縁
体15の内部に平行に埋設した後、各電極16の先端が露出
する位置まで、ドレッシングすべき砥石10で研削する。
この方法によれば、砥石肉厚に適合した幅を有するスリ
ット18の形成が容易である。
In order to form such a slit 18, as shown in FIG. 4, only the base end of each electrode 16 is exposed (however, an electrically insulating coating is applied), and the ends are aligned. After being buried in parallel inside the insulator 15, the grindstone 10 to be dressed is ground to a position where the tip of each electrode 16 is exposed.
According to this method, it is easy to form the slit 18 having a width suitable for the thickness of the grindstone.

なお、絶縁体15の材質としては、各種のプラスチッ
ク、セラミックス、その他いかなる絶縁材を用いてもよ
いが、被削性の良いものが好ましい。また電極16の材質
としては、Ni,Ni基合金,ステンレス,Ta等の高耐食性金
属、あるいはカーボン、グラファイト等が好適である。
なお、図示の電極16は細長い板状であるが、この形状に
限る必要はなく、棒状や端子状としてもよい。
As a material of the insulator 15, various kinds of plastics, ceramics, and any other insulating materials may be used, but a material having good machinability is preferable. As the material of the electrode 16, a highly corrosion-resistant metal such as Ni, a Ni-based alloy, stainless steel, or Ta, or carbon or graphite is preferable.
Although the illustrated electrode 16 is in the shape of an elongated plate, the shape is not limited to this, and may be a rod or a terminal.

電極16の厚さは、砥石径や砥石厚さに応じて決定され
る。また、電極16の間隔は、電解研削液を通じて電極16
間で短絡しないように考慮すべきである。さらに、電極
16に接続されたリード線間も十分に絶縁すべきである。
The thickness of the electrode 16 is determined according to the grindstone diameter and the grindstone thickness. In addition, the distance between the electrodes 16 is adjusted by the electrolytic grinding fluid.
Care should be taken not to short circuit between them. In addition, electrodes
The leads connected to 16 should also be well insulated.

そして、ドレッシング治具14は離間量調整機構19の駆
動部20に固定され、スリット18に砥石10の外周部を奥ま
で挿入した状態で支持されている。
The dressing jig 14 is fixed to the drive unit 20 of the separation amount adjusting mechanism 19, and is supported by the slit 18 with the outer peripheral portion of the grindstone 10 inserted to the back.

この離間量調整機構19は駆動源として高精度ステッピ
ングモータ等を具備し、後述する離間量検出機構24から
の出力信号に応じてドレッシング治具14を砥石10に向け
て進退させる。
The separation amount adjusting mechanism 19 includes a high-precision stepping motor or the like as a driving source, and moves the dressing jig 14 toward and away from the grindstone 10 in accordance with an output signal from a separation amount detecting mechanism 24 described later.

そして各電極16には、電流計21を介して給電装置22が
接続され、設定可能な一定電流が供給される。給電装置
22の出力容量は、砥石10種類、必要なドレッシング速度
等を考慮して決定すべきであるが、通常の砥石に対して
は50V×10Å程度あればよい。
A power supply device 22 is connected to each electrode 16 via an ammeter 21 to supply a settable constant current. Power supply device
The output capacity of 22 should be determined in consideration of ten types of grindstones, necessary dressing speed, and the like, but may be about 50 V × 10 ° for a normal grindstone.

また、各電極16間には電圧計23が接続され、この電圧
計23はさらに離間量検出機構24に接続されている。この
離間量検出機構24は、電極16間の電圧が所定の上限値を
上回る(各電極16と砥石10との抵抗が増大する)と離間
量調整機構19を作動させ、極間電圧が上限値を下回る位
置までドレッシング治具14を前進させる。また、電極間
電圧が下限値を下回る(各電極16と砥石10との抵抗が減
少する)と、離間量調整機構19を作動させて下限値を上
回る位置までドレッシング治具14を後退させる構成とな
っている。
A voltmeter 23 is connected between the electrodes 16, and the voltmeter 23 is further connected to a separation amount detection mechanism 24. When the voltage between the electrodes 16 exceeds a predetermined upper limit value (the resistance between each electrode 16 and the grindstone 10 increases), the separation amount detection mechanism 24 activates the separation amount adjustment mechanism 19, and the voltage between the electrodes becomes the upper limit value. The dressing jig 14 is advanced to a position below. When the voltage between the electrodes falls below the lower limit (the resistance between each electrode 16 and the grindstone 10 decreases), the distance adjusting mechanism 19 is operated to retract the dressing jig 14 to a position above the lower limit. Has become.

以上の装置を使用するには、給液孔17を給液ポンプ
(図示略)に接続し、一定流量で電解研削液をスリット
18と砥石10の間隙に供給する。そして給電装置22、離間
量検出機構24、離間量調整機構19をそれぞれ作動させ、
ドレッシング治具14を動かして、各電極16と砥石10の研
削面との間隔が一定範囲となるように調節する。最適離
間量は砥石10の種類によって異なり、例えば電鋳薄刃砥
石の場合には1〜500μm、望ましくは5〜100μm程度
に設定される。1μm未満では電極16と砥石10との短絡
がドレッシング開始当初に生じてドレッシング効率が低
下したり、切粉の通過により電極16の損耗が進んで好ま
しくない。一方、500μmより大では形状修正効果が低
下するとともに、砥石側面がドレッシングされる割合が
相対的に増加し、砥石研削面のドレッシング効率が相対
的に低下する問題も生じる。
To use the above device, connect the liquid supply hole 17 to a liquid supply pump (not shown) and slit the electrolytic grinding liquid at a constant flow rate.
It is supplied to the gap between 18 and the grinding wheel 10. Then, the power supply device 22, the separation amount detection mechanism 24, and the separation amount adjustment mechanism 19 are operated, respectively.
The dressing jig 14 is moved to adjust the distance between each electrode 16 and the grinding surface of the grindstone 10 to be within a certain range. The optimum amount of separation differs depending on the type of the grindstone 10, and is set to, for example, 1 to 500 μm, preferably about 5 to 100 μm in the case of an electroformed thin blade grindstone. If the thickness is less than 1 μm, a short circuit between the electrode 16 and the grindstone 10 occurs at the beginning of the dressing, and the dressing efficiency is reduced, or the wear of the electrode 16 due to the passage of cuttings is not preferred. On the other hand, if it is larger than 500 μm, the effect of modifying the shape is reduced, and the ratio of dressing of the grinding wheel side surface is relatively increased, so that the dressing efficiency of the grinding surface of the grinding wheel is relatively reduced.

