JPH07197235A - Member coated with wear resistant film - Google Patents

Member coated with wear resistant film

Info

Publication number
JPH07197235A
JPH07197235A JP18613794A JP18613794A JPH07197235A JP H07197235 A JPH07197235 A JP H07197235A JP 18613794 A JP18613794 A JP 18613794A JP 18613794 A JP18613794 A JP 18613794A JP H07197235 A JPH07197235 A JP H07197235A
Authority
JP
Japan
Prior art keywords
film
composition
wear
aln
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18613794A
Other languages
Japanese (ja)
Inventor
Tsutomu Ikeda
孜 池田
Hiroyuki Ono
廣之 小野
Hideo Miura
日出夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18613794A priority Critical patent/JPH07197235A/en
Publication of JPH07197235A publication Critical patent/JPH07197235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film excellent in wear resistance, oxidation resistance, and hardness with superior adhesion by coating to form a wear resistant film of specifid thickness containing Al, Ti, N, and C in specific proportions on the surface of a base material. CONSTITUTION:The surface of a base material is coated with a film of Al, Ti, N, and C by an ion plating method, a sputtering method, etc. A film having a chemical composition represented by (AlxTi1-x)(NyC1-y), where 0.56<=x<=0.75 and 0.6<=y<=1 are satisfied, is formed to 0.8-10mum thickness. This film has superior properties approximate to those of AlN, with respect to heat resistance and thermal conductivity, because, different from conventional (Ti, Al)N composed essentially of TiN, this film is prepared by allowing Ti to enter into solid solution in AlN as a nitride of the group IIIb metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フライス加工工具等で
代表される様な耐摩耗性の要求される部材に関し、詳細
には基材表面に、耐摩耗性、耐熱性、硬度などの優れた
耐摩耗性皮膜が優れた密着性をもって被覆形成されてな
る耐摩耗性皮膜被覆部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member which is required to have wear resistance as represented by a milling tool, and more specifically, has excellent wear resistance, heat resistance and hardness on the surface of a base material. The present invention also relates to a wear-resistant film-coated member having a wear-resistant film coated with excellent adhesion.

【0002】[0002]

【従来の技術】高速度工具鋼や超硬合金工具鋼等を製作
する場合は、耐摩耗性等の性能をより優れたものとする
ことを目的として、工具基材の表面にTi等の窒化物や
炭化物よりなる耐摩耗性皮膜を形成することが行なわれ
ている。この様な要求がなされる工具としては、チッ
プ、バイト、カッター、エンドミル、ドリルなどの切削
工具;チップ、金型、ダイス、ロール、剪断工具などの
耐摩耐触工具;或はビット、ロッドなどの鉱山土木工具
が知られている。
2. Description of the Related Art When manufacturing high-speed tool steel, cemented carbide tool steel, etc., nitriding Ti, etc. on the surface of the tool base material in order to improve performance such as wear resistance. It has been practiced to form an abrasion resistant film made of a substance or a carbide. Tools that meet these requirements include cutting tools such as inserts, cutting tools, cutters, end mills, and drills; wear-resistant tools such as inserts, dies, dies, rolls, and shearing tools; or bits and rods. Mine civil engineering tools are known.

【0003】基材表面に耐摩耗性皮膜を形成する方法と
しては、従来よりCVD法(化学的蒸着法)及びPVD
法(物理的蒸着法)が知られている。しかし前者の方法
では高温処理に起因して母材の特性が劣化する恐れがあ
るので、工具等の耐摩耗性皮膜としては、後者の方法で
形成したTiN等の皮膜等が汎用されていた。TiN皮
膜は耐熱性が良好であって、切削時の加工熱や摩擦熱に
よる工具すくい面のクレータ摩耗を抑制する機能を発揮
する。
As a method for forming a wear resistant film on the surface of a substrate, there have been conventionally used the CVD method (chemical vapor deposition method) and PVD.
The method (physical vapor deposition method) is known. However, in the former method, the characteristics of the base material may be deteriorated due to the high temperature treatment. Therefore, as the wear resistant coating for tools and the like, a coating such as TiN formed by the latter method has been widely used. The TiN film has good heat resistance and exhibits a function of suppressing crater wear on the tool rake surface due to working heat and frictional heat during cutting.

