JPH0317251A - Wear resistant film - Google Patents

Wear resistant film

Info

Publication number
JPH0317251A
JPH0317251A JP15195389A JP15195389A JPH0317251A JP H0317251 A JPH0317251 A JP H0317251A JP 15195389 A JP15195389 A JP 15195389A JP 15195389 A JP15195389 A JP 15195389A JP H0317251 A JPH0317251 A JP H0317251A
Authority
JP
Japan
Prior art keywords
layer
film
tools
wear
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15195389A
Other languages
Japanese (ja)
Other versions
JP2580330B2 (en
Inventor
Tsutomu Ikeda
池田 孜
Michitaka Katsuta
勝田 通隆
Hiroyuki Ono
小野 廣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15529818&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0317251(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1151953A priority Critical patent/JP2580330B2/en
Publication of JPH0317251A publication Critical patent/JPH0317251A/en
Application granted granted Critical
Publication of JP2580330B2 publication Critical patent/JP2580330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form the film having the high adhesive property to the tools and excellent wear resistance and to improve the performance and life of working tools consisting of high-speed steels and cemented carbide steels by forming a specifically composed Ti carbonitride layer and carbonitride layer of Al and Ti on the surface of the working tools by a PVD method. CONSTITUTION:The carbonitride layer of Ti expressed by TiCXN1-X (0<=X<=0.6 in this case) is first formed at 0.3 to 6mum thickness by an ion plating method or sputtering method, etc., on the surface of the working tools consisting of the high-speed steels and cemented carbide steels used for milling, cutting, boring, etc. The carbonitride layer of Ti and Al having the compsn. expressed by (AlYTi1-Y) (N2C1-Z), (0.05<=Y<=0.75, 0.8<=Z<=1 in this case) is then formed at 0.6 to 8mum thickness via an intermediate layer therein. The intermediate layer of the mixed compsn. of the compsns. of these two layers or the intermediate layer of the compsn. continuously changing to the compsns. of the two layers is interposed between these two layers. The film having the high adhesive property to the base metal of the tools and the excellent wear resistance is formed. The working performance and service life of the tools are thus improved.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、フライス加工.切削加工,穿孔加工等の加工
に使用される工作工具の表面コーテインる。
[Detailed description of the invention] [A field of application] The present invention is applicable to milling. Coat the surface of machine tools used for cutting, drilling, etc.

[従来の技術] 高速度工具鋼や超硬合金工具鋼等を製作する場合は、耐
摩耗性等の性能をより優れたものとする目的で、工具基
材の表面にTi等の窒化物や炭化物よりなる耐摩耗性皮
膜を形戒することが行なわれている. 基材表面に耐摩耗性皮膜を形成する方法としては、従来
よりCVD法(化学的蒸着法)およびPVD法(物埋的
蒸着法)が知られている.しかし前者の方法では母材が
高温処理に曝される九母材特性が劣化するねそれがあり
、母材特性も重要視される工具の場合は後者の方法が好
まれる傾向がある。
[Prior art] When manufacturing high-speed tool steel, cemented carbide tool steel, etc., nitrides such as Ti or other substances are added to the surface of the tool base material in order to improve performance such as wear resistance. The use of a wear-resistant film made of carbide is being practiced. CVD (chemical vapor deposition) and PVD (physical vapor deposition) are conventionally known methods for forming a wear-resistant film on the surface of a substrate. However, the former method exposes the base material to high-temperature treatment, which may result in deterioration of the base material properties, so the latter method tends to be preferred for tools where base material properties are also important.

そこで比較的低温条件でコーティング処理することので
きる高周波放電プラズマCVD法,反応性イオンブレー
ティング法.スパッタリング法等が採用されるに至って
いる。
Therefore, high frequency discharge plasma CVD method and reactive ion blating method, which can perform coating treatment under relatively low temperature conditions, are recommended. Sputtering methods and the like have come to be adopted.

工具等の耐摩耗性皮膜としてはイオンプレーティング法
によるTiNやTiCが汎用されており、特は高温耐酸
化性〈耐熱性)の優れたTtN膜が広く実用化されてい
る。即ちTINはTiCより耐熱性に優れている為、切
削時の加工熱や摩擦熱によって昇温する工具すくい面を
クレータ摩耗から保護する機能を発揮する。しかしTi
NはTicに比べて低硬度である鳥被削材と接する逃げ
面に発生するフランク摩耗に対してはむしろ脆弱であり
、フランク摩耗に対してはTiCの方が高い耐久性を示
す. 近年、切削速度の一層の高速化が要望されており、切削
条件がより過酷化する傾向にある為、上記した様な従来
のTiN皮膜程度ではこの要請に応えきれなくなってい
る. そこで耐熱性や硬度が更に優れた皮膜として、イオンブ
レーティング法やスパッタリング法によるTiAIN,
TiAIC,或はTiAICN等の皮膜が提案された[
特開昭62−56565,J. Vac. Scl. 
Technol. A第4 (6 ) @, 1981
i年1第27l7頁.およびJ. of Solld 
Stateft+em1stry,70. 1987年
.第318 〜322頁]。
TiN and TiC formed by ion plating are commonly used as wear-resistant films for tools and the like, and in particular, TtN films, which have excellent high-temperature oxidation resistance (heat resistance), have been widely put into practical use. That is, since TIN has better heat resistance than TiC, it exhibits the function of protecting the tool rake face from crater wear, which increases in temperature due to machining heat and frictional heat during cutting. However, Ti
Nitrogen is rather vulnerable to flank wear that occurs on the flank surface in contact with the work material, which has a lower hardness than TiC, and TiC exhibits higher durability against flank wear. In recent years, there has been a demand for higher cutting speeds, and cutting conditions tend to become more severe, so the conventional TiN coatings described above are no longer able to meet this demand. Therefore, as a film with even better heat resistance and hardness, TiAIN, which is produced by ion blating method or sputtering method,
Films such as TiAIC or TiAICN have been proposed [
Japanese Patent Publication No. 62-56565, J. Vac. Scl.
Technol. A No. 4 (6) @, 1981
i year 1 page 27l7. and J. of Sold
Stateft+em1stry, 70. 1987. pp. 318-322].