また、電極16の先端面での電流密度は0.1〜100、望ま
しくは0.1〜50Å/cm2とされる。0.1A/cm2未満では十分
なドレッシングが行なえず、100A/cm2より大では電解液
の電気分解速度が増大し、電流増に見合うドレッシング
効果が期待できない。なお、電極16の先端面での電流密
度が砥石研削面での電流密度にほぼ対応する。
Further, the current density at the tip end surface of the electrode 16 is set to 0.1 to 100, preferably 0.1 to 50 ° / cm 2 . If it is less than 0.1 A / cm 2 , sufficient dressing cannot be performed, and if it is more than 100 A / cm 2 , the electrolysis rate of the electrolytic solution increases, and a dressing effect commensurate with the increase in current cannot be expected. Note that the current density at the tip end surface of the electrode 16 substantially corresponds to the current density at the grinding wheel grinding surface.

電極16への通電は連続的に行なうことが望ましいが、
研削中に断続的に行なってもほぼ同様な効果が得られ
る。また、電流は図示のように直流であっても、交流、
パルス電流等であってもよい。
It is desirable to continuously apply the current to the electrode 16,
Approximately the same effect can be obtained even if the operation is performed intermittently during grinding. In addition, even if the current is DC as shown,
It may be a pulse current or the like.

電解研削液としては、砥石10と電極16との間隔が小さ
いことから、通常使用されている電気伝導度の低い研削
液も使用可能であるが、ドレッシング効率を高めるに
は、電気伝導度を向上するためにNO3 -,Cl-,SO4 2-等を含
む電解質を添加することが望ましい。また、これらの電
解質の添加による装置本体の腐食を防止するため、併せ
てインヒビターを添加してもよい。
Since the distance between the grinding wheel 10 and the electrode 16 is small, a commonly used grinding fluid with low electrical conductivity can be used as the electrolytic grinding fluid, but in order to increase the dressing efficiency, improve the electrical conductivity. For this purpose, it is desirable to add an electrolyte containing NO 3 , Cl , SO 4 2− or the like. In order to prevent corrosion of the apparatus main body due to the addition of these electrolytes, an inhibitor may be added together.

上記構成からなる電解ドレッシング装置および方法に
よれば、ドレッシング速度は電極16への通電量を調整す
ることによりフィードバック制御可能なので、研削と同
時進行してドレッシングを行なうことにより、研削面で
の砥粒摩耗速度とドレッシング速度を均衡させることが
可能で、長期に亙って良好な研削効率を維持できる。
According to the electrolytic dressing apparatus and method having the above-described configuration, the dressing speed can be feedback-controlled by adjusting the amount of current supplied to the electrode 16, so that the dressing proceeds simultaneously with the grinding to perform the dressing. The wear rate and the dressing rate can be balanced, and good grinding efficiency can be maintained over a long period of time.

また、砥石10の研削面と対向して配置した一対の電極
16間に通電するため、電流は研削液を伝わって主に研削
面の表面部分に流れ、砥石10の側面部分には殆ど流れな
い。これにより、砥石10の側面がドレッシングされず、
砥石10の薄肉化を防いで、長期に亙って良好な研削精度
が維持できる。
Also, a pair of electrodes arranged opposite to the grinding surface of the grinding wheel 10
Since the current flows between 16, the electric current flows through the grinding fluid and flows mainly to the surface portion of the grinding surface, and hardly flows to the side surface portion of the grindstone 10. Thereby, the side surface of the grindstone 10 is not dressed,
Good grinding accuracy can be maintained over a long period of time by preventing the grinding wheel 10 from being thinned.

また、この例では、各電極16間の電圧を計測してドレ
ッシング治具14の位置を制御するので、研削面と電極16
との間隙を正確な極く小さい一定値に保つことが容易で
ある。このため、研削面の凹凸に対応して鋭敏にドレッ
シング強度が変化し、研削面の形状修正効果が高いう
え、砥石10と電極16間の抵抗値を計測する構成に比して
単純化できる。また、砥石10には、各電極16の間に対向
する狭い範囲の表層部分においてのみ通電されるので、
砥石10の他の部分に余計な電流が流れず、研削盤の制御
回路等の誤作動を招くおそれがない。
Further, in this example, since the position of the dressing jig 14 is controlled by measuring the voltage between the electrodes 16, the ground surface and the electrode 16 are controlled.
It is easy to keep the gap to the exact, very small constant value. For this reason, the dressing strength changes sharply in response to the unevenness of the ground surface, the effect of correcting the shape of the ground surface is high, and the configuration can be simplified as compared with a configuration in which the resistance value between the grindstone 10 and the electrode 16 is measured. Also, since the whetstone 10 is energized only in the surface layer portion in a narrow range opposed between the electrodes 16,
No extra current flows to other parts of the grindstone 10, and there is no possibility that a malfunction of a control circuit or the like of the grinding machine is caused.

また、ドレッシング治具14の先端にスリット18が形成
され、このスリット18の底面に各電極16の先端面が露出
しているので、スリット18の両側壁面で砥石10の側面が
遮蔽され、側面からの結合材の溶出を一層防止できる。
In addition, a slit 18 is formed at the tip of the dressing jig 14, and the tip surface of each electrode 16 is exposed at the bottom surface of the slit 18, so that the side surfaces of the grindstone 10 are shielded on both side walls of the slit 18, and from the side surface. Of the binder can be further prevented.