【0004】しかしながら近年、例えば切削工具の分野
では、切削速度の一層の高速化が要望されており、切削
条件の過酷化が進行しつつある為、上記した様な従来の
耐摩耗性皮膜ではこの要請に十分に応えられないものと
なった。或は切削工具以外の工具分野、例えば耐摩耐触
工具、鉱山土木工具など、さらには工具以外の各種機械
分野においても使用条件の過酷化が進んでおり、耐摩耗
性の一層の向上と耐熱性や硬度が更に優れた皮膜の開発
が望まれている。
However, in recent years, for example, in the field of cutting tools, there has been a demand for higher cutting speeds, and severer cutting conditions are under way. Therefore, in the conventional wear-resistant coating as described above, I could not fully meet the request. Or, in the field of tools other than cutting tools, such as wear and abrasion resistant tools, mining civil engineering tools, etc., and in the fields of various machines other than tools, the operating conditions are becoming severer, further improving wear resistance and heat resistance. It is desired to develop coatings with even higher hardness.

【0005】そこでこれらの要請に応え得る皮膜とし
て、イオンプレーティング法やスパッタリング法による
(TiAl)N,(TiAl)C,(TiAl)CN等
の皮膜が提案された[特開昭62-56565,J. Vac. Sc
i. Technol. A4 (6), 1986年,p 2717,J. Vac. Sci.
Technol. A4 (6), 1986年,p 2695,J. of Solid st
ate Chemistry 70, 1987年,P 318], Surface Engine
ering Conf. '85,Vol.III :paper 44, p197,1985年,
ドイツ特許3611492A1 ]。またカソードアーク放電を利用
した方式としてThin Solid Films,153(1987),p67-74]
が提案された。
Therefore, as a film capable of meeting these requirements, a film of (TiAl) N, (TiAl) C, (TiAl) CN, etc., by an ion plating method or a sputtering method has been proposed [Japanese Patent Laid-Open No. 62-56565. J. Vac. Sc
i. Technol. A4 (6), 1986, p 2717, J. Vac. Sci.
Technol. A4 (6), 1986, p 2695, J. of Solid st
ate Chemistry 70, 1987, P 318], Surface Engine
ering Conf. '85, Vol.III: paper 44, p197, 1985,
German Patent 3611492A1]. Also, as a method using cathode arc discharge, Thin Solid Films, 153 (1987), p67-74]
Was proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこの様な
従来皮膜の形成には、次の様な問題があった。 特開昭62-56565には、(TiAl)C,(TiAl)
Nおよび(TiAl)CNと記述されているに止まり、
TiとAlの比率、またCとNの比率をどのように調整
すればどのような効果が生じるかといった点については
明確な記述がない。 J. Vac. Sci. Technol.,A4 (6), 1986年,p 2717には
(Ti,Al)NにおいてTi:Al=75:25,T
i:Al=50:50の組成のものが2例記述されてい
る。これらの組成を固溶体成分で記述すれば、TiN−
AlN固溶体と表現できるが、TiNを基本組成として
AlNが最高50モル%固溶したものと言える。 J. Vac. Sci. Technol. A4 (6), 1986年,p 2695にも
(Ti,Al)Nについての開示があるが、ここにおい
てもAlの最大含有量はTi:Al=45:55であ
る。
However, the formation of such a conventional film has the following problems. Japanese Patent Laid-Open No. 62-56565 discloses (TiAl) C, (TiAl)
N and (TiAl) CN
There is no clear description about how to adjust the ratio of Ti and Al or the ratio of C and N to obtain what effect. J. Vac. Sci. Technol., A4 (6), 1986, p 2717, in (Ti, Al) N, Ti: Al = 75: 25, T
Two examples having a composition of i: Al = 50: 50 are described. If these compositions are described by solid solution components, TiN-
It can be expressed as an AlN solid solution, but it can be said that AlN is a solid solution with a maximum of 50 mol% based on TiN. J. Vac. Sci. Technol. A4 (6), 1986, p 2695 also discloses (Ti, Al) N, but the maximum content of Al is Ti: Al = 45: 55. is there.

