JP4475230B2 - Hard coating - Google Patents

Hard coating Download PDF

Info

Publication number
JP4475230B2
JP4475230B2 JP2005374166A JP2005374166A JP4475230B2 JP 4475230 B2 JP4475230 B2 JP 4475230B2 JP 2005374166 A JP2005374166 A JP 2005374166A JP 2005374166 A JP2005374166 A JP 2005374166A JP 4475230 B2 JP4475230 B2 JP 4475230B2
Authority
JP
Japan
Prior art keywords
film
composite
hard
wear
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005374166A
Other languages
Japanese (ja)
Other versions
JP2006144128A (en
Inventor
康昭 杉崎
俊樹 佐藤
龍哉 安永
政憲 蔡
和久 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005374166A priority Critical patent/JP4475230B2/en
Publication of JP2006144128A publication Critical patent/JP2006144128A/en
Application granted granted Critical
Publication of JP4475230B2 publication Critical patent/JP4475230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、硬質皮膜に関し、詳細には、耐摩耗性に優れた硬質皮膜に関し、特には、切削加工、穿孔加工等の加工に使用される工具や金型の耐摩耗性硬質皮膜として好適な硬質皮膜に関する技術分野に属する。   The present invention relates to a hard film, and more particularly to a hard film having excellent wear resistance, and particularly suitable as a wear-resistant hard film for tools and dies used for machining such as cutting and drilling. It belongs to the technical field related to hard coatings.

超硬合金(WC-Co 系焼結合金)又は高速度工具鋼等の耐摩耗性部材を製作する場合、耐摩耗性等の性能をより優れたものとすることを目的として、それら部材の基材表面に金属の窒化物や炭化物よりなる耐摩耗性皮膜を形成することが行われている。   When manufacturing wear-resistant members such as cemented carbide (WC-Co based sintered alloy) or high-speed tool steel, the purpose of these members is to improve the wear resistance. An abrasion-resistant film made of a metal nitride or carbide is formed on the material surface.

かかる耐摩耗性皮膜としては、TiN 皮膜や TiC皮膜が汎用され、それはイオンプレーティング法により形成されている。このTiN 皮膜と TiC皮膜とを比較すると、TiN 皮膜は TiC皮膜よりも耐熱性(高温耐酸化性)に優れており、切削時の加工熱や摩擦熱によって昇温する工具すくい面のクレータ摩耗から保護する機能を発揮するが、TiC 皮膜に比べて低硬度であるため、被削材と接する逃げ面に発生するフランク摩耗に対してはむしろ脆弱であり、フランク摩耗に対しては TiC皮膜の方が高い耐久性を示す。そこで、最近ではクレータ摩耗とフランク摩耗を共に抑制するTiCNの硬質皮膜が実用化されている。   As such wear-resistant films, TiN films and TiC films are widely used, which are formed by ion plating. When this TiN film is compared with the TiC film, the TiN film is superior in heat resistance (high temperature oxidation resistance) to the TiC film, and it is due to crater wear on the tool rake face that is heated by machining heat and frictional heat during cutting. Although it has a protective function, its hardness is lower than that of the TiC film, so it is rather vulnerable to flank wear that occurs on the flank face in contact with the work material. The TiC film is more resistant to flank wear. Shows high durability. Therefore, recently, a hard coating of TiCN that suppresses both crater wear and flank wear has been put into practical use.

ところで、近年、切削工程の省力化や省エネルギー化及び生産性向上に伴い、切削速度の一層の高速化が要望されており、高切り込み或いは高送り等の重切削が行われる状況にある。このように切削条件がより過酷化する傾向にあるため、前記TiN 皮膜、TiC 皮膜、TiCN皮膜ではこの要請に応えきれなくなっている。即ち、TiN 皮膜、TiC 皮膜又はTiCN皮膜を有する切削工具により高速切削を行った場合、高温で皮膜内のTiが酸化することにより、皮膜が劣化し、摩耗が非常に激しい。   By the way, in recent years, with the labor saving, energy saving, and productivity improvement of the cutting process, there has been a demand for higher cutting speed, and heavy cutting such as high cutting or high feed is being performed. Since the cutting conditions tend to be more severe in this way, the TiN film, TiC film, and TiCN film cannot meet this requirement. That is, when high-speed cutting is performed with a cutting tool having a TiN film, a TiC film or a TiCN film, the Ti in the film is oxidized at a high temperature, so that the film deteriorates and wear is extremely severe.