さらに、ドレッシング治具14に各電極16の間に給液孔
17を形成し、この給液孔17を通じて電解研削液を供給し
ているので、各電極16と砥石10との狭い間隙に効果的に
電解研削液が供給でき、ドレッシング効率が高められ
る。
Further, a liquid supply hole is provided between the electrodes 16 on the dressing jig 14.
Since the electrolytic grinding liquid 17 is formed and the electrolytic grinding liquid is supplied through the liquid supply hole 17, the electrolytic grinding liquid can be effectively supplied to the narrow gap between each electrode 16 and the grindstone 10, and the dressing efficiency is improved.

なお、ドレッシングの進行に伴い、非常に低い効率と
はいえ陰極側の電極16の先端面にイオン化した金属結合
剤が再析出することは避けられない。しかし、砥石10の
研削面から突出した超砥粒によってこの析出金属は削り
落とされてしまうため、陰極側の電極16と砥石10とが短
絡するおそれはない。
As the dressing progresses, it is inevitable that the ionized metal binder is reprecipitated on the tip surface of the electrode 16 on the cathode side, although the efficiency is very low. However, since the precipitated metal is shaved off by the superabrasive grains protruding from the grinding surface of the grindstone 10, there is no possibility that the electrode 16 on the cathode side and the grindstone 10 are short-circuited.

なお、本発明は上記実施例に限定されず、必要に応じ
て以下のように各部構成を変更してよい。
The present invention is not limited to the above embodiment, and the configuration of each unit may be changed as described below as needed.

例えば、上記実施例では定電流型の給電装置22を使用
し、各電極16間の電圧を測定することにより、各電極16
と砥石10との抵抗を間接的に検出していたが、その代わ
りに、砥石10のスピンドル軸11といずれか一方の電極16
間の抵抗値(あるいは電圧)を直接計測して治具位置を
制御してもよい。
For example, in the above-described embodiment, the constant current type power supply device 22 is used, and the voltage between the electrodes 16 is measured.
Although the resistance between the grinding wheel 10 and the grinding wheel 10 was indirectly detected, the spindle shaft 11 of the grinding wheel 10 and one of the electrodes 16 were used instead.
The jig position may be controlled by directly measuring the resistance value (or voltage) between them.

また、ドレッシング治具14の内部に給液路を形成せ
ず、外部から給液する構成としてもよいし、さらに、カ
ップ型砥石や内周刃型砥石など円板形砥石以外の砥石に
本発明を適用することも可能である。
Further, the liquid supply path may not be formed inside the dressing jig 14 and the liquid may be supplied from the outside. Further, the present invention may be applied to a grindstone other than a disc-shaped grindstone such as a cup-shaped grindstone or an inner peripheral grindstone. It is also possible to apply

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experimental Example" Next, the effect of the present invention will be demonstrated with an experimental example.

(実験例1) 第1図と同様の装置を作成し、研削と平行して下記の
ダイヤモンド電鋳砥石(電析Niボンド)のドレッシング
を行なった。
(Experimental Example 1) An apparatus similar to that shown in FIG. 1 was prepared, and dressing of the following diamond electroformed grindstone (electrodeposited Ni bond) was performed in parallel with the grinding.

外径101mm×厚さ0.3mm×内径40mm ダイヤモンド砥粒径:20/30μm 砥粒含有率35vol%、刃先突出量5mm ドレッシング治具としては、厚さ1.0mm×幅5mmのSUS3
04板を電極として2枚、10mmの間隔を平行に空けて基端
のみ露出させてエポキシ樹脂中に埋設し、樹脂硬化後、
各電極の中間に電極と平行に6mmφの給液孔を形成し
た。さらに各電極の基端にリード線を接続した後、基端
を絶縁材で被覆した。
Outer diameter 101mm x thickness 0.3mm x inner diameter 40mm Diamond abrasive grain size: 20 / 30μm Abrasive grain content 35vol%, blade tip protrusion 5mm As dressing jig, SUS3 with thickness 1.0mm x width 5mm
04 plates are used as electrodes, leaving only the base end exposed in parallel at 10 mm intervals, burying in epoxy resin, and after curing the resin,
A 6 mmφ liquid supply hole was formed in the middle of each electrode in parallel with the electrodes. Furthermore, after connecting a lead wire to the base end of each electrode, the base end was covered with an insulating material.

次に、このドレッシング治具を、マイクロメータを備
えた離間量調整機構を介してスライシングマシンに固定
し、砥石の中心に向けて進退可能として砥石の外周部に
対向させた。さらに、各電極と砥石との間に、それぞれ
抵抗計を接続した。
Next, this dressing jig was fixed to a slicing machine via a separation amount adjusting mechanism equipped with a micrometer, and was allowed to advance and retreat toward the center of the grindstone, and was opposed to the outer peripheral portion of the grindstone. Furthermore, a resistance meter was connected between each electrode and the grindstone.

次いでスライシングマシンを作動させ、電鋳薄刃砥石
を回転させつつ、離間量調整機構によりドレッシング治
具を砥石に向けて移動し、その先端面に切り込んだ。そ
して2つの抵抗計が共に短絡を示した時点で切り込みを
停止し、その位置からマイクロメータを用いドレッシン
グ治具を5μm後退させた。
Next, while operating the slicing machine and rotating the electroformed thin blade grindstone, the dressing jig was moved toward the grindstone by the separation amount adjusting mechanism, and cut into the tip surface thereof. When the two ohmmeters both showed a short circuit, the cutting was stopped, and the dressing jig was retracted 5 μm from that position using a micrometer.

次いで、各電極を直流定電流電源に接続し、給液孔の
先端に給液ノズルを固定したうえ、給液孔の基端に給液
ポンプを連結した。
Next, each electrode was connected to a DC constant current power supply, a liquid supply nozzle was fixed at the tip of the liquid supply hole, and a liquid supply pump was connected to the base end of the liquid supply hole.