【0007】 J. of Solid State Chemistry 70, 198
7 年,P 318(1987年)には、(Ti,Al)Nにおい
て、全組成中にAlが30at%固溶できると記述されて
いる。 Surface Engineering Conf. '85,Vol.III :paper 44,
p197,1985年にも(Ti,Al)Nについての開示があ
るが、これは前記と同一の著者によるものであり、内
容的にはと同一である。 ドイツ特許3611492A1 はターゲット組成に付いて述べ
ているに止まり、皮膜組成と作用効果の関係については
言及されていない。 Thin Solid Films,153(1987),p67-74]は皮膜組成全体
に付いて何も述べておらず、また皮膜組成と作用効果の
関係についても特には言及していない。
J. of Solid State Chemistry 70, 198
7 years, P 318 (1987), it is described that in (Ti, Al) N, Al can be dissolved in 30 at% in the total composition. Surface Engineering Conf. '85, Vol.III: paper 44,
p197, 1985 also discloses (Ti, Al) N, but this is by the same author as described above, and is the same in content. German Patent 3611492A1 only mentions the target composition and does not mention the relationship between the film composition and the working effect. Thin Solid Films, 153 (1987), p67-74] does not mention anything about the overall film composition, and does not particularly mention the relationship between the film composition and the action and effect.

【0008】上記〜で開示されたAl含有量の少な
い組成では、本発明に関する後記実施例の記載から理解
できる様に、AlNの高熱伝導性や耐酸化性が十分発揮
できるとは言えないものである。
With the compositions having a small Al content disclosed in the above (1), it can be said that the high thermal conductivity and the oxidation resistance of AlN cannot be sufficiently exerted, as can be understood from the description of the following examples relating to the present invention. is there.

【0009】そこで本発明は、AlN−TiN系全組成
域について詳細に調べ、AlNを基本組成としてAlN
単独組成の弱点をTiNの固溶により改善し、その組成
域を特定したものであって、耐摩耗性、耐酸化性及び硬
度に優れた皮膜が密着性良く被覆形成された耐摩耗性部
材を提供しようとするものである。
Therefore, in the present invention, the entire composition range of AlN--TiN is investigated in detail, and AlN is used as a basic composition.
The weakness of a single composition is improved by solid solution of TiN, and its composition range is specified. A wear resistant member in which a coating excellent in wear resistance, oxidation resistance and hardness is formed with good adhesion is provided. It is the one we are trying to provide.

【0010】[0010]

【課題を解決するための手段】本発明は基材表面に、下
記化学組成 (Alx Ti1-x)( Ny1-y ) 但し 0.56≦x≦0.75 0.6 ≦y≦1 で示される、厚さ0.8−10μmの耐摩耗性皮膜が被
覆されてなる耐摩耗性部材である。
The present invention has the following chemical composition (Al x Ti 1-x ) (N y C 1-y ) on the surface of a substrate, where 0.56≤x≤0.75 0.6≤y≤1 The wear-resistant member is coated with a wear-resistant film having a thickness of 0.8-10 μm.

【0011】[0011]

【作用】本発明の耐摩耗性皮膜を形成するに当たって
は、例えば、カソードを蒸発源とするアーク放電によっ
て金属成分をイオン化するものであって、イオンプレー
ティング法やスパッタリング法等に代表されるPVD法
によって行なう。これらのうち例えばイオンプレーティ
ング法で行なう場合を代表的に取り上げて説明すると、
前記の様にイオン化した金属成分を、N2 雰囲気又はN
2 /CH4 雰囲気中で反応させる。カソードとしてはT
i及びAlをそれぞれ個別に使用することもできるが、
目的組成そのものからなるAlx Ti1-x をターゲット
とすれば、皮膜組成のコントロールが容易である。この
場合の各合金成分の蒸発は、数十アンペア以上の大電流
域で行なわれるため、カソード物質の組成ずれは殆んど
生じない。しかもイオン化効率が高く反応性に富み、基
板にバイアス電圧を印加することによって密着性の優れ
た皮膜が得られる。
In forming the wear resistant coating of the present invention, for example, a metal component is ionized by arc discharge using a cathode as an evaporation source, and PVD typified by an ion plating method or a sputtering method. By law. Of these, for example, the case of performing the ion plating method will be representatively described,
The metal component ionized as described above is added to an N 2 atmosphere or N 2.
React in a 2 / CH 4 atmosphere. T as the cathode
i and Al can be used individually, but
If the target is Al x Ti 1-x composed of the target composition itself, it is easy to control the film composition. In this case, the vaporization of each alloy component is performed in a large current region of several tens of amperes or more, so that there is almost no compositional deviation of the cathode material. Moreover, a film having high ionization efficiency and high reactivity, and having excellent adhesion can be obtained by applying a bias voltage to the substrate.

