JP2580330B2 - Wear resistant coating - Google Patents

Wear resistant coating

Info

Publication number
JP2580330B2
JP2580330B2 JP1151953A JP15195389A JP2580330B2 JP 2580330 B2 JP2580330 B2 JP 2580330B2 JP 1151953 A JP1151953 A JP 1151953A JP 15195389 A JP15195389 A JP 15195389A JP 2580330 B2 JP2580330 B2 JP 2580330B2
Authority
JP
Japan
Prior art keywords
layer
film
coating
coating layer
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1151953A
Other languages
Japanese (ja)
Other versions
JPH0317251A (en
Inventor
孜 池田
通隆 勝田
廣之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO KOBERUKO TSUURU KK
Original Assignee
SHINKO KOBERUKO TSUURU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15529818&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2580330(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SHINKO KOBERUKO TSUURU KK filed Critical SHINKO KOBERUKO TSUURU KK
Priority to JP1151953A priority Critical patent/JP2580330B2/en
Publication of JPH0317251A publication Critical patent/JPH0317251A/en
Application granted granted Critical
Publication of JP2580330B2 publication Critical patent/JP2580330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フライス加工,切削加工,穿孔加工等の加
工に使用される工作工具の表面コーティング材として有
用な耐摩耗性皮膜に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant coating useful as a surface coating material for a machine tool used for machining such as milling, cutting, and drilling. .

[従来の技術] 高速度工具鋼や超硬合金工具鋼等を製作する場合は、
耐摩耗性等の性能をより優れたものとする目的で、工具
基材の表面にTi等の窒化物や炭化物よりなる耐摩耗性皮
膜を形成することが行なわれている。
[Prior art] When manufacturing high-speed tool steel or cemented carbide tool steel,
In order to improve the performance such as wear resistance, a wear-resistant film made of nitride or carbide such as Ti is formed on the surface of a tool base material.

基材表面に耐摩耗性皮膜を形成する方法としては、従
来よりCVD法(化学的蒸着法)およびPVD法(物理的蒸着
法)が知られている。しかし前者の方法では母材が高温
処理に曝される為母材特性が劣化するおそれがあり、母
材特性も重要視される工具の場合は後者の方法が好まれ
る傾向がある。
As a method of forming a wear-resistant film on the surface of a base material, a CVD method (chemical vapor deposition method) and a PVD method (physical vapor deposition method) are conventionally known. However, in the former method, the base material is exposed to a high-temperature treatment, so that the base material characteristics may be deteriorated. In the case of a tool in which the base material characteristics are also regarded as important, the latter method tends to be preferred.

そこで比較的低温条件でコーティング処理することの
できる高周波放電プラズマCVD法,反応性イオンプレー
ティング法,スパッタリング法等が採用されるに至って
いる。
Therefore, a high-frequency discharge plasma CVD method, a reactive ion plating method, a sputtering method, and the like, which can perform a coating treatment under a relatively low temperature condition, have been adopted.

工具等の耐摩耗性皮膜としてはイオンプレーティング
法によるTiNやTiCが汎用されており、特に高温耐酸化性
(耐熱性)の優れたTiN膜が広く実用化されている。即
ちTiNはTiCより耐熱性に優れている為、切削時の加工熱
や摩擦熱によって昇温する工具すくい面をクレータ摩耗
から保護する機能を発揮する。しかしTiNはTiCに比べて
低硬度である為被削材と接する逃げ面に発生するフラン
ク摩耗に対してはむしろ脆弱であり、フランク摩耗に対
してはTiCの方が高い耐久性を示す。
TiN and TiC by ion plating are widely used as wear-resistant films for tools and the like, and in particular, TiN films having excellent high-temperature oxidation resistance (heat resistance) are widely used. That is, since TiN has better heat resistance than TiC, it has a function of protecting the rake face of a tool, which is heated by machining heat or frictional heat during cutting, from crater wear. However, since TiN has a lower hardness than TiC, it is rather vulnerable to flank wear generated on a flank in contact with a work material, and TiC exhibits higher durability against flank wear.

近年、切削速度の一層の高速化が要望されており、切
削条件がより過酷化する傾向にある為、上記した様な従
来のTiN皮膜程度ではこの要請に応えきれなくなってい
る。
In recent years, there has been a demand for higher cutting speeds, and cutting conditions have tended to be more severe. Therefore, the above conventional TiN film cannot meet this demand.

そこで耐熱性や硬度が更に優れた皮膜として、イオン
プレーティング法やスパッタリング法によるTiAlN,TiAl
C,或はTiAlCN等の皮膜が提案された[特開昭62−56565,
J.Vac.Sci.Technol.A第4(6)巻,1986年,第2717頁,
およびJ.of Solid State Chemistry,70,1987年,第318
〜322頁]。
Therefore, as a film with even better heat resistance and hardness, TiAlN, TiAl by ion plating method or sputtering method
Coatings such as C, or TiAlCN have been proposed [JP-A-62-56565,
J.Vac.Sci.Technol.A 4 (6), 1986, p.
And J. of Solid State Chemistry, 70, 1987, 318
322 pages].