以上の準備が完了した後、以下の研削条件およびドレ
ッシング条件で研削実験を行なった。
After the above preparation was completed, a grinding experiment was performed under the following grinding conditions and dressing conditions.

被削材:Al2O3・TiC材、 縦75mm×横75mm×厚さ4mm 送り速度:30mm×min. 切込深さ:4.5mm ピッチ:1mm 総研削距離:5.25m 研削液:市水+インヒビター少量+NaNO310g/ ドレッシング電流:0.1A 各電極と研削面の距離:5〜50μm その結果、法線方向の切断抵抗は切断初期で1kgWを示
した後、0.5kgWで一定化した。5.25m切断後の電鋳薄刃
砥石の半径摩耗は38μm、被削材表面における各切断ラ
インでの最大チッピングのばらつき範囲は20〜25μmの
非常に狭い範囲にあった。
Work material: Al 2 O 3 · TiC material, length 75 mm x width 75 mm x thickness 4 mm Feed rate: 30 mm x min. Depth of cut: 4.5 mm Pitch: 1 mm Total grinding distance: 5.25 m Grinding fluid: city water + Inhibitor small amount + NaNO 3 10 g / dressing current: 0.1 A Distance between each electrode and ground surface: 5 to 50 μm As a result, the cutting resistance in the normal direction showed 1 kgW in the initial stage of cutting, and then became constant at 0.5 kgW. The radial wear of the electroformed thin blade grindstone after cutting 5.25 m was 38 μm, and the variation range of the maximum chipping at each cutting line on the surface of the work material was in a very narrow range of 20 to 25 μm.

また、刃先の形状変化を別の同材質の被削材にハーフ
カットで切り込んで、形成された溝の断面形状から調べ
たところ、刃先先端から200μmの位置での摩耗による
砥石の薄肉化量は僅か10μmであった。
In addition, when the shape change of the cutting edge was cut into another work material of the same material by half cutting and examined from the cross-sectional shape of the formed groove, the thinning amount of the grindstone due to wear at a position 200 μm from the tip of the cutting edge was It was only 10 μm.

次に、砥石切り込み量を摩耗分補正した後、ドレッシ
ング治具の位置を適正化し、再び新たな前記と同材質の
被削材の切断を、前記と同じ研削条件で行ない、これら
の操作を繰り返して被削材を5回切断した。
Next, after correcting the amount of grinding wheel cut by the amount of wear, the position of the dressing jig was optimized, and a new work material of the same material was cut again under the same grinding conditions as above, and these operations were repeated. The work material was cut five times.

各切断完了後の、カーフ幅、切断抵抗、最大チッピン
グ、刃先先端から200μmの位置での薄肉化量および半
径方向の累積摩耗量をそれぞれ測定した。その結果を第
1表に示す。なお、測定を行なったのは、各被削材の最
終切断ラインの中央部である。
After completion of each cutting, the kerf width, the cutting resistance, the maximum chipping, the amount of thinning at a position of 200 μm from the tip of the cutting edge, and the amount of cumulative wear in the radial direction were measured. Table 1 shows the results. The measurement was performed at the center of the final cutting line of each work material.

(比較例1) 前記実験例1におけるドレッシング治具の代わりに、
幅15mm×厚さ15mmの矩形状のドレッシング砥石(WC400
・ビトリファイド砥石)を前記と同じ被削材の前端に沿
って配置し、前記と同じ切断条件で被削材の切断を行な
うとともに、各切断ライン毎にドレッシング砥石を切断
した。このようにして被削材1枚を加工し終わる毎に切
り込み量を補正しつつ、5枚の被削材を切断した。
(Comparative Example 1) Instead of the dressing jig in Experimental Example 1,
15mm width x 15mm thickness rectangular dressing whetstone (WC400
A vitrified grindstone) was arranged along the front end of the same work material as described above, and the work material was cut under the same cutting conditions as above, and the dressing grindstone was cut for each cutting line. In this way, five workpieces were cut while correcting the cutting depth each time one workpiece was processed.

前記実施例と同じ項目について測定した結果を第1表
に示す。
Table 1 shows the results of measurements on the same items as in the above-mentioned examples.

(実験例2) 第1図と同様の装置を作成し、研削と平行して下記の
ダイヤモンドメタルボンド砥石(ボンド:85wt%Cu+15w
t%Sn)のドレッシングを行なった。
(Experimental Example 2) An apparatus similar to that of FIG. 1 was prepared, and the following diamond metal bond grindstone (bond: 85 wt% Cu + 15 w
t% Sn).

外径101mm×厚さ1.0mm×内径40mm ダイヤモンド砥粒径:40/60μm 砥粒含有率25vol%、刃先突出量10mm ドレッシング治具としては、厚さ2.0mm×幅5mmのカー
ボン板を電極として2枚、10mmの間隔を平行に空けて基
端のみ露出させてエポキシ樹脂中に埋設し、樹脂硬化
後、各電極の中間に電極と平行に6mmφの給液孔を形成
した。さらに各電極の基端にリード線を接続した後、基
端を絶縁材で被覆した。
Outer diameter 101mm x thickness 1.0mm x inner diameter 40mm Diamond abrasive grain size: 40 / 60μm Abrasive grain content 25vol%, blade tip protrusion 10mm As a dressing jig, a 2.0mm thick x 5mm wide carbon plate is used as an electrode. The sheets were buried in epoxy resin with only the base end exposed at a parallel interval of 10 mm, and after curing the resin, a 6 mmφ liquid supply hole was formed in the middle of each electrode in parallel with the electrodes. Furthermore, after connecting a lead wire to the base end of each electrode, the base end was covered with an insulating material.