そこで、より耐摩耗性に優れた硬質皮膜として、TiN やTiC あるいはTiCNにTi、N 、C 以外の第3、第4元素を添加することが試みられており、その元素としてAlを添加したものであるところの、TiとAlの複合窒化物〔(Al,Ti)N〕、複合炭化物〔(Al,Ti)C〕或いは複合炭窒化物〔(Al,Ti)(N,C)〕よりなる硬質皮膜(以降、これらを総称して(Al,Ti)(N,C)系皮膜という)が提案されている(特公平4-53642 号公報、特公平5-67705 号公報)。この(Al,Ti)(N,C)系皮膜は、耐熱性(高温耐酸化性)及び硬度を向上するためにAlを添加したものであり、高温でAlが選択的に酸化し、保護皮膜となって該皮膜下の皮膜の酸化を防止し、それにより耐熱性が向上している。しかしながら、800 ℃程度でTiN 皮膜の場合と同様に皮膜が劣化し、そのため、刃先温度が1000℃以上となるといわれる高速切削には不適であって対応できず、皮膜の硬度もHv2500程度とあまり高くはないため、更に性能(特に耐摩耗性)を改善した硬質皮膜が必要となっている。   Therefore, an attempt has been made to add third and fourth elements other than Ti, N and C to TiN, TiC or TiCN as hard coatings with better wear resistance. It is composed of Ti and Al composite nitride [(Al, Ti) N], composite carbide [(Al, Ti) C] or composite carbonitride [(Al, Ti) (N, C)]. Hard coatings (hereinafter collectively referred to as (Al, Ti) (N, C) based coatings) have been proposed (Japanese Patent Publication No. 4-53642 and Japanese Patent Publication No. 5-67705). This (Al, Ti) (N, C) -based film is made by adding Al in order to improve heat resistance (high-temperature oxidation resistance) and hardness. Thus, the oxidation of the film under the film is prevented, thereby improving the heat resistance. However, the film deteriorates at about 800 ° C, just like the TiN film, so it is unsuitable for high-speed cutting that is said to have a cutting edge temperature of 1000 ° C or higher, and the film hardness is about Hv2500. Since it is not high, a hard film with further improved performance (particularly wear resistance) is required.

本発明はかかる事情に着目してなされたものであって、その目的は、前記従来のTiN 皮膜、TiC 皮膜、TiCN皮膜、(Al,Ti)(N,C)系皮膜での問題点を解消し、これら従来の皮膜の中で最も耐摩耗性に優れている(Al,Ti)(N,C)系皮膜よりも耐摩耗性に優れた硬質皮膜を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to solve the problems in the conventional TiN film, TiC film, TiCN film, and (Al, Ti) (N, C) -based film. However, it is an object of the present invention to provide a hard coating that is more excellent in wear resistance than the (Al, Ti) (N, C) -based coating having the highest wear resistance among these conventional coatings.

上記目的を達成するために、本発明に係る硬質皮膜は請求項1〜3記載の硬質皮膜としており、それは次のような構成としたものである。   In order to achieve the above object, the hard coating according to the present invention is the hard coating according to claims 1 to 3, which has the following configuration.

即ち、請求項1記載の硬質皮膜は、カソードアーク方式イオンプレーティング装置を用いるイオンプレーティングによって成膜された硬質皮膜であって、AlとX(X:Cr、Vの一種)の複合窒化物、複合炭化物、複合ホウ化物、複合炭窒化物、複合ホウ窒化物、複合炭ホウ化物または複合炭窒ホウ化物よりなり、そのAlとXの組成が、
( Al1-yy
但し、X:Cr、Vの一種
0<y≦0.3
で示される組成からなることを特徴とする硬質皮膜である。
That is, the hard film according to claim 1 is a hard film formed by ion plating using a cathode arc type ion plating apparatus , and is a composite nitride of Al and X (X: Cr, a type of V). , Composite carbide, composite boride, composite carbonitride, composite boronitride, composite carbonitride or composite carbonitride, and the composition of Al and X is
(Al 1-y X y )
However, X: a kind of Cr, V 0 <y ≦ 0.3
It is the hard film | membrane characterized by having the composition shown by these.

請求項2記載の硬質皮膜は、膜厚が0.1 〜20μm である請求項1記載の硬質皮膜である。請求項3記載の硬質皮膜は、超硬合金(WC-Co 系焼結合金)または高速度工具鋼の表面に形成された請求項1または2記載の硬質皮膜である。   The hard film according to claim 2 is the hard film according to claim 1, wherein the film thickness is 0.1 to 20 μm. The hard film according to claim 3 is the hard film according to claim 1 or 2 formed on the surface of cemented carbide (WC-Co based sintered alloy) or high-speed tool steel.