[発明が解決しようとする課題] PVD法はイオンのエネルギーを利用した低温被覆法で
あるので、基材表面と皮膜間には、CVD法において見ら
れた様な熱による拡散層は存在しない。従ってPVD法に
よって形成された皮膜は、CVD法によって形成された皮
膜に比べて密着性が劣るのが一般的である。
[Problems to be Solved by the Invention] Since the PVD method is a low-temperature coating method using ion energy, a diffusion layer due to heat as in the CVD method does not exist between the substrate surface and the film. Therefore, a film formed by the PVD method generally has inferior adhesion to a film formed by the CVD method.

一方最近では耐摩耗性を改善して寿命延長を図るとい
う観点から、皮膜を厚膜化する傾向が見られるが、厚膜
化するにつれて皮膜の内部応力が増大し、皮膜にクラッ
クが発生したり膜密着性が低下して皮膜剥離の原因にな
る。尚TiN皮膜に代わり得る高耐摩耗性皮膜として、(A
l,Ti)(N,C)系皮膜が提案されていることは上述した
通りであるが、これらの皮膜はTiN皮膜に比べて内部応
力が2倍以上も高くなるので、TiN皮膜を形成する場合
よりもできるだけ薄い膜厚を形成して実用されている。
On the other hand, recently, from the viewpoint of improving the wear resistance and extending the life, there is a tendency to increase the thickness of the coating, but as the thickness increases, the internal stress of the coating increases, and cracks may occur in the coating. The adhesiveness of the film is reduced, which causes peeling of the film. In addition, (A)
As described above, l, Ti) (N, C) -based coatings have been proposed. However, since these coatings have an internal stress more than twice as high as that of the TiN coating, a TiN coating is formed. It is practically used by forming a film thickness as thin as possible.

こうしたことから、特に(Al,Ti)(N,C)系皮膜等の
優れた特性を十分に発揮し得る様な、皮膜形成技術の改
善が望まれている。
In view of the above, there is a demand for an improvement in a film forming technique that can sufficiently exhibit particularly excellent properties such as an (Al, Ti) (N, C) film.

本発明はこうした事情に着目してなされたものであっ
て、比較的低温条件で製膜することができると共にそれ
にもかかわらず、密着性や膜強度に優れ、しかもクレー
タ摩耗やフランク摩耗に対する抵抗力の優れた耐摩耗性
皮膜を提供することを目的とするものである。
The present invention has been made in view of such circumstances, and it is possible to form a film under relatively low temperature conditions, and nevertheless, has excellent adhesion and film strength, and has a resistance to crater wear and flank wear. It is an object of the present invention to provide an abrasion-resistant film excellent in the above.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、TiCXN1-X(但し0
≦X≦0.6)で示される化学組成からなり、層厚が0.3〜
6μmの皮膜層が基材表面に形成されると共に、(AlyT
i1-y)(NzC1-z)(但し0.05≦y≦0.75,0.6≦z≦1)
で示される化学組成からなり、層厚が0.6〜8μmの皮
膜層が最上層に形成され、少なくとも2層からなる点に
要旨を有する耐摩耗性皮膜である。
[Means for Solving the Problems] The present invention which has achieved the above object is TiC X N 1-X (where 0
≦ X ≦ 0.6), and the layer thickness is 0.3 to
A 6 μm coating layer is formed on the substrate surface, and (Al y T
i 1-y ) (N z C 1-z ) (however, 0.05 ≦ y ≦ 0.75, 0.6 ≦ z ≦ 1)
This is a wear-resistant coating having a chemical composition represented by the formula (1) and having a thickness of 0.6 to 8 μm formed on the uppermost layer and having at least two layers.

[作用] 本発明は上述の如く構成されるが、要するにTiCXN1-X
(但し0≦X≦0.6)で示される化学組成からなる皮膜
層を基材表面に形成することによって基材表面との密着
性が達成されると共に、(AlyTi1-y)(NzC1-z)(但し
0.05≦y≦0.75,0.6≦z≦1)で示される化学組成から
なる皮膜層を最上層に形成することによって、膜強度に
おいて優れた耐摩耗性皮膜が実現できることを見出し、
本発明を完成した。尚本発明の皮膜においては、上記2
つの皮膜層の間に、夫々の皮膜層組成を構成する成分を
混合した化学組成、または2つの皮膜層組成に亘って連
続的に変化した化学組成の中間層を介在することが好ま
しく、この中間層を介在させることによって本発明の効
果がより一層顕著になる。
[Operation] The present invention is configured as described above. In short, TiC X N 1-X
By forming a coating layer having a chemical composition represented by the formula (0 ≦ X ≦ 0.6) on the substrate surface, adhesion to the substrate surface is achieved and (Al y Ti 1-y ) (N z C 1-z ) (however,
By forming a film layer having a chemical composition represented by 0.05 ≦ y ≦ 0.75, 0.6 ≦ z ≦ 1) on the uppermost layer, it was found that an abrasion-resistant film excellent in film strength could be realized.
The present invention has been completed. In the film of the present invention, the above 2)
It is preferable that an intermediate layer having a chemical composition in which the components constituting the respective coating layer compositions are mixed or a chemical composition continuously changing over the two coating layer compositions is interposed between the two coating layers. By interposing a layer, the effect of the present invention becomes more remarkable.