[発明が解決しようとする課題] PVD法はイオンのエネルギーを利用した低温被覆法で
あるので、基材表面と皮膜間には、CVD法において見
られた様な熱による拡散層は存在しない。従ってPVD
法によって形成された皮膜は、CVD法によって形戒さ
れた皮膜に比べて密着性が劣るのが一般的である。
[Problems to be Solved by the Invention] Since the PVD method is a low-temperature coating method that utilizes the energy of ions, there is no thermal diffusion layer between the base material surface and the film as seen in the CVD method. Therefore, PVD
Films formed by the CVD method generally have poorer adhesion than films formed by the CVD method.

一方最近では耐摩耗性を改善して寿命延長を図るという
観点から、皮膜を厚膜化する傾向が見られるが、厚膜化
するにつれて皮膜の内部応力が増大し、皮膜にクラック
が発生したりIiI密着性が低下して皮膜剥離の原因に
なる。尚TiN皮膜に代わり得る高耐摩耗性皮膜として
、(AI,Tt)(N,C)系皮膜が提案されているこ
とは上述した通りであるが、これらの皮膜はTiN皮膜
に比べて内部応力が2倍以上も高くなるので、TtN皮
膜を形成する場合よりもできるだけ薄い@厚を形成して
実用されている。
On the other hand, in recent years, there has been a tendency to make films thicker in order to improve wear resistance and extend service life, but as the film becomes thicker, the internal stress of the film increases, causing cracks to occur in the film. IiI adhesion decreases and causes film peeling. As mentioned above, (AI, Tt) (N, C) based coatings have been proposed as highly wear-resistant coatings that can replace TiN coatings, but these coatings have lower internal stress than TiN coatings. Since the thickness is more than twice as high, it is put into practical use by forming the thickness as thin as possible than when forming a TtN film.

こうしたことから、特に(AI,Ti)(N,C)系皮
膜等の優れた特性を十分に発揮し得る様な、皮膜形戒技
術の改善が望まれている.本発明はこうした事情に着目
してなされたものであって、比較的低温条件で製膜する
ことができると共にそれにもかかわらず、密着性や膜強
度に優れ、しかもクレータ摩耗やフランク摩耗に対する
抵抗力の優れた耐摩耗性皮膜を提供することを目的とす
るものである。
For these reasons, it is desired to improve the film formation technology, which can fully exhibit the excellent properties of (AI, Ti) (N, C) based films. The present invention was developed in view of these circumstances, and it is possible to form a film under relatively low temperature conditions, yet it has excellent adhesion and film strength, and is resistant to crater abrasion and flank abrasion. The purpose of this invention is to provide an excellent wear-resistant coating.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、TiCxNl−.(
但しO≦X≦0.6)で示される化学組成からなり、層
厚が0.3〜6μmの皮膜層が基材表面に形成されると
共に、(A I , T i +−y)(Nエc+−i
(但し0.05≦y≦0.75, 0.6≦Z≦1)示
される化学組成からなり、層厚が0.6〜8μmの皮膜
層が最上層に形成され、少なくとも2層からなる点に要
旨を有する耐摩耗性皮膜である。
[Means for Solving the Problems] The present invention that achieves the above object is based on TiCxNl-. (
However, a film layer having a chemical composition of O≦X≦0.6) and having a layer thickness of 0.3 to 6 μm is formed on the surface of the substrate, and (A I , T i +−y) (N c+-i
(However, 0.05≦y≦0.75, 0.6≦Z≦1) Consisting of the chemical composition shown, a film layer with a layer thickness of 0.6 to 8 μm is formed as the top layer, and consists of at least two layers. It is a wear-resistant film with a key point.

[作用] 本発明は上述の如く構成されるが、要するにT i C
. Nl−.  (但し0≦X≦0.6 ) テ示され
る化学組戊からなる皮膜層を基材表面に形成することに
よって基材表面との密着性が達成されると共に、(A 
I,Ti t−yN Nz c.−.)(但し0.05
≦y≦0.75, 0.6≦Z≦1)で示される化学m
戊からなる皮lli層を最上層に形成することによって
、膜強度において優れた耐摩耗性皮膜が実現できること
を見出し、本発明を完成した。尚本発明の皮膜に6いて
は、上記2つの皮lll層の間に、夫々の皮膜層組戒を
構戒する戒分を混合した化学組成、または2つの皮膜層
組成に亘って連続的に変化した化学組成の中間層を介在
することが好ましく、この中間層を介在させることによ
って本発明の効果がより一層顕著になる。
[Operation] The present invention is configured as described above, but in short, T i C
.. Nl-. (However, 0 ≦
I, Ti tyN Nz c. −. ) (However, 0.05
Chemistry m expressed by ≦y≦0.75, 0.6≦Z≦1)
The present invention was completed based on the discovery that a wear-resistant film with excellent film strength could be realized by forming a skin layer made of cylindrical lili as the top layer. In addition, in the film of the present invention, between the above two skin layers, a chemical composition containing a mixture of precepts that compose the respective film layer compositions, or continuously over the two film layer compositions, is added. It is preferable to interpose an intermediate layer having a changed chemical composition, and by interposing this intermediate layer, the effects of the present invention become even more remarkable.