【0012】この様にして得られる皮膜の組成は (Alx Ti1-x)( Ny1-y ) 但し 0.56≦x≦0.75 0.6 ≦y≦1 であることが必要であり、好ましくは0.6 ≦x≦0.7 で
ある。
The composition of the film thus obtained is (Al x Ti 1-x ) (N y C 1-y ) where 0.56≤x≤0.75 0.6≤y≤1 is preferable, and preferably 0.56≤x≤0.75 0.6≤y≤1. 0.6 ≦ x ≦ 0.7.

【0013】上記皮膜組成からなる本発明の固溶体は、
これを窒化物系で代表して説明すると、AlN−TiN
を端組成とする固溶体であり、種々の成分範囲について
調べた結果、図1及び図2に示すような結晶構造を有す
ることが明らかとなった。図1において、(P) はNaC
l型(B1構造)領域、(Q) はZnS型(ウルツァイト
型)領域である。即ち本発明の成分範囲は、図1,2か
ら明らかなように、B1構造を有する組成範囲内で、A
lNにTiNが25〜44モル%固溶した固溶体であ
る。この範囲に限定した理由を以下に述べる。
The solid solution of the present invention having the above film composition is
This will be explained using a nitride system as a representative. AlN-TiN
It is a solid solution having an end composition of, and as a result of examining various component ranges, it was clarified that it had a crystal structure as shown in FIGS. 1 and 2. In Figure 1, (P) is NaC
An l-type (B1 structure) region, and (Q) is a ZnS-type (wurtzite type) region. That is, as is clear from FIGS. 1 and 2, the component range of the present invention is within the composition range having the B1 structure,
It is a solid solution in which 25 to 44 mol% of TiN is solid-dissolved in 1N. The reason for limiting to this range will be described below.

【0014】図2から明らかな様に、Al量(x)が0.
75を超える場合は、皮膜組成がAlNに近似してくる結
果、皮膜の軟質化を招き、十分な硬度が得られなくな
り、フランク摩耗を容易に引き起す。一方xが0.75以下
になると、皮膜は高硬度化し、フランク摩耗量は減少す
る。更に図3は、(Alx Ti1-x)Nにおけるxと硬度
の関係を示すグラフであり、xが0.75を超えると硬
度が大きく低下することが分かる。これらからxの上限
を0.75と定めた。
As is clear from FIG. 2, the Al amount (x) is 0.
When it exceeds 75, the coating composition becomes close to that of AlN, so that the coating is softened, sufficient hardness cannot be obtained, and flank wear is easily caused. On the other hand, when x is 0.75 or less, the coating becomes hard and the amount of flank wear decreases. Further, FIG. 3 is a graph showing the relationship between x and hardness in (Al x Ti 1-x ) N, and it can be seen that when x exceeds 0.75, the hardness is significantly reduced. From these, the upper limit of x was set to 0.75.