上述の各皮膜層を形成するに当たっては、カソードを
蒸発源とするアーク放電によって金属成分をイオン化す
る方法、即ちイオンプレーティング法やスパッタリング
法等に代表されるPVD法によって行なうことができる。
これらの方法のうち例えばイオンプレーティング法で行
なう場合を代表的に取り上げて説明する。
In forming each of the above-mentioned coating layers, a method of ionizing a metal component by arc discharge using a cathode as an evaporation source, that is, a PVD method represented by an ion plating method, a sputtering method, or the like can be performed.
Of these methods, for example, the case where the ion plating method is used will be described as a representative example.

この方法は、前記の様にイオン化した金属成分をN2
囲気又はN2/CH4雰囲気中で反応させて窒化物や窒炭化物
を被覆するものである。カソードとしては、Ti(C,N)
系皮膜の形成を目的とするときはTiを使用すればよく、
一方(Al,Ti)(C,N)系皮膜の形成を目的とするときは
TiおよびAlを夫々個別に使用することもできるが、目的
組成そのものからなるAlXTi1-Xをターゲットとすれば、
皮膜組成のコントロールが容易である。
In this method, the metal component ionized as described above is reacted in an N 2 atmosphere or an N 2 / CH 4 atmosphere to coat a nitride or a nitrocarbide. For the cathode, Ti (C, N)
For the purpose of forming a system film, Ti may be used,
On the other hand, when the purpose is to form a (Al, Ti) (C, N) coating,
Ti and Al can be used individually, but if targeting Al X Ti 1-X consisting of the target composition itself,
Easy control of film composition.

各合金成分の蒸発は、数十アンペア以上の大電流域で
行なわれるため、カソード物質の組成ずれは殆んど生じ
ない。しかもイオン化効率が高くて反応性に富み、基板
にバイアス電圧を印加することによって密着性の優れた
皮膜が得られる。
Since the evaporation of each alloy component is performed in a large current range of several tens of amperes or more, there is almost no composition deviation of the cathode material. In addition, a film having high ionization efficiency and high reactivity and having excellent adhesion can be obtained by applying a bias voltage to the substrate.

尚形成された皮膜のC固溶量はX線分析やオージェ分
析等によって求めることができ、該分析値とCH4流量の
相関を知ることにより、より一層正確な組成制御を行な
うことができる。
The amount of solid solution of C in the formed film can be determined by X-ray analysis, Auger analysis, or the like, and more accurate composition control can be performed by knowing the correlation between the analysis value and the CH 4 flow rate.

本発明において、基材表面に形成される皮膜層の組成
(以下第1皮膜層と呼ぶことがある)は、TiCXN1-X(但
し0≦X≦0.6)であることが必要である。第1皮膜層
の化学組成を上記の様に限定したのは、基材表面との密
着性を考慮した為である。尚第1皮膜層は、(Al,Ti)
(N,C)皮膜よりも低い内部応力を有するTiN(x=0の
とき)でも、本発明の効果は達成されるが、更に高耐摩
耗性を発揮させる為にはTi(C,N)系皮膜(x≠0のと
き)であることが望ましい。その理由は次の通りであ
る。
In the present invention, the composition of the coating layer formed on the substrate surface (hereinafter, sometimes referred to as the first coating layer) must be TiC X N 1-X (where 0 ≦ X ≦ 0.6). . The reason why the chemical composition of the first coating layer is limited as described above is that adhesion to the substrate surface is considered. The first coating layer is (Al, Ti)
The effect of the present invention can be achieved even with TiN (when x = 0) having an internal stress lower than that of the (N, C) film, but Ti (C, N) is required to exhibit higher wear resistance. It is desirable to use a system coating (when x ≠ 0). The reason is as follows.

TiCは常温硬度(Hv)が3100kg/mm2と高い反面、耐熱
性に欠け酸化され易いという欠点があり、一方TiNは高
温での耐酸化性に優れ、且つ比較的低温条件でも密着性
のよい皮膜層を容易に形成することができるが、Hvが20
00kg/mm2以下とやや低い難点がある。
TiC has a high normal temperature hardness (Hv) of 3100 kg / mm 2 , but has the disadvantage of lacking heat resistance and being easily oxidized, while TiN has excellent oxidation resistance at high temperatures and good adhesion even at relatively low temperatures. The coating layer can be easily formed, but Hv is 20
00kg / mm 2 or less and there is a slightly lower difficulties.