本発明に係る硬質皮膜は、耐熱性(高温耐酸化性)に優れ、また、硬度が高く、そのため、従来のTiN 皮膜、TiC 皮膜、TiCN皮膜、(Al,Ti)(N,C)系皮膜の中で最も耐摩耗性に優れている(Al,Ti)(N,C)系皮膜よりも耐摩耗性に優れ、高速切削の場合に対応可能な耐摩耗性を有し、従って、高速切削用工具基材の硬質皮膜として好適に用いることができ、切削速度の一層の高速化が図れるようになり、また、穿孔加工等の加工に使用される工具や金型の耐摩耗性硬質皮膜として好適に用いることができ、それらの耐摩耗性の向上による工具性能や金型性能の向上及び寿命の向上が図れるようになるという効果を奏する。   The hard coating according to the present invention is excellent in heat resistance (high temperature oxidation resistance) and has high hardness. Therefore, conventional TiN coating, TiC coating, TiCN coating, (Al, Ti) (N, C) based coating The most wear-resistant (Al, Ti) (N, C) -based coating is superior in wear resistance and can be used for high-speed cutting. It can be suitably used as a hard coating for tool base materials, and it is possible to further increase the cutting speed, and as a wear-resistant hard coating for tools and dies used in drilling and other processing. It can be used suitably, and there exists an effect that the improvement of the tool performance and metal mold | die performance by the improvement of those abrasion resistance and the improvement of a lifetime come to be aimed at.

本発明に係る硬質皮膜は、前記の如き組成を有し、耐熱性(高温耐酸化性)に優れ、また、硬度が高く、そのため、従来の皮膜の中で最も耐摩耗性に優れている(Al,Ti)(N,C)系皮膜よりも耐摩耗性に優れ、高速切削の場合に対応可能な耐摩耗性を有する。   The hard film according to the present invention has the composition as described above, has excellent heat resistance (high temperature oxidation resistance), and has high hardness, and therefore has the highest wear resistance among conventional films ( It has better wear resistance than Al, Ti) (N, C) coatings, and has wear resistance that can be used for high-speed cutting.

この詳細を以下説明する。   Details will be described below.

切削速度の一層の高速化や高切り込み或いは高送り等の重切削に対応するために提案されている前記従来の(Al,Ti)(N,C)系皮膜は、耐摩耗性が比較的良いとされている。その理由としては、Alの選択的酸化により形成された酸化皮膜が保護皮膜となるために耐熱性(高温耐酸化性)が向上し、また、硬度も上昇することによるものと考えられている。しかし、高速切削の場合は極めて高温の状態となるため、Tiも酸化してしまい、皮膜が劣化し、皮膜の保護性を失って摩耗が激しくなる。そこで、Tiを排除したもの、即ち AlN皮膜、AlC 皮膜、AlCN皮膜(以降、これらを総称して Al(N,C)系皮膜という)にするとよいと考えられるが、AlN 等のAl(N,C) 系皮膜は通常結晶系が六方晶系であり、そのため硬度がHv1000程度と低く、工具に用いる硬質皮膜として軟らかく、耐摩耗性が非常に低くて不充分である。   The conventional (Al, Ti) (N, C) coatings proposed to cope with higher cutting speeds and heavy cutting such as high cutting and high feed have relatively good wear resistance. It is said that. The reason is considered to be that the oxide film formed by selective oxidation of Al becomes a protective film, so that the heat resistance (high temperature oxidation resistance) is improved and the hardness is also increased. However, in the case of high-speed cutting, since it is in a very high temperature state, Ti is also oxidized, the film is deteriorated, and the protective property of the film is lost, resulting in severe wear. Therefore, it is considered good to exclude Ti, ie, AlN film, AlC film, AlCN film (hereinafter collectively referred to as Al (N, C) -based film). C) The system film is usually a hexagonal crystal system, and therefore has a hardness as low as about Hv1000, is soft as a hard film used for tools, and has a very low wear resistance and is insufficient.

そこで、AlN 等のAl(N,C) に様々な元素を添加し、皮膜性能を評価した結果、Cr、Vの一種(以降、X)を所定量含有することにより、耐熱性(高温耐酸化性)および硬度が向上し、そのため、従来の(Al,Ti)(N,C)系皮膜よりも耐摩耗性が向上し、高速切削の場合に対応可能な耐摩耗性を有することができるようになり、そして、このXの含有量はAl及びX中に占めるXの割合として30at%以下にするとよいことがわかった。このようなX(即ちCr、Vの一種)の添加による耐熱性及び硬度の向上の原因については、明らかではないが、TiとNbの複合炭化物〔:(Ti,Nb)C〕等について報告されている如き価電子分布と硬度の関係(Surface and Coatings Technology, 33 (1987) 91-103)や、六方晶系から立方晶系への結晶系の変化によるものと考えられる。   Therefore, as a result of adding various elements to Al (N, C) such as AlN and evaluating the film performance, heat resistance (high temperature oxidation resistance) can be obtained by containing a predetermined amount of Cr and V (hereinafter referred to as X). ) And hardness, which improves wear resistance compared to conventional (Al, Ti) (N, C) coatings, and has wear resistance that can be used for high-speed cutting. It was found that the content of X should be 30 at% or less as the proportion of X in Al and X. The cause of the improvement in heat resistance and hardness due to the addition of X (that is, one of Cr and V) is not clear, but it has been reported on composite carbides of Ti and Nb [: (Ti, Nb) C] etc. This is thought to be due to the relationship between the distribution of valence electrons and hardness (Surface and Coatings Technology, 33 (1987) 91-103) and the change of the crystal system from hexagonal to cubic.