【0015】しかしAlNの耐高温酸化特性を有効に発
揮するためには次に述べる様な下限があることが分かっ
た。即ち(Alx Ti1-x)N[但しx=0,0.25,0.5
,0.6 ]を、大気中,昇温速度5℃/分で昇温酸化し
た場合の温度変化に対する酸化増量の変化を測定したと
ころ、図4に示す結果が得られた。図4より、Al量が
増加するにつれて酸化開始温度が上昇することがわか
る。一方工具切削中の刃先温度の上昇による皮膜の酸化
を十分に抑制する為には、切削熱によるクレータ摩耗量
を低下させる必要がある。この様な観点から図4を見る
と、できる限りAlN成分に富んだ組成範囲とすること
が有効であることがわかる。図5は(AlxTi1-x)N
におけるxの値と酸化開始温度の関係でまとめたグラフ
である。これらのグラフで示される結果を総合し、且つ
工具刃先温度が切削中に800℃以上になることを考慮
して、酸化開始温度が800℃以上の組成をx=0.56と
決めた。
However, in order to effectively exhibit the high temperature oxidation resistance of AlN, it has been found that there are the following lower limits. That is, (Al x Ti 1-x ) N [where x = 0, 0.25, 0.5
, 0.6] was measured in the atmosphere at a temperature rising rate of 5 ° C./minute to measure the change in the amount of oxidation increase with respect to the temperature change, and the results shown in FIG. 4 were obtained. From FIG. 4, it can be seen that the oxidation start temperature rises as the Al amount increases. On the other hand, it is necessary to reduce the amount of crater wear due to cutting heat in order to sufficiently suppress the oxidation of the coating film due to the increase in the cutting edge temperature during tool cutting. From this point of view, it can be seen from FIG. 4 that it is effective to set the composition range as rich as possible in the AlN component. FIG. 5 shows (Al x Ti 1-x ) N
5 is a graph summarizing the relationship between the value of x and the oxidation start temperature in FIG. Taking into consideration the fact that the tool edge temperature becomes 800 ° C. or higher during cutting, the composition having an oxidation start temperature of 800 ° C. or higher was determined to be x = 0.56 in consideration of the results shown in these graphs.

【0016】また本発明では、炭窒化物を形成すること
によってTiCの高硬度性(常温硬度Hv:約3100
kg/mm2)を発揮させるものである。即ち本発明の組成式
においては、yの値が減少するにつれて硬度が大とな
り、耐摩耗性は向上する。図6は、超硬チップ(WC−
10%Coを主成分とする)に、(Al0.65Ti0.35
(Ny1-y )[但しy=0.4 ,0.6 ,0.8 ,0.9 ,
1]を3μm被覆し、被削材S50Cを切削速度170
m/min ,送り速度0.25mm/rev ,切り込み0.1mmで切
削した時の15分後のクレータ摩耗量を測定した結果を
示す。この結果にみられるように、yが0.6 未満になる
と耐酸化性が低下してクレータ摩耗を起こし易くなる。
y≧0.6 の範囲では耐酸化性の顕著な低下はみられな
い。
Further, in the present invention, by forming a carbonitride, the high hardness of TiC (normal temperature hardness Hv: about 3100) is obtained.
kg / mm 2 ). That is, in the composition formula of the present invention, the hardness increases and the wear resistance improves as the value of y decreases. FIG. 6 shows a carbide tip (WC-
10% Co as the main component), (Al 0.65 Ti 0.35 )
(N y C 1-y ) [where y = 0.4, 0.6, 0.8, 0.9,
1] for 3 μm, and the work material S50C is cut at a cutting speed of 170
The results of measuring the amount of crater wear after 15 minutes when cutting at m / min, feed rate 0.25 mm / rev, and depth of cut 0.1 mm are shown. As can be seen from this result, when y is less than 0.6, the oxidation resistance is lowered and crater wear is likely to occur.
In the range of y ≧ 0.6, no remarkable decrease in oxidation resistance is observed.

【0017】尚後述する実施例及び比較例から明らかな
様に、膜厚が0.8 μm未満の場合は耐摩耗性が不十分と
なり、一方10μmを超えると膜自体にクラックが入り
易くなって強度が不十分となる。本発明の耐摩耗性被覆
部材としては、基材組成、基材形状、用途等において特
にに制限されるものでないことは上記説明から自ずと理
解される通りである。
As will be apparent from Examples and Comparative Examples described later, when the film thickness is less than 0.8 μm, the abrasion resistance becomes insufficient, while when it exceeds 10 μm, the film itself tends to be cracked and the strength is increased. Will be insufficient. As will be understood from the above description, the wear-resistant coated member of the present invention is not particularly limited in terms of base material composition, base material shape, use, etc.