これに対し一般式TiCXN1-Xで示される化学組成のTiN
−TiC固溶体系皮膜層においては、C固溶量(x)を適
切に調整することにより、密着性が良く耐酸化性にも優
れたTiNの特性を備えつつTiCの高硬度をも得ることがで
きる。即ち上記第1皮膜層は、TiNの特性を備えつつC
固溶量が増加するに従って(xが増加するに従って)硬
度が増し、耐フランク摩耗の面でも優れた性能を発揮す
るものである。xが増加するに伴って皮膜層は高硬度化
し、フランク摩耗は解消されると共に、膜の色調は金色
から赤味を帯びはじめ、C量の増加につれてさらに赤色
から金色に変化し、密着性および耐酸化性についてはこ
れを満足する性能を維持する。一方xが0.6を超えると
密着性と耐酸化性が劣化して、工具部材等のエッジ部分
に微小な膜の剥離が発生し、クレータ摩耗を起こし易く
なる。また成膜速度はC固溶量の増加に伴なって低下
し、xが0.6を超える領域では低下が著しい。上記理由
から、本発明ではxの範囲を0〜0.6と定めた。
In contrast, TiN of the chemical composition represented by the general formula TiC X N 1-X
-In the TiC solid solution system coating layer, by appropriately adjusting the amount of solid solution C (x), it is possible to obtain the high hardness of TiC while having the characteristics of TiN with good adhesion and excellent oxidation resistance. it can. That is, the first coating layer has the characteristics of TiN and
As the amount of solid solution increases (as x increases), the hardness increases, and excellent performance is exhibited also in terms of flank wear resistance. As x increases, the film layer becomes harder, flank wear is eliminated, and the color tone of the film starts to change from gold to reddish, and further changes from red to gold with an increase in the amount of C. As for the oxidation resistance, the performance satisfying this is maintained. On the other hand, if x exceeds 0.6, adhesion and oxidation resistance deteriorate, and a minute film peels off at the edge of a tool member or the like, and crater wear easily occurs. Further, the film formation rate decreases with an increase in the amount of solid solution of C, and decreases remarkably in a region where x exceeds 0.6. For the above reason, the range of x is set to 0 to 0.6 in the present invention.

尚第1皮膜層の厚さは0.3〜6μmにする必要があ
る。層厚が0.3μm未満では最上層に形成される皮膜層
の内部応力を適切に緩和することができず、一方層厚が
6μmを超えると膜自体の強度が低下する。
Note that the thickness of the first coating layer needs to be 0.3 to 6 μm. When the layer thickness is less than 0.3 μm, the internal stress of the film layer formed on the uppermost layer cannot be appropriately reduced, while when the layer thickness exceeds 6 μm, the strength of the film itself decreases.

次に、最上層に形成される皮膜層(以下表面層という
ことがある)の化学組成は、 (AlyTi1-y)(NzC1-z) 但し 0.05≦y≦0.75 0.6≦z≦1 であることが必要であり、好ましくは0.6≦y≦0.7であ
る。
Next, the chemical composition of the coating layer formed on the uppermost layer (hereinafter sometimes referred to as a surface layer) is (Al y Ti 1-y ) (N z C 1-z ) where 0.05 ≦ y ≦ 0.75 0.6 ≦ z ≤ 1 and preferably 0.6 ≤ y ≤ 0.7.

上記表面層組成からなる固溶体について、窒化物系で
代表して説明する。この固溶体はAlN−TiNを端組成とす
る固溶体であり、種々の成分範囲について調べた結果、
第1図に示すように内部応力(圧縮応力)はTiNの1.9×
1010dyne/cm2に比べて(AlyTi1-y)N(yが0.05以上)
ではy=0.6までは平均4.7×1010dyne/cm2もの値を示す
ことが分かる。更にAlN成分が増加すると、それにつれ
て内部応力の低下が認められ、y=0.7で結晶構造がNaC
l型(Bl構造)からZnS(ウルツァイト型)に変化して内
部応力は2.8×1010dyne/cm2となる。
The solid solution composed of the above surface layer composition will be described using a nitride system as a representative. This solid solution is a solid solution having AlN-TiN as an end composition, and as a result of examining various component ranges,
As shown in Fig. 1, the internal stress (compressive stress) is 1.9x that of TiN.
(Al y Ti 1-y ) N (y is 0.05 or more) compared to 10 10 dyne / cm 2
It can be seen that the average shows a value of 4.7 × 10 10 dyne / cm 2 up to y = 0.6. As the AlN component further increases, the internal stress decreases accordingly, and at y = 0.7, the crystal structure becomes NaC
The internal stress is changed from 2.8 (Bl structure) to ZnS (Wurzite type) to 2.8 × 10 10 dyne / cm 2 .

第2図は(AlyTi1-y)N皮膜層においてyを変化させ
た場合の硬度の変化を示すグラフである。
FIG. 2 is a graph showing a change in hardness when y is changed in the (Al y Ti 1-y ) N coating layer.