本発明はかかる知見に基づきなされたものであり、本発明に係る硬質皮膜は、前記の如く、カソードアーク方式イオンプレーティング装置を用いるイオンプレーティングによって成膜された硬質皮膜であって、AlとX(X:Cr、Vの一種)の複合窒化物、複合炭化物、複合ホウ化物、複合炭窒化物、複合ホウ窒化物、複合炭ホウ化物または複合炭窒ホウ化物よりなり、そのAlとXの組成が、
( Al1-yy
但し、X:Cr、Vの一種
0<y≦0.3
で示される組成からなるようにしている。
The present invention has been made based on such knowledge, and the hard film according to the present invention is a hard film formed by ion plating using a cathode arc type ion plating apparatus as described above, and includes Al and X (X: Cr, a type of V) composite nitride, composite carbide, composite boride, composite carbonitride, composite boronitride, composite carbon boride or composite carbonitride Composition is
(Al 1-y X y )
However, X: a kind of Cr, V 0 <y ≦ 0.3
It is made to consist of composition shown by.

この硬質皮膜は、即ち、カソードアーク方式イオンプレーティング装置を用いるイオンプレーティングによって成膜された硬質皮膜であって、Cr、Vの一種をXとしたとき、(Al1-yy ) N、(Al1-yy )C、( Al1-yy )B、( Al1-yy )CN、( Al1-yy )BN、又は、( Al1-yy )CBNで示される組成からなり、0<y≦0.3 であることを特徴とするものである。ここで、N、C、B、CN、BN又はCBNをZとすると、この硬質皮膜は、結晶質の硬質皮膜であって、( Al1-yy )Zで示される組成からなり、0<y≦0.3 であることを特徴とするものである。尚、( Al1-yy ):Zは、1:1であるとは限らず、1:約1(1に近い1以下)の場合も含まれ、例えば1:0.90の場合もある。 This hard film is a hard film formed by ion plating using a cathodic arc type ion plating apparatus . When X is one of Cr and V, (Al 1-y X y ) N , (Al 1 -y X y ) C, (Al 1 -y X y ) B, (Al 1 -y X y ) CN, (Al 1 -y X y ) BN, or (Al 1 -y X y) ) It has a composition represented by CBN, and 0 <y ≦ 0.3. Here, when N, C, B, CN, BN, or CBN is Z, this hard film is a crystalline hard film, and has a composition represented by (Al 1-y X y ) Z. <Y ≦ 0.3. Note that (Al 1-y X y ): Z is not necessarily 1: 1, but includes 1: about 1 (1 or less close to 1), for example, 1: 0.90.

換言すれば、カソードアーク方式イオンプレーティング装置を用いるイオンプレーティングによって成膜された結晶質の硬質皮膜であって、AlとX(但し、X:Cr、Vの一種)の複合窒化物、複合炭化物、複合ホウ化物、複合炭窒化物、複合ホウ窒化物、複合炭ホウ化物または複合炭窒ホウ化物〔即ち( Al1-yy )Z〕よりなり、このAl及びX中に占めるXの割合が30at%以下(0%を含まず)であることを特徴とする硬質皮膜である。 In other words, it is a crystalline hard film formed by ion plating using a cathode arc type ion plating apparatus, which is a composite nitride or composite of Al and X (X: Cr, V). It is composed of carbide, composite boride, composite carbonitride, composite boronitride, composite carbon boride or composite carbonitride (ie, (Al 1-y X y ) Z). It is a hard film characterized by a ratio of 30 at% or less (not including 0%).

従って、本発明に係る硬質皮膜は、前記知見と照合するに、耐熱性(高温耐酸化性)に優れ、また、硬度が高く、そのため、従来の皮膜の中で最も耐摩耗性に優れている (Al,Ti)(N,C) 系皮膜よりも耐摩耗性に優れ、高速切削の場合に対応可能な耐摩耗性を有するものであることがわかる。   Therefore, the hard film according to the present invention is excellent in heat resistance (high temperature oxidation resistance) and high in hardness in comparison with the above knowledge, and therefore has the highest wear resistance among conventional films. It can be seen that it has better wear resistance than (Al, Ti) (N, C) -based coatings and has wear resistance that can be applied to high-speed cutting.