次に、このドレッシング治具を、マイクロメータを備
えた離間量調整機構を介してスライシングマシンに固定
し、砥石の中心に向けて進退可能として砥石の外周部に
対向させた。さらに、各電極と砥石との間に、それぞれ
抵抗計を接続した。
Next, this dressing jig was fixed to a slicing machine via a separation amount adjusting mechanism equipped with a micrometer, and was allowed to advance and retreat toward the center of the grindstone, and was opposed to the outer peripheral portion of the grindstone. Furthermore, a resistance meter was connected between each electrode and the grindstone.

次いでスライシングマシンを作動させ、メタルボンド
砥石を回転させつつ、離間量調整機構によりドレッシン
グ治具を砥石に向けて移動し、その先端面に切り込ん
だ。そして2つの抵抗計が共に短絡を示した時点で切り
込みを停止し、その位置からマイクロメータを用いドレ
ッシング治具を300μm後退させた。
Next, while operating the slicing machine and rotating the metal bond grindstone, the dressing jig was moved toward the grindstone by the separation amount adjusting mechanism and cut into the tip surface thereof. The cut was stopped when the two ohmmeters both showed a short circuit, and the dressing jig was retracted by 300 μm from that position using a micrometer.

次いで、各電極を直流定電流電源に接続し、給液孔の
先端に給液ノズルを固定したうえ、給液孔の基端に給液
ポンプを連結した。
Next, each electrode was connected to a DC constant current power supply, a liquid supply nozzle was fixed at the tip of the liquid supply hole, and a liquid supply pump was connected to the base end of the liquid supply hole.

次に、砥石を回転させ、給液ポンプを作動して給液ノ
ズルから研削液を供給し、直流安定化電源の電流値を0.
15Aに設定して電極間に通電し、電極間の電圧を測定し
た。得られた電圧値15Vに対して直流電源の電圧上限を1
8V、下限を14Vに設定し、研削中はこれら上限・下限値
に従って離間量調整機構を作動させ、砥石の研削面と電
極との離間量を一定化する構成とした。
Next, the grindstone is rotated, the liquid supply pump is operated to supply the grinding liquid from the liquid supply nozzle, and the current value of the DC stabilized power supply is reduced to 0.
A current was applied between the electrodes at 15 A, and the voltage between the electrodes was measured. The voltage upper limit of the DC power supply is set to 1 for the obtained voltage value of 15 V.
8 V and the lower limit were set to 14 V, and during the grinding, the separation amount adjusting mechanism was operated in accordance with the upper and lower limits to keep the distance between the grinding surface of the grinding wheel and the electrode constant.

以上の準備が完了した後、以下の研削条件およびドレ
ッシング条件で研削実験を行なった。
After the above preparation was completed, a grinding experiment was performed under the following grinding conditions and dressing conditions.

被削材:Al2O3材、 縦200mm×横120mm×厚さ5mm 送り速度:30mm/min. 切込深さ:6.5mm ピッチ:2mm 総研削距離:10m 研削液:市水+インヒビター少量+NaCl5g/ ドレッシング電流:0.15A その結果、法線方向の切断抵抗は切断初期で22kgWを
示した後、約1.7kgWで一定化した。10m切断後のメタル
ボンド砥石の半径摩耗量は350μm、被削材表面におけ
る各切断ラインでの最大チッピングのばらつき範囲は30
〜35μmの非常に狭い範囲にあった。
Work material: Al 2 O 3 material, length 200 mm x width 120 mm x thickness 5 mm Feed rate: 30 mm / min. Depth of cut: 6.5 mm Pitch: 2 mm Total grinding distance: 10 m Grinding fluid: city water + small amount of inhibitor + 5 g of NaCl / Dressing current: 0.15 A As a result, the cutting resistance in the normal direction showed 22 kgW at the initial stage of cutting, and then became constant at about 1.7 kgW. The radial wear of the metal bond grindstone after cutting 10m is 350μm, and the maximum chipping variation range of each cutting line on the work material surface is 30
It was in a very narrow range of 3535 μm.

また、刃先の形状変化を別の同材質の被削材にハーフ
カットで切り込んで、形成された溝の断面形状から調べ
たところ、刃先先端から500μmの位置での摩耗による
砥石の薄肉化量は僅か20μmであった。
In addition, when the shape change of the cutting edge was cut into another work material of the same material by half cutting and examined from the cross-sectional shape of the formed groove, the thinning amount of the grindstone due to wear at the position of 500 μm from the tip of the cutting edge was It was only 20 μm.

(比較例2) 前記実験例2におけるドレッシング治具の代わりに、
幅15mm×厚さ15mmの矩形状のドレッシング砥石(WC220
・ビトリファイド砥石)を前記と同じ被削材の前端に沿
って配置し、前記と同じ切断条件で被削材の切断を行な
うとともに、各切断ライン毎にドレッシング砥石を切断
した。
(Comparative Example 2) Instead of the dressing jig in Experimental Example 2,
15mm width x 15mm thickness rectangular dressing whetstone (WC220
A vitrified grindstone) was arranged along the front end of the same work material as described above, and the work material was cut under the same cutting conditions as above, and the dressing grindstone was cut for each cutting line.

前記実験例と同じ項目について測定した結果、法線方
向の切断抵抗は切断初期で2.4kgWを示した後、切断距離
3mで3.1kgW、6mで4.8kgW、10mで5.9kgWと切断距離の増
加に従い徐々に増加した。
As a result of measuring the same items as in the experimental example, the cutting resistance in the normal direction showed 2.4 kgW in the initial stage of cutting, and then the cutting distance
3.1kgW at 3m, 4.8kgW at 6m, 5.9kgW at 10m, gradually increased as the cutting distance increased.

10m切断後のメタルボンド砥石の半径摩耗量は580μm
だった。被削材表面における各切断ラインでの最大チッ
ピングのばらつき範囲は35〜50μmだった。また刃先先
端から500μmの位置での摩耗による砥石の薄肉化量は4
5μmだった。
Radial wear of metal bond whetstone after cutting 10m is 580μm
was. The variation range of the maximum chipping at each cutting line on the surface of the work material was 35 to 50 μm. In addition, the amount of thinning of the grindstone due to wear at a position 500 μm from the tip of the
It was 5 μm.