第2図から明らかな様に、yが0から大きくなるにつ
れてTiNのHv≒2000kg/mm2から硬度が増大し、yが0.6の
ときにHv≒3000kg/mm2程度の最大値を示し、yが0.6か
ら更に大きくなるにつれて結晶構造の変化に伴なう硬度
低下を示す。そしてyが0.75になるとTiNの硬度とほぼ
等しくなり、0.75を超えるとTiNの硬度よりも低下す
る。即ちAlN固溶度(y)が0.75を超える場合は、皮膜
層組成がAlNに近似してくる結果、皮膜層の軟質化を招
き、十分な硬度が得られなくなり、フランク摩耗を容易
に引き起す。
As is clear from FIG. 2 , the hardness increases from Hv ≒ 2000 kg / mm 2 of TiN as y increases from 0, and shows a maximum value of HvN3000 kg / mm 2 when y is 0.6. Shows a decrease in hardness accompanying a change in the crystal structure as the value increases from 0.6. When y becomes 0.75, the hardness becomes almost equal to the hardness of TiN, and when y exceeds 0.75, the hardness becomes lower than the hardness of TiN. That is, when the AlN solid solubility (y) exceeds 0.75, the composition of the coating layer becomes close to that of AlN, resulting in softening of the coating layer, insufficient hardness being obtained, and flank wear easily occurring. .

以上の結果から、本発明においては耐摩耗性および内
部応力の両者を考慮し、yの値(AlN固溶度)は0.05〜
0.75と定めた。尚yのより好ましい範囲は0.6〜0.7であ
る。
From the above results, in the present invention, considering both the wear resistance and the internal stress, the value of y (AlN solid solubility) is 0.05 to
0.75. The more preferable range of y is 0.6 to 0.7.

また本発明では炭窒化物を形成することによってTiC
の高硬度性(常温硬度Hv:約3100kg/mm2)を発揮させる
ものである。即ち本発明の組成式においてzの値が減少
するにつれて硬度が大となり耐摩耗性は向上する。
In the present invention, TiC is formed by forming carbonitride.
High hardness (normal temperature hardness Hv: about 3100 kg / mm 2 ). That is, as the value of z in the composition formula of the present invention decreases, the hardness increases and the wear resistance improves.

第3図は、超硬チップ(WC−10%Coを主成分とする)
に(Al0.65Ti0.35)に(NzC1-z)[但しz=0.4,0.6,0.
8,0.9,1]を3μm被覆し、被削材S50Cを切削速度170m/
min,送り速度0.25mm/rev,切り込み0.1mmで切削した時の
15分後のクレータ摩耗量を測定した結果を示す。
Fig. 3 shows carbide tips (mainly composed of WC-10% Co)
(Al 0.65 Ti 0.35 ) to (N z C 1-z ) [where z = 0.4, 0.6, 0.
8,0.9,1] with a coating speed of 170m /
min, feed rate 0.25mm / rev, cutting depth 0.1mm
The result of measuring the amount of crater wear after 15 minutes is shown.

この結果にみられるようにzが0.6未満になると耐酸
化性が低下してクレータ摩耗を起こし易くなる。z≧0.
6の範囲では耐酸化性の顕著な低下はみられない。従っ
て本発明ではzの範囲は0.6〜1.0と定めた。
As can be seen from these results, when z is less than 0.6, the oxidation resistance is reduced and crater wear is liable to occur. z ≧ 0.
In the range of 6, no remarkable decrease in oxidation resistance is observed. Therefore, in the present invention, the range of z is determined to be 0.6 to 1.0.

尚後述する実施例で明らかにするが、表面層の層厚が
0.6μm未満の場合は第1皮膜層による効果のみが主体
となって耐摩耗性が不十分となり、一方8μmを超える
と膜自体にクラックが発生し易くなり、強度が不十分と
なる。従って本発明では、表面層の層厚は0.6〜8μm
と定めた。
In addition, as will be clarified in an example described later, the thickness of the surface layer is
When the thickness is less than 0.6 μm, only the effect of the first coating layer is the main effect, and the abrasion resistance becomes insufficient. On the other hand, when it exceeds 8 μm, cracks easily occur in the film itself, and the strength becomes insufficient. Therefore, in the present invention, the thickness of the surface layer is 0.6 to 8 μm.
It was decided.

本発明においては、第1皮膜層と表面層の間に、両皮
膜層成分の混合または傾斜した組成の中間層を介在する
のが好ましい。この中間層は、真空槽内に第1皮膜層形
成用Ti製カソードおよび表面層形成用AlyTi1-y製カソー
ドを設け、N2またはN2/CH4雰囲気中で、同時にまたは出
力を制御しつつアーク放電を生じさせることによって形
成することができる。この様な中間層を、第1皮膜層と
表面層の間に介在させることによって、表面層の内部応
力を緩和しつつ基材との密着性が優れた耐摩耗性皮膜が
実現できる。またこの様な構成を採用することによっ
て、(AlyTi1-y)(NzC1-z)単一皮膜を形成するよりも
全層厚を大きくすることができ、耐熱性や耐摩耗性がよ
り優れた皮膜となる。
In the present invention, it is preferable that an intermediate layer having a mixture of the components of the two coating layers or an inclined composition is interposed between the first coating layer and the surface layer. This intermediate layer is provided with a Ti cathode for forming the first coating layer and an Al y Ti 1-y cathode for forming the surface layer in a vacuum chamber, and simultaneously or in the N 2 or N 2 / CH 4 atmosphere. It can be formed by causing arc discharge while controlling. By interposing such an intermediate layer between the first coating layer and the surface layer, it is possible to realize a wear-resistant coating having excellent adhesion to the substrate while relaxing internal stress of the surface layer. In addition, by adopting such a configuration, the total thickness can be increased as compared with forming a (Al y Ti 1-y ) (N z C 1-z ) single film, and heat resistance and abrasion resistance can be improved. A film with better properties is obtained.