ここで、Al及びX中に占めるXの割合を0%を除く30at%以下、即ち( Al1-yy )Zでのyを0<y≦0.3 としているのは、yを0.3 超とすると、Alに係る成分(即ち後記するAlZ)が少なくなり、高温耐酸化性及び硬度が低下し、それにより耐摩耗性が低下して不充分となり、一方、yを0とするとXが含有されず、X添加による耐摩耗性の向上が図れなくなって耐摩耗性が不充分となるからである。 Here, the ratio of X in Al and X is 30 at% or less excluding 0%, that is, y in (Al 1-y X y ) Z is 0 <y ≦ 0.3. Then, the component related to Al (that is, AlZ described later) decreases, the high-temperature oxidation resistance and hardness decrease, and thereby the wear resistance decreases and becomes insufficient. On the other hand, if y is 0, X is contained. This is because the wear resistance cannot be improved by adding X and the wear resistance becomes insufficient.

尚、前記( Al1-yy )Zは固溶体成分で記述すれば(AlZ)1-y−(XZ)y 固溶体と表現できるので、yを大きくすることはAlZ成分量を少なくすることになり、yを0.3 超とするとAlZ成分量が少なくなり過ぎ、上記の如き耐摩耗性低下という不都合が生じるのである。それに対し、yを小さくすることはAlZ成分量を多くすることになり、ひいては耐摩耗性が向上することになる。かかる点から、0<y≦0.3 とする必要があるが、耐摩耗性をより確実に向上するためには0<y≦0.2 とすることが望ましく、更にはyは0(但し0を除く)に近いほど耐摩耗性の向上面ではよい。しかし、yを小さくし過ぎると、XZ成分量が少なくなり過ぎ、結晶系が立方晶系から六方晶系へと変わり耐摩耗性が低くなるので、その点からは0.01≦yとすることが望ましい。 If (Al 1-y X y ) Z is described as a solid solution component, it can be expressed as (AlZ) 1-y- (XZ) y solid solution. Therefore, increasing y reduces the amount of AlZ component. Thus, if y is more than 0.3, the amount of AlZ component is too small, and the above-described disadvantage of wear resistance deterioration occurs. On the other hand, reducing y increases the amount of the AlZ component, which in turn improves the wear resistance. From this point, it is necessary to satisfy 0 <y ≦ 0.3. However, in order to improve the wear resistance more reliably, it is desirable to satisfy 0 <y ≦ 0.2, and y is 0 (except for 0). The closer it is to the better the wear resistance. However, if y is made too small, the amount of XZ component becomes too small, the crystal system changes from cubic to hexagonal and wear resistance becomes low. From this point, 0.01 ≦ y is desirable. .

本発明に係る硬質皮膜の膜厚については、特に限定されるものではないが、耐摩耗性及び耐酸化性の両方が要求される工具等の部材に該硬質皮膜をコーティングして用いる場合は、膜厚0.1 μm 以上にすることが望ましい。それは、耐酸化性においては該硬質皮膜が均一にコーティングされれば膜厚0.1 μm 未満でも効果はあるものの、膜厚0.1 μm 未満では耐摩耗性付与効果があまり発揮されなくなり、耐摩耗性が不充分となる可能性があるからである。一方、膜厚20μm 超では膜厚を厚くする割りには耐摩耗性及び耐酸化性の向上効果が少なく、又、コーティング時間が長くなって生産性が低下することから、20μm 以下にすることが望ましい(請求項2記載の硬質皮膜)。   The film thickness of the hard coating according to the present invention is not particularly limited, but when the hard coating is used on a member such as a tool that requires both wear resistance and oxidation resistance, The film thickness is desirably 0.1 μm or more. It is effective in oxidation resistance even if the hard film is uniformly coated even if the film thickness is less than 0.1 μm. However, if the film thickness is less than 0.1 μm, the effect of imparting wear resistance is hardly exhibited, and the wear resistance is poor. This is because it may be sufficient. On the other hand, if the film thickness exceeds 20 μm, the effect of improving the wear resistance and oxidation resistance is small for increasing the film thickness, and the coating time becomes longer and the productivity is lowered. Desirable (hard film according to claim 2).