上述の各皮膜層を形成するに当たっては、カソードを蒸
発源とするアーク放電によって金属成分をイオン化する
方法、即ちイオンブレーテイング法やスパッタリング法
等に代表されるPVD法によって行なうことができる。
In forming each of the above-mentioned film layers, a method of ionizing metal components by arc discharge using a cathode as an evaporation source, that is, a PVD method typified by an ion blating method, a sputtering method, etc. can be used.

これらの方法のうち例えばイオンブレーティング法で行
なう場合を?表的に取り上げて説明する。
Among these methods, for example, what about the ion blating method? Let's take a look at it and explain it.

この方法は、前記の様にイオン化した金属戊分をN2雰
囲気又はN2/CH4雰囲気中で反応させて窒化物や窒
炭化物を被覆するものである。カソードとしては、Ti
  (C,N)系皮膜の形成を目的とするときはTiを
使用すればよく、一方(At,Ti)(C.N)系皮膜
の形成を目的とするときはTiおよびAIを夫々個別に
使用することもできるが、目的組成そのものからなるA
I.Ti.■をターゲットとすれば、皮膜組成のコント
ロールが容易である。
In this method, ionized metal components as described above are reacted in an N2 atmosphere or N2/CH4 atmosphere to coat nitrides and nitride carbides. As a cathode, Ti
When the purpose is to form a (C,N)-based film, Ti may be used; on the other hand, when the purpose is to form an (At,Ti)(C.N)-based film, Ti and AI may be used separately. Although it can also be used, A consisting of the target composition itself
I. Ti. By targeting (2), it is easy to control the film composition.

各合金戒分の蒸発は、数十アンペア以上の大電流域で行
なわれるため、カソード物質の組戒ずれは殆んど生じな
い.しかもイオン化効率が高くて反応性に富み、基板に
バイアス電圧を印加することによって密着性の優れた皮
膜が得られる。
Since the evaporation of each alloy component is carried out in a large current range of several tens of amperes or more, there is almost no deviation in the composition of the cathode material. Moreover, it has high ionization efficiency and high reactivity, and by applying a bias voltage to the substrate, a film with excellent adhesion can be obtained.

尚形威された皮膜のC固溶量はX線分析やオージェ分析
等によって求めることができ、該分析値とCH4流量の
相関を知ることにより、より一層正確な組成制御を行な
うことができる.本発明において、基材表面に形威され
る皮膜層の組成は(以下第1皮膜層と呼ぶことがある)
は、TtC.N1−.(但しO≦X≦O.Ii ) テ
アルことが必要である.第1皮膜層の化学組成を上記の
様に限定したのは、基材表面との密着性を考慮した為で
ある。尚第1皮膜層は、(AI,Tt)(N,C)皮膜
よりも低い内部応力を有するTiN(x=Oのとき)で
も5本発明の効果は達成されるが、更に高耐摩耗性を発
揮させる為にはTi(C.N)系皮I1i(x≠Oのと
@)であることが望ましい.その理由は次の通りである
The solid solution amount of C in the formed film can be determined by X-ray analysis, Auger analysis, etc., and by knowing the correlation between the analysis value and the CH4 flow rate, more accurate composition control can be performed. In the present invention, the composition of the film layer formed on the surface of the base material (hereinafter sometimes referred to as the first film layer) is
is TtC. N1-. (However, O≦X≦O.Ii) It is necessary to be transparent. The reason why the chemical composition of the first film layer is limited as described above is to take into consideration the adhesion to the surface of the base material. Note that the first coating layer may also be TiN (when x=O), which has a lower internal stress than the (AI, Tt) (N, C) coating.5Although the effects of the present invention can be achieved, even higher wear resistance can be achieved. In order to exhibit this, it is desirable to use a Ti (C.N) based skin I1i (where x≠O and @). The reason is as follows.

TiCは常温硬度(Hv)が3 1 0 0 kg/a
m”と高い反面、耐熱性に欠け酸化され易いという欠点
があり、一方TiNは高温での耐酸化性に{量れ、且つ
比較的低温条件でも密着性のよい皮膜層を容易に形成す
ることができるが、Hvが2000kg/mm2以下と
やや低い難点がある。
TiC has a room temperature hardness (Hv) of 3100 kg/a
TiN has a high oxidation resistance and low heat resistance, but has the disadvantage of lacking heat resistance and being easily oxidized.On the other hand, TiN has good oxidation resistance at high temperatures and can easily form a film layer with good adhesion even at relatively low temperatures. However, the disadvantage is that the Hv is rather low at less than 2000 kg/mm2.