尚後述する実施例から明らかな様に、中間層の層厚
は、0.2μm程度で応力緩和の効果が認められ、最大で
も0.5μmあれば十分である。
As will be apparent from the examples described later, the effect of stress relaxation is recognized when the thickness of the intermediate layer is about 0.2 μm, and 0.5 μm at the maximum is sufficient.

以下実施例について説明するが、本発明は下記の実施
例に限定されるものではなく、前・後記の趣旨に徴して
適宜設計変更することは本発明の技術的範囲に含まれ
る。
Hereinafter, embodiments will be described. However, the present invention is not limited to the following embodiments, and appropriate design changes in the spirit of the above and below are included in the technical scope of the present invention.

[実施例] 実施例1 Tiカソード電極およびAlyTi1-y(y=0.05〜0.75)の
組成のカソード電極を用い、カソードアーク方式イオン
プレーティング装置の基板ホルダーに超硬合金製チップ
(WC−10%Coを主成分とする)を取付けた。尚本装置に
は、耐摩耗性皮膜形成状態の均一性を確保する為の基材
回転機構等及びヒータを設置した。
[Example] Example 1 Using a Ti cathode electrode and a cathode electrode having the composition of Al y Ti 1-y (y = 0.05 to 0.75), a cemented carbide chip (WC) was mounted on a substrate holder of a cathode arc type ion plating apparatus. -10% Co as a main component). The apparatus was provided with a substrate rotating mechanism and a heater for ensuring uniformity of the state of formation of the abrasion-resistant film.

成膜に当たっては、ヒータによって基材温度を450℃
に加熱保持したまま、基材に−70Vのバイアス電圧を印
加すると共に、装置内に高純度N2ガスを5×10-2Torrま
で導入し、アーク放電を開始し、基材表面にTi(C
xN1-x)系皮膜層(第1皮膜層),中間層および(AlyTi
1-y)(NzC1-z)系皮膜層(表面層)の順に積層して皮
膜を形成した。
During film formation, the substrate temperature was set to 450 ° C with a heater.
While maintaining the heating, a bias voltage of -70 V is applied to the substrate, high-purity N 2 gas is introduced into the apparatus to 5 × 10 -2 Torr, an arc discharge is started, and Ti ( C
x N 1-x ) -based coating layer (first coating layer), intermediate layer and (Al y Ti
1-y ) ( NzC1 -z ) -based film layers (surface layers) were laminated in this order to form films.

層厚の測定は、基板ホルダーに同時に取り付けた基材
の内の1個を破断し、層断面を走査型電子顕微鏡で観察
して測定したものである。さらに層組成の定量は、同じ
く同時に取り付けた基材につきオージェ分光分析法によ
り層深さ方向の分析を行なった。その結果第1皮膜層お
よび表面層の厚さ方向には濃度変化がなく一定であっ
た。その分析結果の一例は、前記第4図の通りであっ
た。膜中の金属成分比Ti/Alはカソード成分比とずれが
なく殆んど同一といえた。
In the measurement of the layer thickness, one of the substrates simultaneously attached to the substrate holder was broken, and the layer cross section was observed and measured with a scanning electron microscope. Further, for the quantitative determination of the layer composition, the base material attached at the same time was analyzed in the layer depth direction by Auger spectroscopy. As a result, there was no change in concentration in the thickness direction of the first coating layer and the surface layer, and the density was constant. An example of the analysis result is as shown in FIG. The metal component ratio Ti / Al in the film was almost the same without any deviation from the cathode component ratio.

得られた各皮膜について、下記の切削条件により25分
間の切削試験に供したときのフランク摩耗幅を測定し
た。
For each of the obtained coatings, the flank wear width when subjected to a cutting test for 25 minutes under the following cutting conditions was measured.

切削条件: 被削材 S50C 切削速度 170、200m/min 送り速度 0.25mm/rev 切り込み 0.1mm その結果を各層の組成および層厚と共に第1表に示
す。尚第1表には比較の為、実施例1で示した手段と同
様にして(Al,Ti)(C,N)系単層膜を形成したときのも
の(No.8〜10)、および第1皮膜層が本発明の範囲外の
もの(No.11)についても、その組成,層膜およびフラ
ンク摩耗幅を示した。
Cutting conditions: Work material S50C Cutting speed 170, 200m / min Feed rate 0.25mm / rev Cutting depth 0.1mm The results are shown in Table 1 together with the composition and thickness of each layer. For comparison, Table 1 shows the results when a (Al, Ti) (C, N) -based monolayer film was formed in the same manner as in Example 1 (Nos. 8 to 10), and The composition, the layer film and the flank wear width of the first coating layer out of the range of the present invention (No. 11) were also shown.