又、本発明に係る硬質皮膜がコーティングされる基材については、特に限定されるものではなく、用途や必要性に応じて種々の基材を使用でき、例えば工具の分野において種々の工具基材表面に形成して用いることができるが、工具基材としては超硬合金(WC-Co 系焼結合金)または高速度工具鋼(ハイス)を用いることが望ましい(請求項3記載の硬質皮膜)。それは、本発明皮膜は特に超硬合金及び高速度工具鋼に対して密着性が非常によいからである。   Further, the substrate on which the hard film according to the present invention is coated is not particularly limited, and various substrates can be used according to the application and necessity. For example, various tool substrates in the field of tools. Although it can be used by forming on the surface, it is desirable to use cemented carbide (WC-Co based sintered alloy) or high speed tool steel (His) as the tool base (hard coating according to claim 3). . This is because the coating of the present invention has very good adhesion particularly to cemented carbide and high speed tool steel.

本発明に係る硬質皮膜の基材表面へのコーティングは、カソードを蒸発源とするアーク放電によって金属成分をイオン化するイオンプレーティング法によって行う。即ち、カソードアーク方式イオンプレーティング装置を用いるイオンプレーティングによって行う。かかるアークイオンプレーティング法の内容を説明すると、カソードを蒸発源とするアーク放電によってイオン化した金属成分をN2、CH4 又はBF3 ガス或いはそれらの混合ガスの雰囲気中で反応させ、バイアス電圧を付与した基材表面にデポジットさせる。このとき、カソードとしてはAlとCr、または、AlとVをそれぞれ個別に使用してもよいが、目的組成そのものからなる Al1-yy をカソード(ターゲット)とすれば、皮膜組成のコントロールが容易であるという利点がある。この場合、 Al1-yy の蒸発は数十アンペア以上の大電流域で行われ、そのためカソード物質( Al1-yy )の組成ずれは殆ど生じず、しかもイオン化効率が高くて反応性に富み、基材にバイアス電圧を印加することによって密着性の優れた皮膜を得られる。 The substrate surface of the hard coating according to the present invention is coated by an ion plating method in which a metal component is ionized by arc discharge using a cathode as an evaporation source . That is, it is performed by ion plating using a cathode arc type ion plating apparatus. To explain the contents of such an arc ion plating method, the ionized metal components by arc discharge cathode and the evaporation source is reacted with N 2, CH 4 or BF 3 gas or an atmosphere of a mixed gas thereof, a bias voltage Deposit on the applied substrate surface. At this time, the cathode Al and Cr, or Al and V may each be used individually, if the Al 1-y X y consisting of target composition itself cathode (target) and the control of the coating composition Has the advantage of being easy. In this case, the evaporation of Al 1-y X y is carried out in a large current range of several tens of amperes or more, so that there is almost no composition shift of the cathode material (Al 1-y X y ), and the ionization efficiency is high and the reaction A film having excellent adhesion can be obtained by applying a bias voltage to the substrate.

(実施例1)
カソードアーク方式イオンプレーティング装置を用い、そのカソード電極として Al1-yy (但し、X:Cr又はV、y:種々変化)のターゲットを取り付け、一方、該装置の基板(基材)ホルダーに基材として超硬合金(WC-10%Co系焼結合金)製の工具チップを取り付けた。又、該装置には、皮膜形成状態の均一性を確保するための基板回転機構及びヒータを設けた。
Example 1
Using a cathode arc type ion plating apparatus, a target of Al 1-y X y (where X: Cr or V, y: various changes) is attached as the cathode electrode, while a substrate (base material) holder of the apparatus A tool tip made of cemented carbide (WC-10% Co-based sintered alloy) was attached as a base material. In addition, the apparatus was provided with a substrate rotation mechanism and a heater for ensuring uniformity of the film formation state.

そして、上記ヒータによって基材(チップ)を400 ℃に加熱保持した状態で基材に−30Vのバイアス電圧を印加し、装置内に高純度N2ガス又はN2/CH4混合ガスを導入した上で1×10-3Torrの雰囲気とし、アーク放電を開始して基材表面に膜厚5μm の成膜を行った。このようにして得られた皮膜の組成を表1〜2(No.1〜18、28〜31、36〜53、63〜66)に示す。この中、No.1〜18、36〜53のものは本発明の実施例に係る硬質皮膜であり、No.28 〜31、63〜66は比較例に係る皮膜である。 A bias voltage of −30 V was applied to the substrate while the substrate (chip) was heated and held at 400 ° C. by the heater, and high purity N 2 gas or N 2 / CH 4 mixed gas was introduced into the apparatus. The atmosphere was set to 1 × 10 −3 Torr above, and arc discharge was started to form a film with a thickness of 5 μm on the surface of the substrate. The composition of the film thus obtained is shown in Tables 1-2 (No. 1-18, 28-31, 36-53, 63-66). Among these, Nos. 1 to 18 and 36 to 53 are hard coatings according to examples of the present invention, and Nos. 28 to 31 and 63 to 66 are coatings according to comparative examples.