これに対し一般式TtCXN+−xで示される化学組成
のTfN−TiC固溶体系皮膜層においては、C固溶量
(X)を適切に調整することにより、密着性が良く耐酸
化性にも優れたTiNの特性を備えつつTlCの高硬度
をも得ることができる。即ち上記第1皮Uは、TiNの
特性を備えつつC固溶量が増加するに従って(×が増加
するに従って)硬度が増し、耐フランク摩耗の面でも優
れた性能を発揮するものである。Xが増加するに伴って
皮rFA層は高硬度化し、フランク摩耗は解消されると
共に、膜の色調は金色から赤味を帯びはじめ、Ciの増
加につれてさらに赤色から金色に変化し、密着性および
耐酸化性についてはこれを満足する性能を維持する。一
方Xが0.6を超えると密着性と耐酸化性が劣化して、
工具部材等のエッジ部分に微小な膜の剥離が発生し、ク
レータ摩耗を起こし易くなる。また戒膜速度はC固溶量
の増加に伴なって低下し、Xが0.6を超える領域では
低下が著しい。上記理由から、木発明ではXの範囲を0
〜0.6 と定めた。
On the other hand, in the TfN-TiC solid solution film layer with the chemical composition represented by the general formula TtCXN+-x, by appropriately adjusting the amount of C solid solution (X), it has good adhesion and excellent oxidation resistance. It is possible to obtain the high hardness of TIC while having the properties of TiN. In other words, the first skin U has the properties of TiN, but increases in hardness as the solid solution amount of C increases (as x increases), and exhibits excellent performance in terms of flank wear resistance. As X increases, the hardness of the skin rFA layer increases, flank wear disappears, and the color of the film starts to turn from golden to reddish, and as Ci increases, the color changes further from red to gold, improving adhesion and Regarding oxidation resistance, performance that satisfies this is maintained. On the other hand, when X exceeds 0.6, adhesion and oxidation resistance deteriorate,
Minute film peeling occurs at the edge portions of tool members, etc., making it easy to cause crater wear. Further, the membrane velocity decreases as the amount of C solid solution increases, and the decrease is significant in the region where X exceeds 0.6. For the above reasons, in the tree invention, the range of X is 0
~0.6.

尚第1皮膜層の厚さは03〜6μmにする必要がある.
層厚が0.3μm未満では最上層に形成される皮11I
Fjの内部応力を適切に緩和することができず、一方P
JJgが6μmを超えると膜自体の強度が低下する。
The thickness of the first film layer must be 0.3 to 6 μm.
When the layer thickness is less than 0.3 μm, skin 11I is formed on the top layer.
The internal stress of Fj cannot be appropriately relaxed, while P
When JJg exceeds 6 μm, the strength of the film itself decreases.

次に、最上層に形成される皮膜層(以下表面層というこ
とがある)の化学組成は、 (A I, Ti+−yH Nt C,−,)但し 0
.05≦y≦0.75 0.6≦2≦1 であることが必要であり、好ましくは0,6≦y≦0.
7である。
Next, the chemical composition of the film layer (hereinafter sometimes referred to as the surface layer) formed on the top layer is (A I, Ti+-yH Nt C,-,) However, 0
.. It is necessary that 05≦y≦0.75, 0.6≦2≦1, preferably 0,6≦y≦0.
It is 7.

上記表面層組成からなる固溶体について、窒化物系で代
表して説明する。この固溶体はAIN−TiNft端組
成とする固溶体であり、種々の成分範囲について調べた
結果、第1図に示すように内部応力(圧縮応力)はT 
t N(7)1.9 x 1 0 ”dyne/cm’
に比べて(A l y T ! i−y)N ( :J
が0.05以上) テハy=0.6 1 テハ平均4.
7 x 1 0 I0dyne/cm’もの値を示すこ
とが分かる。更にAIN成分が増加すると、それにつれ
て内部応力の低下が認められ、y=0.7で結晶構造が
NaC l型(B14IIll造)からZnS (ウル
ツアイト型)ニ変化して内部応力は2.8 x 1 0
 ”dyne/cm”となる。
The solid solution having the above surface layer composition will be described as a nitride-based solid solution. This solid solution has an edge composition of AIN-TiNft, and as a result of investigating various component ranges, as shown in Figure 1, the internal stress (compressive stress) is T
t N(7) 1.9 x 1 0 "dyne/cm'
Compared to (A ly T ! i-y) N ( :J
is 0.05 or more) Teha y = 0.6 1 Teha average 4.
It can be seen that the value is as high as 7 x 10 I0dyne/cm'. Further, as the AIN component increases, the internal stress decreases accordingly, and at y = 0.7, the crystal structure changes from NaCl type (B14IIll structure) to ZnS (wurtzite type), and the internal stress becomes 2.8x. 1 0
"dyne/cm".

第2図は(A 1 y T i t−y)N皮膜層にお
いてyを変化させた場合の硬度の変化を示すグラフであ
る。
FIG. 2 is a graph showing changes in hardness when changing y in the (A 1 y Ti t-y)N film layer.

第2図から明らかな様に、yが0から大きくなるにつれ
てTiNのH V 4 2 0 0 0 kg/m@”
から硬度が増大し、yが0.6ノときにH’v ’v 
3 0 0 0kg/am’程度の最大値を示し、yが
0.6から更に大きくなるにつれて結晶構造の変化に伴
なう硬度低下を示す.モしてyが0.75になるとTi
Hの硬度とほぼ等しくなり、0.75を超えるとTiN
の硬度よりも低下する。即ちAIN固溶度(y)が0.
75を超える場合は、皮膜層組戒がAINに近似してく
る結果、皮膜層の軟質化を招き、十分な硬度が得られな
くなり、フランク摩耗を容易に引き起す。
As is clear from Fig. 2, as y increases from 0, the H V 4 2 0 0 0 kg/m of TiN decreases.
The hardness increases from , and when y is 0.6, H'v 'v
The maximum value is about 3000 kg/am', and as y becomes larger from 0.6, the hardness decreases due to changes in the crystal structure. When y becomes 0.75, Ti
Hardness is almost equal to that of H, and if it exceeds 0.75, TiN
hardness. That is, the AIN solid solubility (y) is 0.
If it exceeds 75, the coating layer composition approaches AIN, resulting in softening of the coating layer, making it impossible to obtain sufficient hardness and easily causing flank wear.