(実験例3) 第1図と同様の装置を作成し、研削と平行して下記の
ダイヤモンド電鋳砥石(電析Niボンド)のドレッシング
を行なった。
(Experimental Example 3) An apparatus similar to that of FIG. 1 was prepared, and dressing of the following diamond electroformed grindstone (electrodeposited Ni bond) was performed in parallel with the grinding.

外径76.2mm×厚さ0.13mm×内径40mm ダイヤモンド砥粒径:8/16μm 砥粒含有率31vol%、刃先突出量3mm ドレッシング治具としては、厚さ0.5mm×幅5mmのSUS3
04板を電極として2枚、10mmの間隔を平行に空けて基端
のみ露出させてエポキシ樹脂中に埋設し、樹脂硬化後、
各電極の中間に電極と平行に6mmφの給液孔を形成し
た。さらに各電極の基端にリード線を接続した後、基端
を絶縁材で被覆した。
Outer diameter 76.2mm x thickness 0.13mm x inner diameter 40mm Diamond abrasive grain size: 8 / 16μm Abrasive grain content 31vol%, protruding edge 3mm As dressing jig, SUS3 with thickness 0.5mm x width 5mm
04 plates are used as electrodes, leaving only the base end exposed in parallel at 10 mm intervals, burying in epoxy resin, and after curing the resin,
A 6 mmφ liquid supply hole was formed in the middle of each electrode in parallel with the electrodes. Furthermore, after connecting a lead wire to the base end of each electrode, the base end was covered with an insulating material.

次に、このドレッシング治具を、マイクロメータを備
えた離間量調整機構を介してスライシングマシンに固定
し、砥石の中心に向けて進退可能として砥石の外周部に
対向させた。
Next, this dressing jig was fixed to a slicing machine via a separation amount adjusting mechanism equipped with a micrometer, and was allowed to advance and retreat toward the center of the grindstone, and was opposed to the outer peripheral portion of the grindstone.

次に、直流安定化電源に各電極を接続し、電流値を0.
05A、電圧値を8Vに合わせ、電極間に通電しつつスライ
シングマシンを作動させ、電鋳薄刃砥石を回転させつ
つ、離間量調整機構によりドレッシング治具を砥石に向
けて移動し、その先端面に切り込んだ。そして電極間の
電圧が降下し、短絡を示した時点で切り込みを停止し、
その位置からマイクロメータを用いドレッシング治具を
50μm後退させた。次いで、給液孔の先端に給液ノズル
を固定したうえ、給液孔の基端に給液ポンプを連結し
た。
Next, connect each electrode to a stabilized DC power supply and set the current to 0.
05A, adjust the voltage value to 8V, operate the slicing machine while energizing between the electrodes, rotate the electroformed thin blade whetstone, move the dressing jig toward the whetstone by the separation amount adjustment mechanism, and I cut it. Then, when the voltage between the electrodes drops and a short circuit is indicated, the cutting is stopped,
From that position, use a micrometer to
It was retracted by 50 μm. Next, a liquid supply nozzle was fixed to the tip of the liquid supply hole, and a liquid supply pump was connected to the base end of the liquid supply hole.

以上の準備が完了した後、以下の研削条件およびドレ
ッシング条件で研削実験を行なった。
After the above preparation was completed, a grinding experiment was performed under the following grinding conditions and dressing conditions.

被削材:鏡面研摩されたHIPフェライト(ワックスでテ
ーブルに接合) 縦20mm×横50mm×厚さ2mm 送り速度:20mm/min. 切込深さ:2.5m ピッチ:0.5mm 総切断ライン数:90(ライン)×100(被削材) 研削液:市水+インヒビター少量+NaNO310g/ ドレッシング電流:0.05A 前記試験を5回実施したが、いずれも被削材の台金か
らの剥離・飛散を生じることなく、それぞれ設定値であ
る9000ラインの切断が行なえた。
Work material: Mirror-polished HIP ferrite (joined to the table with wax) Length 20 mm x width 50 mm x thickness 2 mm Feed rate: 20 mm / min. Depth of cut: 2.5 m Pitch: 0.5 mm Total number of cutting lines: 90 (Line) × 100 (work material) Grinding fluid: city water + small amount of inhibitor + 10 g of NaNO 3 / dressing current: 0.05A The above test was conducted five times, but in all cases, the work material peeled off and scattered from the base metal. The cutoff of 9000 lines, which is the set value, was achieved without any occurrence.

(比較例3) 前記実験例3におけるドレッシング治具を用いず、他
の条件は実験例3と同一にして、切断試験を5回実施し
た。
(Comparative Example 3) The cutting test was carried out five times with the same conditions as in Experimental Example 3 without using the dressing jig in Experimental Example 3 above.

その結果、いずれの切断試験においても、設定値に至
る前に被削材が台金から剥離・飛散し、平均的な被削材
の飛散を生じるまでの切断ライン数は826ラインだっ
た。
As a result, in each of the cutting tests, the number of cutting lines until the work material peeled off and scattered from the base metal before reaching the set value and the average work material was scattered was 826 lines.

「発明の効果」 以上説明したように、本発明に係わる電解ドレッシン
グ方法および装置によれば、以下のような優れた効果が
得られる。
“Effects of the Invention” As described above, according to the electrolytic dressing method and apparatus according to the present invention, the following excellent effects can be obtained.

ドレッシング速度は通電量を調整することによりフ
ィードバック制御可能なので、研削と同時進行してドレ
ッシングを行なうことにより、研削面での砥粒摩耗速度
とドレッシング速度を均衡させることが可能で、長期に
亙って良好な研削効率を維持できる。
Since the dressing speed can be feedback-controlled by adjusting the amount of electricity, by performing dressing simultaneously with grinding, it is possible to balance the abrasive wear speed and the dressing speed on the ground surface, and over a long period of time. And good grinding efficiency can be maintained.