更に、比較のため、カソード(ターゲット)に Al1-yTiy 又はTiを用い、かかる点を除き上記と同様の装置及び方法により、(Al,Ti)N皮膜及びTiN 皮膜を形成した。それら皮膜の組成を表1〜2に示す(No.34, 35, 69, 70)。 Further, for comparison, Al 1-y Ti y or Ti was used for the cathode (target), and an (Al, Ti) N film and a TiN film were formed by the same apparatus and method as described above except for this point. The compositions of these films are shown in Tables 1 and 2 (No. 34, 35, 69, 70).

このようにして皮膜形成された工具チップを用いて、次の2種類の条件で切削試験を行った。その試験結果を表1〜2に示す。
(1) 被削材:S45C、切削速度:170m/min、送り速度:0.25mm/rev、切り込み:1mm、切削時間:25分
(2) 被削材:SKD11、切削速度:150m/min、送り速度:0.2mm/rev 、切り込み:2mm、切削時間:25分
Using the tool tip thus formed with a film, a cutting test was performed under the following two conditions. The test results are shown in Tables 1-2.
(1) Work material: S45C, Cutting speed: 170m / min, Feeding speed: 0.25mm / rev, Cutting depth: 1mm, Cutting time: 25 minutes
(2) Work material: SKD11, Cutting speed: 150m / min, Feeding speed: 0.2mm / rev, Cutting depth: 2mm, Cutting time: 25min

表1〜2から明らかなように、比較例に係る皮膜を有する工具チップに比べて本発明の実施例に係る皮膜を有する工具チップは、いづれも、逃げ面摩耗量(摩耗幅:摩耗箇所の幅)及びすくい面摩耗深さが極めて少なく、耐摩耗性に非常に優れている。   As is apparent from Tables 1 and 2, the tool tip having the coating according to the example of the present invention compared to the tool tip having the coating according to the comparative example, the flank wear amount (wear width: wear portion Width) and rake face wear depth are extremely small, and the wear resistance is very good.

(実施例2)
皮膜の耐酸化性を調べるために基材として白金板を用い、基材表面に形成する皮膜の厚みを10μm とし、これらの点を除き実施例1と同様の装置及び方法により、表3に示す組成の皮膜を形成した。この中、No.71 〜72、74〜75のものは本発明の実施例に係る硬質皮膜であり、No.77 〜78、80〜81、83〜84は比較例に係る皮膜である。
(Example 2)
In order to investigate the oxidation resistance of the film, a platinum plate was used as the base material, and the thickness of the film formed on the surface of the base material was 10 μm. Except for these points, the same apparatus and method as in Example 1 are shown in Table 3. A film of composition was formed. Among them, Nos. 71 to 72 and 74 to 75 are hard coatings according to examples of the present invention, and Nos. 77 to 78, 80 to 81, and 83 to 84 are coatings according to comparative examples.

このようにして皮膜形成された白金板について、その皮膜の耐酸化性を調べるため、熱天秤装置を用いて、昇温範囲:室温〜1200℃、昇温速度:10℃/min、雰囲気ガス:乾燥空気、雰囲気ガスの流量:150cc/min の条件で酸化試験を行った。そして、昇温過程で生じる急激な重量増加点での温度を酸化開始温度と定め、それを求めた。その結果を表3に示す。また、皮膜のビッカース硬度(荷重50g)を測定した。その結果を表3に併記して示す。   In order to investigate the oxidation resistance of the coating film on the platinum plate thus formed, the temperature rising range: room temperature to 1200 ° C., temperature rising rate: 10 ° C./min, atmospheric gas: The oxidation test was performed under the conditions of dry air and atmospheric gas flow rate: 150 cc / min. Then, the temperature at the rapid weight increase point generated in the temperature raising process was determined as the oxidation start temperature and obtained. The results are shown in Table 3. Moreover, the Vickers hardness (load 50g) of the film was measured. The results are also shown in Table 3.

表3から明らかなように、比較例に係る皮膜はTiN 皮膜では約600 ℃で、(Al,Ti)N皮膜では約800 ℃で酸化が始まるのに対し、本発明の実施例に係る皮膜はいづれも酸化開始温度が高く、高温耐酸化性に優れている。   As is apparent from Table 3, the film according to the comparative example starts oxidation at about 600 ° C. for the TiN film and about 800 ° C. for the (Al, Ti) N film, whereas the film according to the embodiment of the present invention In any case, the oxidation start temperature is high and the high-temperature oxidation resistance is excellent.