以上の結果から、本発明においては耐摩耗性および内部
応力の両者を考慮し、yの値(A I N固熔度)は0
.05〜0,75と定めた。尚yのより好ましい範囲は
0.6〜0.7である。
From the above results, in the present invention, considering both wear resistance and internal stress, the value of y (A I N hardness) is set to 0.
.. It was set as 0.05 to 0.75. A more preferable range of y is 0.6 to 0.7.

また本発明では炭窒化物を形威することによってTic
の高硬度性(常温硬度Hv:約3100kg/mn+2
)を発揮させるものである。即ち本発明の組成式におい
て2の値が減少するにつれて硬度が大となり耐摩耗性は
向上する。
In addition, in the present invention, Tic
High hardness (room temperature hardness Hv: approx. 3100 kg/mn+2
). That is, in the composition formula of the present invention, as the value of 2 decreases, the hardness increases and the wear resistance improves.

第3図は、超硬チップ(we−to%Coを主戊分とす
る)に(A 1 o.asT l O.35)(N− 
CI−z )  [但しZ冨0.4 , 0.6 , 
0.8 ,0.9.1]を3μm被覆し、被削材S50
Cを切削速度1 7 0 m/ a+In ,送り速度
0.25n++o/ rev ,切り込み0.1mmで
切削した時の15分後のクレータ摩耗量を測定した結果
を示す。
Figure 3 shows (A 1 o.asT l O.35) (N-
CI-z) [However, Z-tension 0.4, 0.6,
0.8, 0.9.1] to a thickness of 3 μm, and the work material S50
The results of measuring the amount of crater wear after 15 minutes when C was cut at a cutting speed of 170 m/a+In, a feed rate of 0.25 n++o/rev, and a depth of cut of 0.1 mm are shown.

この結果にみられるように2が0.6未満になると耐酸
化性が低下してクレータ摩耗を起こし易くなる.2≧0
.6の範囲では耐酸化性の顕著な低下はみられない。従
って本発明では2の範囲は0.6〜1.0と定めた. 尚後述する実施例で明らかにするが、表面層の層厚が0
.6μm未満の場合は第1皮膜層による効果のみが主体
となって耐摩耗性が不十分となり、一方8μmを超える
と膜自体にクラックが発生し易くなり、強度が不十分と
なる。従って本発明では、表面層の層厚は0.6〜8μ
mと定めた, 本発明においては、第1皮膜層と表面層の間に、両皮膜
層成分の混合または傾斜した組成の中間層を介在するの
が好ましい。この中間層は、真空槽内に第1皮膜層形成
用Ti製カソードおよび表面層形成用AI,Ti.,製
カソードを設け、N2またはN2/CH.雰囲気中で、
同時にまたは出力を制御しつつアーク放電を生じさせる
ことによって形成することができる。この様な中間層を
、第1皮III層と表面層の間に介在させることによっ
て、表面層の内部応力を緩和しつつ基材との密着性が優
れた耐摩耗性皮膜が実現できる。
As seen in these results, when 2 is less than 0.6, oxidation resistance decreases and crater wear becomes more likely to occur. 2≧0
.. Within the range of 6, no significant decrease in oxidation resistance is observed. Therefore, in the present invention, the range of 2 is set as 0.6 to 1.0. As will be made clear in the examples described later, when the thickness of the surface layer is 0
.. If it is less than 6 μm, the wear resistance will be insufficient due to the effect mainly due to the first coating layer, while if it exceeds 8 μm, cracks will easily occur in the film itself, resulting in insufficient strength. Therefore, in the present invention, the layer thickness of the surface layer is 0.6 to 8 μm.
In the present invention, it is preferable to interpose an intermediate layer between the first coating layer and the surface layer, which has a mixed or graded composition of both coating layer components. This intermediate layer includes a Ti cathode for forming a first film layer, an AI for forming a surface layer, a Ti cathode for forming a first film layer, and a Ti cathode for forming a surface layer in a vacuum chamber. , N2 or N2/CH. In the atmosphere
It can be formed by creating an arc discharge simultaneously or with controlled power. By interposing such an intermediate layer between the first skin layer III and the surface layer, it is possible to realize a wear-resistant film that has excellent adhesion to the base material while alleviating the internal stress of the surface layer.

またこの様な構成を採用することによって、T I I
−y N t C +−g単一皮膜を形戒するよりも全
層厚を大きくすることができ、耐熱性や耐摩耗性がより
優れた皮膜となる。
Also, by adopting such a configuration, T I I
-y N t C +-g The total thickness can be made larger than that of a single film, resulting in a film with better heat resistance and abrasion resistance.

尚後述する実施例から明らかな様に、中間層の層厚は、
0.2 μm程度で応力緩和の効果が認められ、最大で
も0.5μmあれば十分である。
As is clear from the examples described later, the thickness of the intermediate layer is
A stress relaxation effect is recognized with a thickness of about 0.2 μm, and a maximum thickness of 0.5 μm is sufficient.

以下実施例について説明するが、本発明は下記の実施例
に限定されるものではなく、前・後記の趣旨に徴して適
宜設計変更することは本発明の技術的範囲に含まれる。
Examples will be described below, but the present invention is not limited to the following examples, and it is within the technical scope of the present invention to make appropriate design changes in accordance with the spirit of the above and below.