【0018】以下実施例について説明するが、本発明は
下記の実施例に限定されるものではなく、前・後記の趣
旨に徴して適宜設計変更することは本発明の技術的範囲
に含まれる。
Examples will be described below, but the present invention is not limited to the following examples, and it is within the technical scope of the present invention to make appropriate design changes in view of the spirit of the preceding and following items.

【0019】[0019]

【実施例】【Example】

(A)切削工具の一例としてチップを選び、以下の試料
を作製した。実施例1 Al0.6 Ti0.4 をカソード電極とするカソードアーク
方式イオンプレーティング装置の基板ホルダーに、超硬
合金製チップ(主成分:WC−10%Co)を取付け
た。尚本装置には、耐摩耗性皮膜形成状態の均一性を確
保する為の基材回転機構等及びヒータを設置した。
(A) A tip was selected as an example of a cutting tool, and the following samples were produced. Example 1 A cemented carbide chip (main component: WC-10% Co) was attached to a substrate holder of a cathodic arc type ion plating apparatus using Al 0.6 Ti 0.4 as a cathode electrode. In this apparatus, a base material rotating mechanism and the like and a heater were installed to ensure the uniformity of the wear resistant film formation state.

【0020】成膜に当たっては、ヒータによって基材温
度を400℃に加熱保持したまま、基材に−70Vのバ
イアス電圧を印加すると共に、装置内に高純度N2 ガス
を7×10-3Torrまで導入し、アーク放電を開始して基材
表面に膜厚4μm の皮膜を形成した。膜厚の測定は、基
板ホルダーに同時に取り付けた基材の内の1個を破断
し、膜断面を走査型電子顕微鏡で観察して測定したもの
である。さらに膜組成の定量は、同じく同時に取り付け
た基材につきオージェ分光分析法により膜深さ方向の分
析を行なった。その結果Al,Ti,Nの膜厚さ方向に
は濃度変化がなく一定で、各成分元素のピーク高さか
ら、膜組成は(Al0.62Ti0.38)Nであった。膜中の
金属成分比Ti/Alはカソード成分比とずれがなく殆
んど同一といえる。
In forming the film, a bias voltage of -70 V was applied to the base material while the base material temperature was kept at 400 ° C. by a heater, and a high-purity N 2 gas was supplied in the apparatus at 7 × 10 -3 Torr. Then, arc discharge was started to form a film having a film thickness of 4 μm on the surface of the substrate. The film thickness is measured by breaking one of the base materials simultaneously attached to the substrate holder and observing the cross section of the film with a scanning electron microscope. Further, for the quantitative determination of the film composition, the substrates attached at the same time were analyzed in the film depth direction by Auger spectroscopy. As a result, the concentrations of Al, Ti, and N did not change in the film thickness direction and were constant, and the film composition was (Al 0.62 Ti 0.38 ) N from the peak heights of the component elements. The metal component ratio Ti / Al in the film is almost the same as the cathode component ratio without any deviation.

【0021】実施例2 Al0.7 Ti0.3 カソードを用いた以外は、実施例1と
同一条件で成膜を行なった。成膜した膜厚は3.8 μmで
あり、膜組成は(Al0.7 Ti0.33) Nであった。実施例3 反応性ガスとしてN2 /CH4 混合ガスを用いた以外は
実施例1と同一条件で成膜を行なった。成膜した膜厚は
4.3 μmであり、膜組成は(Al0.61Ti0.39)(N
0.70.3 )であった。
Example 2 A film was formed under the same conditions as in Example 1 except that an Al 0.7 Ti 0.3 cathode was used. The film thickness formed was 3.8 μm, and the film composition was (Al 0.7 Ti 0.33 ) N. Except for using N 2 / CH 4 mixed gas as in Example 3 reactive gas was performed film formation under the same conditions as in Example 1. The deposited film thickness is
4.3 μm, the film composition is (Al 0.61 Ti 0.39 ) (N
0.7 C 0.3 ).