Figure 0004475230
Figure 0004475230

Figure 0004475230
Figure 0004475230

Figure 0004475230
Figure 0004475230

本発明に係る硬質皮膜は、耐熱性(高温耐酸化性)に優れ、また、硬度が高く、そのため、従来のTiN 皮膜、TiC 皮膜、TiCN皮膜、(Al,Ti)(N,C)系皮膜の中で最も耐摩耗性に優れている(Al,Ti)(N,C)系皮膜よりも耐摩耗性に優れ、高速切削の場合に対応可能な耐摩耗性を有し、従って、高速切削用工具基材の硬質皮膜として好適に用いることができ、切削速度の一層の高速化が図れるようになり、また、穿孔加工等の加工に使用される工具や金型の耐摩耗性硬質皮膜として好適に用いることができ、それらの耐摩耗性の向上による工具性能や金型性能の向上及び寿命の向上が図れるようになる。   The hard coating according to the present invention is excellent in heat resistance (high temperature oxidation resistance) and has high hardness. Therefore, conventional TiN coating, TiC coating, TiCN coating, (Al, Ti) (N, C) based coating The most wear-resistant (Al, Ti) (N, C) -based coating is superior in wear resistance and can be used for high-speed cutting. It can be suitably used as a hard coating for tool base materials, and it is possible to further increase the cutting speed, and as a wear-resistant hard coating for tools and dies used in drilling and other processing. It can be used suitably, and improvement in tool performance and mold performance and improvement in service life can be achieved by improving their wear resistance.

Claims (3)

カソードアーク方式イオンプレーティング装置を用いるイオンプレーティングによって成膜された硬質皮膜であって、AlとX(X:Cr、Vの一種)の複合窒化物、複合炭化物、複合ホウ化物、複合炭窒化物、複合ホウ窒化物、複合炭ホウ化物または複合炭窒ホウ化物よりなり、そのAlとXの組成が、
( Al1-yy
但し、X:Cr、Vの一種
0<y≦0.3
で示される組成からなることを特徴とする硬質皮膜。
A hard film formed by ion plating using a cathode arc type ion plating apparatus, which is a composite nitride, composite carbide, composite boride, composite carbonitride of Al and X (X: one of X and Cr). Product, composite boronitride, composite carbon boride or composite carbonitride, and the composition of Al and X is
(Al 1-y X y )
However, X: a kind of Cr, V 0 <y ≦ 0.3
A hard film comprising the composition represented by
膜厚が0.1 〜20μm である請求項1記載の硬質皮膜。   The hard film according to claim 1, wherein the film thickness is 0.1 to 20 μm. 超硬合金または高速度工具鋼の表面に形成された請求項1または2記載の硬質皮膜。   The hard coating according to claim 1 or 2, formed on the surface of a cemented carbide or high-speed tool steel.
JP2005374166A 2005-12-27 2005-12-27 Hard coating Expired - Lifetime JP4475230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374166A JP4475230B2 (en) 2005-12-27 2005-12-27 Hard coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374166A JP4475230B2 (en) 2005-12-27 2005-12-27 Hard coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19870695A Division JPH0941127A (en) 1995-08-03 1995-08-03 Hard film

Publications (2)

Publication Number Publication Date
JP2006144128A JP2006144128A (en) 2006-06-08
JP4475230B2 true JP4475230B2 (en) 2010-06-09

Family

ID=36624157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374166A Expired - Lifetime JP4475230B2 (en) 2005-12-27 2005-12-27 Hard coating

Country Status (1)

Country Link
JP (1) JP4475230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105137A (en) * 2008-10-31 2010-05-13 Sumitomo Electric Ind Ltd Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2006144128A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JPH0941127A (en) Hard film
JP2793773B2 (en) Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP2793696B2 (en) Wear resistant coating
JP3248898B2 (en) Hard coating tool
JP3480086B2 (en) Hard layer coated cutting tool
JP3927621B2 (en) Hard coating, hard coating covering member and cutting tool
JP3572728B2 (en) Hard layer coated cutting tool
JP2580330B2 (en) Wear resistant coating
JP3277558B2 (en) Manufacturing method of coated cutting tip
JP4475230B2 (en) Hard coating
JP2840541B2 (en) Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP3045184B2 (en) Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool
JP2008137129A (en) Surface coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP4129653B2 (en) Ultra-hard film coated tool material
JP2008149390A (en) Surface coated cutting tool
JP2633622B2 (en) Wear-resistant composite members for machine tools
JP4761136B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in heavy cutting
JPH0941126A (en) Cutting tool coated with hard film
JP2560541B2 (en) Surface coated cermet cutting tool
JP2008137130A (en) Surface coated cutting tool
JP2004122244A (en) Surface coated cermet alloy cutting tool
KR100239276B1 (en) Coated hard alloy for a cutting tool or wear resistance tool and a manufacturing method thereof
JP3679046B2 (en) Physical vapor deposition hard coating tool with excellent crater wear resistance
JP2001038505A (en) Surface coated cemented carbide cutting tool with superior chipping resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

EXPY Cancellation because of completion of term