[実施例] 実施例l Tiカソード電極およびA I y T’t r−y 
 (y =0.05〜OL75)の組成のカソード電極
を用い、カソードアーク方式イオンブレーティング装置
の基板ホルダーに超硬合金製チップ(WC−10%Co
を主成分とする)を取付けた。尚木装置には、耐摩耗性
皮膜形成状態の均一性を確保する九の基材回転機構等及
びヒータを設置した.成膜に当たっては、ヒータによっ
て基材温度を450℃に加熱保持したまま、基材に−7
0Vのバイアス電圧を印加すると共に、装置内に高純度
N2ガスを5 x 10−”Torrまで導入し、アー
ク放電を開始し、基材表面にT I (CX Nl −
* )系皮膜層(第1皮膜層),中間層および(A 1
yT t +−yN NIL c,−,)系皮g層(表
面層)の順に積層して各種の皮膜を形成した.層厚の測
定は、基板ホルダーに同時に取り付けた基材の内の1個
を破断し、層断面を走査型電子顕微鏡で観察して測定し
たものである。さらに層組成の定量は、同じく同時に取
り付けた基材につきオージェ分光分析法により層深さ方
向の分析を行なった。その結果第1皮膜層および表面層
の厚さ方向には濃度変化がなく一定であった.その分析
結果の一例は、前記第4図の通りであった。膜中の金属
成分比T i / A lはカソード成分比とずれがな
く殆んど同一といえた。
[Example] Example 1 Ti cathode electrode and AI y T'try
A cemented carbide chip (WC-10% Co
) was installed. The Naoki equipment was equipped with nine base material rotation mechanisms and a heater to ensure uniformity in the formation of the wear-resistant film. During film formation, the substrate temperature was maintained at 450°C using a heater, and the substrate was heated to -7°C.
While applying a bias voltage of 0 V, high-purity N2 gas was introduced into the device up to 5 x 10-'' Torr, arc discharge was started, and T I (CX Nl -
* ) system film layer (first film layer), intermediate layer and (A 1
yT t +-yN NIL c,-,)-based skin g layers (surface layers) were laminated in this order to form various films. The layer thickness was measured by breaking one of the substrates attached to the substrate holder at the same time and observing the layer cross section with a scanning electron microscope. Further, to quantify the layer composition, the layer depth direction was analyzed using Auger spectroscopy on the base material attached at the same time. As a result, the concentration remained constant with no change in the thickness direction of the first film layer and the surface layer. An example of the analysis results is shown in FIG. 4 above. The metal component ratio T i /A l in the film did not deviate from the cathode component ratio and could be said to be almost the same.

得られた各皮膜につい′C5下記の切削条件により25
分間の切削試験に供したときのフランク摩耗幅を測定し
た。
For each film obtained, the cutting conditions were as follows:
The flank wear width was measured when subjected to a cutting test for 1 minute.

切削条件: 被削材    S50C 切削速度   1 70,200m/Ilin送り速度
   0.25 mm/rev切り込み   0.1 
mm その結果を各層の組戒および層厚と共に第1表に示す。
Cutting conditions: Work material S50C Cutting speed 1 70,200m/Ilin feed rate 0.25 mm/rev depth of cut 0.1
mm The results are shown in Table 1 along with the composition and layer thickness of each layer.

尚第1表には比較の烏、実施例1で示した手段と同様に
して(AI,Ti)(C,N)系単層膜を形成したとき
のもの(No.8〜10)、および第1皮膜層が本発明
の範囲外のもの(NO.11)についても、その組戒,
層膜およびフランク摩耗幅を示した。
Table 1 shows comparative samples, (AI, Ti) (C, N) monolayer films formed in the same manner as in Example 1 (Nos. 8 to 10), and Even if the first film layer is outside the scope of the present invention (No. 11), its composition,
Layer film and flank wear width are shown.

第1表より明らかな様に、比較例に比べて本発明例はい
ずれも耐摩耗性に優れていた。
As is clear from Table 1, all of the examples of the present invention were superior in wear resistance compared to the comparative examples.

次に超硬ドリルへの適用例を以下に示す。An example of application to a carbide drill is shown below.

実施例2 61φの(WC−9.5%Coを主成分とする)超硬ド
リルに実施例1と同様に各種の皮膜を形成した。
Example 2 Various coatings were formed in the same manner as in Example 1 on a 61φ (WC-9.5% Co-based carbide drill) drill.

得られた各皮膜について、下記の条件にて切削を行なっ
た。
Each of the obtained films was cut under the following conditions.

切削条件; 被削材    350C,13mm’ (H B 2 3 0〜250) 切削速度   80m/nin 送り速度   0.2 mIII/rev潤 滑   
 エマルジBンによる このときの穴明け個数の結果を、各皮膜層の組成および
層厚と共に第2表に示す。
Cutting conditions: Work material 350C, 13mm' (HB230~250) Cutting speed 80m/nin Feed rate 0.2 mIII/rev Lubrication
The results of the number of holes punched using Emulge B are shown in Table 2 along with the composition and layer thickness of each film layer.

第2表より明らかな様に本発明方法で得られた工具は、
比較例に比べて加工個数の大幅な増加が認められ、耐摩
耗性が良好であった. 次にハイスドリルへの適用例を以下に示す。
As is clear from Table 2, the tool obtained by the method of the present invention is
A significant increase in the number of processed pieces was observed compared to the comparative example, and the wear resistance was good. An example of application to a high speed steel drill is shown below.