【0022】比較のために下記チップ試料を作成した。比較例1 実施例1の基材に皮膜を形成しない試料比較例2 Tiカソードを用いてN2 ガスを7×10-3Torrまで導入
し実施例1と同一条件でTiNの成膜を行なった。成膜
した膜厚は4.3 μmであった。
The following chip samples were prepared for comparison. Comparative Example 1 Sample in which no film is formed on the substrate of Example 1 Comparative Example 2 TiN film was formed under the same conditions as in Example 1 by introducing N 2 gas up to 7 × 10 −3 Torr using a Ti cathode. . The film thickness formed was 4.3 μm.

【0023】比較例3 蒸発器の加熱源として電子ビームを使用したイオンプレ
ーティング装置を用いて、るつぼに実施例1で使用した
カソード物質と同一のAl0.6 Ti0.4 固溶体を装入
し、基板ホルダーには超硬合金製チップを取り付けた。
膜の均一性及び膜の密着性を確保するため、基板回転機
構等を設置すると共に、ヒーターを設置した。成膜にあ
たってはヒーターにより基材温度を400℃に加熱保持
したまま、基材に−600Vのバイアス電圧を印加し、
装置内に高純度N2 を7×10-4 Torr まで導入しイオ
ンプレーティング法により基材に成膜を行なった。膜厚
は4μmとした。さらに実施例1と同様の分析方法によ
り皮膜を分析した結果、AlとTiの濃度比が膜厚方向
に不均一で膜の成分比は規定できなかった。特に基材と
膜の界面にはAlの濃縮が観察され、電子ビーム溶解の
初期にAlが優先的に蒸発付着したものと考えられる。
Comparative Example 3 Using an ion plating device using an electron beam as a heating source of an evaporator, the same Al 0.6 Ti 0.4 solid solution as the cathode material used in Example 1 was charged into a crucible, and a substrate holder was used. A cemented carbide tip was attached to.
In order to secure the uniformity of the film and the adhesion of the film, a substrate rotating mechanism and the like were installed, and a heater was installed. In forming the film, a bias voltage of −600 V was applied to the base material while keeping the base material temperature at 400 ° C. by a heater,
High-purity N 2 was introduced into the apparatus up to 7 × 10 −4 Torr, and a film was formed on the substrate by the ion plating method. The film thickness was 4 μm. Further, as a result of analyzing the film by the same analysis method as in Example 1, the concentration ratio of Al and Ti was nonuniform in the film thickness direction, and the component ratio of the film could not be specified. In particular, Al concentration was observed at the interface between the base material and the film, and it is considered that Al was preferentially evaporated and deposited at the initial stage of electron beam melting.

【0024】更に下記の比較チップ試料を制作した。夫
々の膜組成と膜厚を示す。比較例4 膜組成:(Al0.78Ti0.22)N 膜厚:3μm比較例5 膜組成:(Al0.42Ti0.58)N 膜厚:4μm比較例6 膜組成:(Al0.64Ti0.36)N 膜厚:0.7 μm比較例7 膜組成:(Al0.64Ti0.36)N 膜厚:12μm
Further, the following comparative chip samples were prepared. The respective film composition and film thickness are shown. Comparative Example 4 Film Composition: (Al 0.78 Ti 0.22 ) N Film Thickness: 3 μm Comparative Example 5 Film Composition: (Al 0.42 Ti 0.58 ) N Film Thickness: 4 μm Comparative Example 6 Film Composition: (Al 0.64 Ti 0.36 ) N Film Thickness: 0.7 μm Comparative Example 7 Film composition: (Al 0.64 Ti 0.36 ) N Film thickness: 12 μm

【0025】実施例1〜3及び比較例1〜7によって得
られたチップ試料を用い、下記切削条件により10分間
の切削試験を行った。フランク摩耗量及びクレータ摩耗
深さを表1に示す。 切削条件: 被削材 S50C 切削速度 170m/min 送り速度 0.25 mm/rev 切り込み 0.1 mm
Using the chip samples obtained in Examples 1 to 3 and Comparative Examples 1 to 7, a cutting test was conducted for 10 minutes under the following cutting conditions. Table 1 shows the flank wear amount and the crater wear depth. Cutting conditions: Work material S50C Cutting speed 170 m / min Feed rate 0.25 mm / rev Depth of cut 0.1 mm

【0026】[0026]

【表1】 [Table 1]

【0027】表1より明らかな様に、本発明の実施例
は、いずれも比較例に比べて優れた耐摩耗性を示した。
As is clear from Table 1, all the examples of the present invention showed excellent wear resistance as compared with the comparative examples.