砥石の研削面と対向して配置した一対の電極間に通
電するため、電流は研削液を伝わって主に研削面の表面
部分に流れ、砥粒層の側面部分には殆ど流れない。これ
により、砥粒層の側面がドレッシングされることが少な
く、砥粒層の薄肉化を防いで、長期に亙って良好な研削
精度が維持できる。
Since current flows between a pair of electrodes arranged opposite to the grinding surface of the grindstone, current flows mainly through the surface of the grinding surface through the grinding fluid, and hardly flows on the side surface of the abrasive layer. Thereby, the side surface of the abrasive grain layer is less likely to be dressed, the thickness of the abrasive grain layer is prevented from being reduced, and good grinding accuracy can be maintained for a long period of time.

砥粒層と電極との間の抵抗値を検出してドレッシン
グ治具の位置を制御するので、研削面と電極との間隙を
正確な極く小さい一定値に保つことが容易である。この
ため、研削面の凹凸に対応して鋭敏にドレッシング強度
が変化し、研削面の形状修正効果が高い。
Since the position of the dressing jig is controlled by detecting the resistance value between the abrasive layer and the electrode, it is easy to accurately maintain the gap between the ground surface and the electrode at a very small constant value. Therefore, the dressing strength changes sharply in response to the unevenness of the ground surface, and the effect of correcting the shape of the ground surface is high.

砥粒層には、各電極の間に対向する狭い範囲の表層
部分においてのみ通電されるので、砥石の他の部分に余
計な電流が流れず、研削盤の制御回路等の誤作動を招く
おそれがない。
Since the abrasive layer is energized only in a narrow area of the surface layer facing between the electrodes, unnecessary current does not flow to other parts of the grinding wheel, which may cause a malfunction of the control circuit of the grinding machine. There is no.

ドレッシング治具の先端にスリットを形成した場合
には、スリットの両側壁面で砥石の側面が遮蔽されるた
め、砥石の薄肉化が一層防止できる。
When a slit is formed at the tip of the dressing jig, the side surfaces of the grindstone are shielded on both side walls of the slit, so that the thickness of the grindstone can be further prevented.