実施例3 6mIIlφハイスドリルに実施例1と同じ様にして各
種皮膜を形成した。
Example 3 Various coatings were formed on a 6mIIlφ high-speed steel drill in the same manner as in Example 1.

得られた各皮膜について、下記の条件にて切削を行なっ
た。
Each of the obtained films was cut under the following conditions.

切削条件: 被剛材    S50C,10mmt 切削速度   30m/のin 送り速度   0.18mm/rev 潤滑     エマルジョンによる このときの穴明け個数の結果を、各皮膜層の組戒および
層厚と共に第3表に示す。
Cutting conditions: Rigid material: S50C, 10mmt Cutting speed: 30m/in Feed rate: 0.18mm/rev Lubrication The results of the number of holes drilled using emulsion are shown in Table 3, along with the composition and layer thickness of each coating layer. .

第3表より明らかな様に本発明方法で得られた工具は、
比較例に比べて加工個数の大幅な増加がみられ、耐摩耗
性が良好であった。
As is clear from Table 3, the tool obtained by the method of the present invention is
There was a significant increase in the number of processed pieces compared to the comparative example, and the wear resistance was good.

[発明の効果] 本発明は以上の様に構成されているので、TiNを基本
としたTi (C,N)系皮膜元来の良好な基材密着性
を有すると共に、表面層が、III b族の窒化物であ
るAINにTtが固溶した皮膜層である為、耐熱性.熱
伝導性等に関し、AINに近似した優れた特性が発揮さ
れる。
[Effects of the Invention] Since the present invention is configured as described above, it has the good adhesion to the base material inherent to the Ti(C,N)-based film based on TiN, and the surface layer has III b Since the film layer is a solid solution of Tt in AIN, which is a nitride of the group, it has high heat resistance. It exhibits excellent properties similar to AIN in terms of thermal conductivity, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(A ly T i +−y ) N系皮膜層
においてyを変化させた場合の内部応力の変化を示すグ
ラフ、第2図は(A 1 y T i + −y ) 
N系皮膜層においてyを変化させた場合の硬度の変化を
示すグラフ、第3図は( A 1 o. ssT j 
0. 35)(N− CI−x )系皮膜において2を
変化させたときの硬度チップの切削時のクレータ摩耗量
を示すグラフ、第4図は(a) ,  (b)は本発明
壜皮膜のオージエ分折結果例を示すグラフである。 第1 図 キ TiN (Al,Ti)N中のAIN (mol%)乎 AIN 第3図 Z (Alo.65Tio35) (N2C1−2)にち・
けるZ固溶度第2図 TiN AIN スパツタ時間 (min) ヌバツタ時間 (rro n )
Figure 1 is a graph showing changes in internal stress when changing y in the (A ly T i + -y) N-based coating layer, and Figure 2 is a graph showing (A 1 y T i + -y)
A graph showing changes in hardness when changing y in the N-based film layer, Figure 3 is (A 1 o. ssT j
0. 35) A graph showing the amount of crater wear during cutting of the hardness tip when changing the hardness of 2 in the (N-CI-x) based coating. It is a graph showing an example of a analysis result. Figure 1 AIN (mol%) in TiN (Al,Ti)N Figure 3 Z (Alo.65Tio35) (N2C1-2)
Figure 2: Z solid solubility TiN AIN Sputtering time (min) Sputtering time (rron)

Claims (2)

【特許請求の範囲】[Claims] (1) TiC_xN_1_−_x(但し0≦x≦0.
6)で示される化学組成からなり、層厚が0.3〜6μ
mの皮膜層が基材表面に形成されると共に、 (Al_yTi_1_−_y)(N_zC_1_−_z
)(但し0.05≦y≦0.75,0.6≦z≦1)示
される化学組成からなり、層厚が0.6〜8μmの皮膜
層が最上層に形成され、少なくとも2層からなることを
特徴とする耐摩耗性皮膜。
(1) TiC_xN_1_-_x (however, 0≦x≦0.
6), with a layer thickness of 0.3 to 6μ
A film layer of m is formed on the surface of the base material, and (Al_yTi_1_-_y)(N_zC_1_-_z
) (However, 0.05≦y≦0.75, 0.6≦z≦1) A film layer having the chemical composition shown and having a layer thickness of 0.6 to 8 μm is formed as the uppermost layer, and at least two layers A wear-resistant film characterized by:
(2) 前記2つの皮膜層の間に、夫々の皮膜層組成を
混合した化学組成、または2つの皮膜層組成に亘って連
続的に変化した中間層が介在されてなる請求項(1)に
記載の耐摩耗性皮膜。
(2) The method according to claim (1), wherein an intermediate layer having a chemical composition that is a mixture of the respective film layer compositions or a chemical composition that continuously changes over the two film layer compositions is interposed between the two film layers. Abrasion resistant coating as described.
JP1151953A 1989-06-14 1989-06-14 Wear resistant coating Expired - Lifetime JP2580330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151953A JP2580330B2 (en) 1989-06-14 1989-06-14 Wear resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151953A JP2580330B2 (en) 1989-06-14 1989-06-14 Wear resistant coating

Publications (2)

Publication Number Publication Date
JPH0317251A true JPH0317251A (en) 1991-01-25
JP2580330B2 JP2580330B2 (en) 1997-02-12

Family

ID=15529818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151953A Expired - Lifetime JP2580330B2 (en) 1989-06-14 1989-06-14 Wear resistant coating

Country Status (1)