第1表より明らかな様に、比較例に比べて本発明例は
いずれも耐摩耗性に優れていた。
As is clear from Table 1, all of the examples of the present invention were superior to the comparative examples in abrasion resistance.

次に超硬ドリルへの適用例を以下に示す。 Next, an example of application to a carbide drill will be described below.

実施例2 6mmφの(WC−9.5%Coを主成分とする)超硬ドリルに
実施例1と同様に各種の皮膜を形成した。
Example 2 Various coatings were formed on a 6 mmφ carbide drill (having WC-9.5% Co as a main component) in the same manner as in Example 1.

得られた各皮膜について、下記の条件にて切削を行な
った。
The obtained coatings were cut under the following conditions.

切削条件: 被削材 S50C,13mmt(BH230〜250) 切削速度 80m/min 送り速度 0.2mm/rev 潤 滑 エマルジョンによる このときの穴明け個数の結果を、各皮膜層の組成およ
び層厚と共に第2表に示す。
Cutting conditions: Work material S50C, 13mm t (BH230-250) Cutting speed 80m / min Feeding speed 0.2mm / rev Lubrication Emulsion The results are shown in Table 2.

第2表より明らかな様に本発明方法で得られた工具
は、比較例に比べて加工個数の大幅な増加が認められ、
耐摩耗性が良好であった。
As is evident from Table 2, the tool obtained by the method of the present invention has a remarkably increased number of processed parts as compared with the comparative example.
The wear resistance was good.

次にハイスドリルへの適用例を以下に示す。 Next, an example of application to a high speed drill is shown below.

実施例3 6mmφハイスドリルに実施例1と同じ様にして各種皮
膜を形成した。
Example 3 Various films were formed on a 6 mmφ high-speed drill in the same manner as in Example 1.

得られた各皮膜について、下記の条件にて切削を行な
った。
The obtained coatings were cut under the following conditions.

切削条件: 被削材 S50C,10mmt 切削速度 30m/min 送り速度 0.18mm/rev 潤 滑 エマルジョンによる このときの穴明け個数の結果を、各皮膜層の組成およ
び層厚と共に第3表に示す。
Cutting conditions: Work material S50C, 10mm t Cutting speed 30m / min Feeding speed 0.18mm / rev Lubrication Emulsion The results of the number of perforations are shown in Table 3 together with the composition and thickness of each coating layer.

第3表より明らかな様に本発明方法で得られた工具
は、比較例に比べて加工個数の大幅な増加がみられ、耐
摩耗性が良好であった。
As is evident from Table 3, the tool obtained by the method of the present invention showed a remarkable increase in the number of processed parts as compared with the comparative example, and had good wear resistance.

[発明の効果] 本発明は以上の様に構成されているので、TiNを基本
としたTi(C,N)系皮膜元来の良好な基材密着性を有す
ると共に、表面層が、IIIb族の窒化物であるAlNにTiが
固溶した皮膜層である為、耐熱性,熱伝導性等に関し、
AlNに近似した優れた特性が発揮される。
Since the present invention is constituted as described above [Effect of the invention], TiN basic and the Ti (C, N) -based film which has originally good adhesion to a substrate, the surface layer is, III b Since it is a film layer in which Ti is dissolved in AlN, which is a group III nitride, heat resistance, thermal conductivity, etc.
Excellent characteristics similar to AlN are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は(AlyTi1-y)N系皮膜層においてyを変化させ
た場合の内部応力の変化を示すグラフ、第2図は(AlyT
i1-y)N系皮膜層においてyを変化させた場合の硬度の
変化を示すグラフ、第3図は(Al0.65Ti0.35)(N
zC1-z)系皮膜においてzを変化させたときの硬度チッ
プの切削時のクレータ摩耗量を示すグラフ、第4図は
(a),(b)は本発明の皮膜のオージエ分析結果例を
示すグラフである。
Figure 1 is a graph showing a change in the internal stress in the case of changing the y in (Al y Ti 1-y) N -based coating layer, FIG. 2 (Al y T
i 1-y ) A graph showing the change in hardness when y is changed in the N-based coating layer. FIG. 3 shows (Al 0.65 Ti 0.35 ) (N
FIG. 4 is a graph showing the amount of crater wear during cutting of a hardness tip when z is changed in a z C 1-z ) -based coating. FIGS. FIG.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】TiCXN1-X(但し0≦X≦0.6)で示される
化学組成からなり、層厚が0.3〜6μmの皮膜層が基材
表面に形成されると共に、 (AlyTi1-y)(NzC1-z)(但し0.05≦y≦0.75,0.6≦z
≦1) で示される化学組成からなり、層厚が0.6〜8μmの皮
膜層が最上層に形成され、少なくとも2層からなること
を特徴とする耐摩耗性皮膜。
1. A consists chemical composition represented by TiC X N 1-X (where 0 ≦ X ≦ 0.6), with coating layer of thickness is 0.3~6μm is formed on the substrate surface, (Al y Ti 1-y ) (N z C 1-z ) (However, 0.05 ≦ y ≦ 0.75, 0.6 ≦ z
≦ 1) A wear-resistant coating comprising a chemical layer having a chemical composition represented by the following formula and having a layer thickness of 0.6 to 8 μm formed on the uppermost layer and comprising at least two layers.
【請求項2】前記2つの皮膜層の間に、夫々の皮膜層組
成を混合した化学組成、または2つの皮膜層組成に亘っ
て連続的に変化した中間層が介在されてなる請求項
(1)に記載の耐摩耗性皮膜。
2. A method according to claim 1, wherein a chemical composition obtained by mixing the respective coating layer compositions or an intermediate layer continuously changed over the two coating layer compositions is interposed between the two coating layers. The abrasion-resistant film described in (1).
JP1151953A 1989-06-14 1989-06-14 Wear resistant coating Expired - Lifetime JP2580330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151953A JP2580330B2 (en) 1989-06-14 1989-06-14 Wear resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151953A JP2580330B2 (en) 1989-06-14 1989-06-14 Wear resistant coating