ドレッシング治具に各電極の間に給液路を形成した
場合には、この給液路を通じて電解研削液を供給するこ
とにより、各電極と研削面との狭い間隔に効果的に電解
研削液が供給できる。したがって、ドレッシング効率が
高められるとともに、研削面から溶出した金属イオンが
電極に析出しにくいという利点も得られる。
When a liquid supply path is formed between the electrodes on the dressing jig, the electrolytic grinding liquid is supplied through the liquid supply path, so that the electrolytic grinding liquid can be effectively applied to the narrow gap between each electrode and the grinding surface. Can supply. Therefore, the dressing efficiency is improved, and the advantage that metal ions eluted from the ground surface are not easily deposited on the electrode is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係わる電解ドレッシング装置の一実施
例を示す概略図、第2図および第3図は同装置のドレッ
シング治具を示す縦断面図および正面図、第4図はスリ
ット形成前のドレッシング治具を示す縦断面図である。 一方、第5図は従来の電解ドレッシング方法を示す概略
図である。 W……被削材、10……砥石、11……スピンドル軸、14…
…ドレッシング治具、15……絶縁体、16……電極、17…
…給液孔(給液路)、18……スリット、19……離間量調
整機構、20……駆動部、21……電流計、22……給電機
構、23……電圧計、24……離間量検出機構。
FIG. 1 is a schematic view showing an embodiment of an electrolytic dressing apparatus according to the present invention, FIGS. 2 and 3 are longitudinal sectional views and front views showing a dressing jig of the apparatus, and FIG. It is a longitudinal cross-sectional view which shows the dressing jig. FIG. 5 is a schematic view showing a conventional electrolytic dressing method. W: Work material, 10: Grinding stone, 11: Spindle shaft, 14 ...
... dressing jig, 15 ... insulator, 16 ... electrode, 17 ...
... Supply hole (Supply path), 18 ... Slit, 19 ... Separation amount adjustment mechanism, 20 ... Drive section, 21 ... Ammeter, 22 ... Supply mechanism, 23 ... Voltmeter, 24 ... Separation amount detection mechanism.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性結合剤を使用した砥粒層を有する砥
石を軸回りに回転しつつ、前記砥粒層の研削面を電解ド
レッシングする方法であって、 一対の電極の間および周辺に絶縁体を配置し、これら電
極の先端を露出してなるドレッシング治具を、各電極の
先端が砥石の研削面と一定間隔を空けて対向するように
配置し、 各電極と研削面との間に電解研削液を供給するととも
に、電極の少なくとも一方と砥粒層との抵抗値を測定
し、この抵抗値が一定範囲の値をとるようにドレッシン
グ治具を砥石に対し進退させつつ、各電極間に通電する
ことを特徴とする電解ドレッシング方法。
1. A method for electrolytically dressing a grinding surface of an abrasive layer while rotating a grindstone having an abrasive layer using a conductive binder around an axis, comprising: A dressing jig with the insulators placed and the tips of the electrodes exposed is placed so that the tips of the electrodes face the grinding surface of the grindstone at a fixed interval, and the gap between each electrode and the grinding surface is set. While supplying the electrolytic grinding fluid to the electrode, the resistance value of at least one of the electrodes and the abrasive layer is measured, and while the dressing jig advances and retreats with respect to the grinding stone so that the resistance value takes a value within a certain range, each electrode is An electrolytic dressing method, characterized in that a current is supplied between the electrodes.
【請求項2】前記電解ドレッシングに先立ち、前記各電
極の先端を絶縁体で覆っておき、この絶縁体に対しドレ
ッシングすべき砥石で切り込むことにより、前記砥石の
肉厚より僅かに開口幅の大きいスリットを形成し、この
スリットの底部で各電極の先端面を露出させることを特
徴とする請求項1記載の電解ドレッシング方法。
2. Prior to the electrolytic dressing, the tip of each electrode is covered with an insulator, and the insulator is cut with a grindstone to be dressed, so that the opening width is slightly larger than the thickness of the grindstone. 2. The electrolytic dressing method according to claim 1, wherein a slit is formed, and a tip surface of each electrode is exposed at a bottom of the slit.
【請求項3】導電性結合剤を使用した砥粒層を有する砥
石を軸回りに回転しつつ、前記砥粒層の研削面を電解ド
レッシングする装置であって、 一対の電極を絶縁状態で支持し、これら電極の先端面を
露出させたドレッシング治具と、 前記電極の少なくとも一方と前記砥粒層との抵抗値を測
定する離間量検出機構と、 前記ドレッシング治具を各電極の先端面が砥石の研削面
と対向するように支持するとともに、前記離間量検出機
構からの出力信号に応じてドレッシング治具を砥石に向
けて進退させる離間量調整機構と、 各電極と研削面との間隙に電解研削液を供給するための
給液手段と、 各電極間に通電する給電機構とを具備したことを特徴と
する電解ドレッシング装置。
3. An apparatus for electrolytically dressing a ground surface of an abrasive layer while rotating a grindstone having an abrasive layer using a conductive binder around an axis, wherein the pair of electrodes are supported in an insulated state. A dressing jig exposing the tip surfaces of these electrodes, a separation amount detecting mechanism for measuring a resistance value between at least one of the electrodes and the abrasive layer, and a tip surface of each electrode having the dressing jig. Along with supporting the grinding surface of the grindstone so as to face it, a separation amount adjusting mechanism for moving the dressing jig toward and away from the grinding stone in accordance with an output signal from the separation amount detection mechanism, and a gap between each electrode and the grinding surface. An electrolytic dressing apparatus, comprising: a liquid supply means for supplying an electrolytic grinding liquid; and a power supply mechanism for supplying a current between the electrodes.
【請求項4】前記ドレッシング治具は、絶縁体に一対の
電極を互いに離間して埋設し、前記絶縁体の先端に砥石
の外周部の肉層より僅かに大きい幅のスリットを形成
し、前記各電極の先端を前記スリットの底面に間隔を空
けて露出させてなり、前記スリットに砥石の外周部を差
し入れた状態で電解ドレッシングを行なうことを特徴と
する請求項3記載の電解ドレッシング装置。
4. The dressing jig includes a pair of electrodes buried in an insulator at a distance from each other, and a slit having a width slightly larger than a thickness of an outer peripheral portion of the grindstone is formed at a tip of the insulator. 4. The electrolytic dressing apparatus according to claim 3, wherein the tip of each electrode is exposed at an interval on the bottom surface of the slit, and the electrolytic dressing is performed in a state where an outer peripheral portion of a grindstone is inserted into the slit.
【請求項5】前記ドレッシング治具には、前記各電極の
間に給液手段として給液路が形成されていることを特徴
とする請求項3または4記載の電解ドレッシング装置。
5. The electrolytic dressing apparatus according to claim 3, wherein a liquid supply path is formed as a liquid supply means between the electrodes in the dressing jig.
JP1302713A 1989-11-21 1989-11-21 Electrolytic dressing method and apparatus Expired - Lifetime JP2580806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1302713A JP2580806B2 (en) 1989-11-21 1989-11-21 Electrolytic dressing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1302713A JP2580806B2 (en) 1989-11-21 1989-11-21 Electrolytic dressing method and apparatus

Publications (2)

Publication Number Publication Date
JPH03166056A JPH03166056A (en) 1991-07-18
JP2580806B2 true JP2580806B2 (en) 1997-02-12

Family

ID=17912284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1302713A Expired - Lifetime JP2580806B2 (en) 1989-11-21 1989-11-21 Electrolytic dressing method and apparatus

Country Status (1)

Country Link
JP (1) JP2580806B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658578B2 (en) * 2004-12-09 2011-03-23 独立行政法人理化学研究所 Nozzle ELID grinding method and apparatus
CN114603407B (en) * 2022-04-08 2023-06-09 山东农业大学 Online detection device and method for movable blade grinding of drum-type shredding roller

Also Published As

Publication number Publication date
JPH03166056A (en) 1991-07-18

Similar Documents

Publication Publication Date Title
US20100012628A1 (en) Abrasion assisted wire electrical discharge machining process
US5194126A (en) Method and device for dressing grinding wheels
JPH11239970A (en) Grinding method by energized dressing and device for it
JP2580807B2 (en) Electrolytic dressing method and apparatus
JP2001054866A (en) Electrical discharge forming unit and cutting device
JP2580806B2 (en) Electrolytic dressing method and apparatus
JP3530562B2 (en) Lens grinding method
JP2018103356A (en) Blade processing device and blade processing method
JP6434113B2 (en) Work processing apparatus and work processing method
JP3494463B2 (en) Whetstone electrolytic dressing device
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JPH01121172A (en) Grinding attachment equipped with electric discharge forming area for blade edge
JP2639811B2 (en) Discharge forming method of blade edge
JP4420490B2 (en) ELID surface grinder electrode support apparatus and method
JP3345532B2 (en) Electrolytic dressing grinding method and equipment
JPH06254754A (en) Mirror grinding device and method
JP2684624B2 (en) Grinding cutting device
JP2708249B2 (en) Grinding method for ceramic members
JPH05277937A (en) Mounting type discharge truing/dressing
JPH06155294A (en) Electrolytic dressing type grinding device
JPS62120918A (en) Method and device for cutting difficult-to-cut material
JPH05277939A (en) Specular machineing and its device using mounting type discharge truing/dressing and nonconductor film by electrolysis
JP3147982B2 (en) Lens grinding equipment