Country Link
JP (1) JP2580330B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201002A (en) * 1990-11-28 1992-07-22 Mitsubishi Materials Corp Cutting tool made of surface-coated thermet
JPH0524219U (en) * 1991-09-09 1993-03-30 三菱マテリアル株式会社 Hard layer composite coated drill
JPH06136514A (en) * 1992-10-26 1994-05-17 Kobe Steel Ltd Wear resistant multilayered hard coating film structure
EP0890406A2 (en) * 1997-07-07 1999-01-13 Mitsubishi Heavy Industries, Ltd. Gear shaper cutting method and apparatus
US5879823A (en) * 1995-12-12 1999-03-09 Kennametal Inc. Coated cutting tool
WO1999050016A1 (en) * 1998-04-01 1999-10-07 Mitsubishi Heavy Industries, Ltd. Gear shaping method and device and spiral bevel gear cutter
JP2006261602A (en) * 2005-03-18 2006-09-28 Jfe Steel Kk Super-low iron loss directive electromagnetic steel sheet excellent in coat adhesiveness
JP2007229919A (en) * 2007-04-10 2007-09-13 Oc Oerlikon Balzers Ag Tool having protection layer system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117429B1 (en) * 2017-01-05 2020-06-01 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance
KR20180080845A (en) * 2017-01-05 2018-07-13 두산중공업 주식회사 Component for turbine having excellent erosion resistance and fatigue resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294812A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5729572A (en) * 1980-07-30 1982-02-17 Sumitomo Electric Ind Ltd Coated super-hard alloy member
JPS5983968U (en) * 1983-11-04 1984-06-06 シチズン時計株式会社 Golden portable exterior parts
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JPS6442570A (en) * 1987-08-10 1989-02-14 Kobe Steel Ltd Wear resistant coating film
JPH01252304A (en) * 1988-03-29 1989-10-09 Mitsubishi Metal Corp Surface coated hard material base cutting tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294812A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Covered super hard throwaway tip
JPS5729572A (en) * 1980-07-30 1982-02-17 Sumitomo Electric Ind Ltd Coated super-hard alloy member
JPS5983968U (en) * 1983-11-04 1984-06-06 シチズン時計株式会社 Golden portable exterior parts
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JPS6442570A (en) * 1987-08-10 1989-02-14 Kobe Steel Ltd Wear resistant coating film
JPH01252304A (en) * 1988-03-29 1989-10-09 Mitsubishi Metal Corp Surface coated hard material base cutting tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201002A (en) * 1990-11-28 1992-07-22 Mitsubishi Materials Corp Cutting tool made of surface-coated thermet
JPH0524219U (en) * 1991-09-09 1993-03-30 三菱マテリアル株式会社 Hard layer composite coated drill
JPH06136514A (en) * 1992-10-26 1994-05-17 Kobe Steel Ltd Wear resistant multilayered hard coating film structure
US5879823A (en) * 1995-12-12 1999-03-09 Kennametal Inc. Coated cutting tool
EP0890406A2 (en) * 1997-07-07 1999-01-13 Mitsubishi Heavy Industries, Ltd. Gear shaper cutting method and apparatus
EP0890406B1 (en) * 1997-07-07 2004-10-06 Mitsubishi Heavy Industries, Ltd. Gear shaper cutting method and apparatus
WO1999050016A1 (en) * 1998-04-01 1999-10-07 Mitsubishi Heavy Industries, Ltd. Gear shaping method and device and spiral bevel gear cutter
US6416262B1 (en) 1998-04-01 2002-07-09 Mitsubishi Heavy Industries, Ltd. Gear shaping method and device and spiral bevel gear cutter
JP2006261602A (en) * 2005-03-18 2006-09-28 Jfe Steel Kk Super-low iron loss directive electromagnetic steel sheet excellent in coat adhesiveness
JP2007229919A (en) * 2007-04-10 2007-09-13 Oc Oerlikon Balzers Ag Tool having protection layer system

Also Published As

Publication number Publication date
JP2580330B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
JP2644710B2 (en) Abrasion resistant coating
JP2638406B2 (en) Wear resistant multilayer hard film structure
US5580653A (en) Hard coating having excellent wear resistance properties, and hard coating coated member
US5318840A (en) Wear resistant coating films and their coated articles
KR100674773B1 (en) Hard films, multilayer hard films, and production methods thereof
JP3420024B2 (en) Laminated coating member including crystal oriented hard film
JPH08170164A (en) Hard coating film excellent in wear resistance and hard coating film coated member
KR101505222B1 (en) Tool with multilayered metal oxide coating and method for producing the coated tool
KR930010710B1 (en) Surface-coated hard member for cutting and abrasion resistant tools
JP3480086B2 (en) Hard layer coated cutting tool
JPH0317251A (en) Wear resistant film
JP3045184B2 (en) Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool
WO2019171653A1 (en) Surface-coated cutting tool and method for producing same
JP2926883B2 (en) Surface-coated hard member with excellent wear resistance
JP2917312B2 (en) Surface-coated carbide members for cutting and wear-resistant tools
JPH10317123A (en) Crystalline oriented hard coated member
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP3333080B2 (en) High-strength coated members with consistent interfaces
JPH07197235A (en) Member coated with wear resistant film
JP3337884B2 (en) Multilayer coating member
JP2926882B2 (en) Surface-coated hard member with excellent wear resistance
JP2913763B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JPH08170167A (en) Hard coating film excellent in wear resistance and hard coating film coated member
JP3347244B2 (en) High toughness coating material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13