Publications (2)

Publication Number Publication Date
JPH0317251A JPH0317251A (en) 1991-01-25
JP2580330B2 true JP2580330B2 (en) 1997-02-12

Family

ID=15529818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151953A Expired - Lifetime JP2580330B2 (en) 1989-06-14 1989-06-14 Wear resistant coating

Country Status (1)

Country Link
JP (1) JP2580330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180080845A (en) * 2017-01-05 2018-07-13 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance
KR20180080844A (en) * 2017-01-05 2018-07-13 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560541B2 (en) * 1990-11-28 1996-12-04 三菱マテリアル株式会社 Surface coated cermet cutting tool
JP2522768Y2 (en) * 1991-09-09 1997-01-16 三菱マテリアル株式会社 Hard layer composite coated drill
JP2638406B2 (en) * 1992-10-26 1997-08-06 神鋼コベルコツール株式会社 Wear resistant multilayer hard film structure
US5879823A (en) * 1995-12-12 1999-03-09 Kennametal Inc. Coated cutting tool
TW582317U (en) * 1997-07-07 2004-04-01 Mitsubishi Heavy Ind Ltd Gear shaper cutting apparatus
KR100348927B1 (en) * 1998-04-01 2002-08-14 미츠비시 쥬고교 가부시키가이샤 Gear shaping method and device and spiral bevel gear cutter
JP5063862B2 (en) * 2005-03-18 2012-10-31 Jfeスチール株式会社 Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP5118381B2 (en) * 2007-04-10 2013-01-16 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Tool with protective layer system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294812A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5729572A (en) * 1980-07-30 1982-02-17 Sumitomo Electric Ind Ltd Coated super-hard alloy member
JPS5938442Y2 (en) * 1983-11-04 1984-10-26 シチズン時計株式会社 Golden portable exterior parts
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JPS6442570A (en) * 1987-08-10 1989-02-14 Kobe Steel Ltd Wear resistant coating film
JP2540905B2 (en) * 1988-03-29 1996-10-09 三菱マテリアル株式会社 Surface coated cutting tool made of hard material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180080845A (en) * 2017-01-05 2018-07-13 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance
KR20180080844A (en) * 2017-01-05 2018-07-13 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance
KR102117429B1 (en) * 2017-01-05 2020-06-01 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance

Also Published As

Publication number Publication date
JPH0317251A (en) 1991-01-25

Similar Documents

Publication Publication Date Title
JP2644710B2 (en) Abrasion resistant coating
JP2638406B2 (en) Wear resistant multilayer hard film structure
JP2793696B2 (en) Wear resistant coating
US5580653A (en) Hard coating having excellent wear resistance properties, and hard coating coated member
JP3480086B2 (en) Hard layer coated cutting tool
JP2580330B2 (en) Wear resistant coating
KR101505222B1 (en) Tool with multilayered metal oxide coating and method for producing the coated tool
KR930010710B1 (en) Surface-coated hard member for cutting and abrasion resistant tools
JP5404232B2 (en) Cutting tools
JP3927621B2 (en) Hard coating, hard coating covering member and cutting tool
JP3572728B2 (en) Hard layer coated cutting tool
JP3045184B2 (en) Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool
JP3277558B2 (en) Manufacturing method of coated cutting tip
JP6984108B2 (en) Surface coating cutting tool and its manufacturing method
JP5241538B2 (en) Cutting tools
JP2926883B2 (en) Surface-coated hard member with excellent wear resistance
JPH10317123A (en) Crystalline oriented hard coated member
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JPH07197235A (en) Member coated with wear resistant film
JP2926882B2 (en) Surface-coated hard member with excellent wear resistance
JP2006111915A (en) Hard coating, coated tool with hard coating, and method for forming hard coating
JP2913763B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP4475230B2 (en) Hard coating
JP2000054113A (en) Wear resistant film
JPH0941126A (en) Cutting tool coated with hard film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13