【0028】(B)切削工具の一例としてドリルを選
び、以下の試料を作製した。実施例4 6mmφの(WC−8%Coを主成分とする)超硬ドリル
に実施例1と同一条件にて成膜を形成した。このときの
膜組成は(Al0.65Ti0.35)Nであり、膜厚は4.5 μ
mであった。
(B) A drill was selected as an example of a cutting tool to prepare the following samples. Example 4 A film was formed on a 6 mmφ (WC-8% Co) carbide drill under the same conditions as in Example 1. The film composition at this time is (Al 0.65 Ti 0.35 ) N, and the film thickness is 4.5 μm.
It was m.

【0029】比較例として次のドリル試料を用意した。比較例8 6mmφの超硬ドリルに比較例5と同一条件にて成膜を形
成した。このときの膜組成は(Al0.46Ti0.54)Nで
あり、膜厚は4μmであった。更に下記の比較ドリル試
料を製作した。夫々の膜組成と膜厚を示す。
The following drill samples were prepared as comparative examples. Comparative Example 8 A film was formed on a 6 mmφ carbide drill under the same conditions as in Comparative Example 5. The film composition at this time was (Al 0.46 Ti 0.54 ) N, and the film thickness was 4 μm. Further, the following comparative drill samples were manufactured. The respective film composition and film thickness are shown.

【0030】比較例9 膜組成:TiN 膜厚:5μm比較例10 膜組成:(Al0.64Ti0.36)N 膜厚:0.7μm比較例11 膜組成:(Al0.64Ti0.36)N 膜厚:12μm Comparative Example 9 Film composition: TiN film thickness: 5 μm Comparative Example 10 film composition: (Al 0.64 Ti 0.36 ) N film thickness: 0.7 μm Comparative Example 11 film composition: (Al 0.64 Ti 0.36 ) N film thickness: 12 μm

【0031】実施例4及び比較例8〜10によって得ら
れたドリル試料を用い、下記切削条件により穴明けを行
った。結果を穴明け個数として表2に示す。 切削条件: 被削材 S50C,13mmt 切削速度 50m/min 送り速度 0.2 mm/rev 潤滑 エマルジョンによる
Using the drill samples obtained in Example 4 and Comparative Examples 8 to 10, drilling was performed under the following cutting conditions. The results are shown in Table 2 as the number of punched holes. Cutting conditions: Work material S50C, 13 mm t Cutting speed 50 m / min Feed rate 0.2 mm / rev Lubrication Emulsion

【0032】[0032]

【表2】 [Table 2]

【0033】表2より明らかな様に本発明方法で得られ
た工具は、比較例に比べて穴明け個数の大幅な増加が認
められ、耐摩耗性が良好であった。
As is clear from Table 2, the tool obtained by the method of the present invention showed a large increase in the number of drilled holes as compared with the comparative example, and had good wear resistance.

【0034】(C)切削工具の一例としてハイスドリル
を選び、以下の試料を作製した。実施例5 6mmφハイスドリルに実施例1と同一条件にて成膜を形
成した。膜組成は(Al0.63Ti0.37)Nであり、膜厚
を5.5 μmとした。比較例として次のハイスドリル試料
を用意した。比較例1 2 6mmφハイスドリルに比較例2と同一条件でTiNを成
膜した。膜厚は5μmであった。
(C) A high speed drill was selected as an example of a cutting tool, and the following samples were prepared. Example 5 A film was formed on a 6 mmφ high speed drill under the same conditions as in Example 1. The film composition was (Al 0.63 Ti 0.37 ) N, and the film thickness was 5.5 μm. The following HSS drill samples were prepared as comparative examples. Comparative Example 1 A TiN film was formed on a 6 mmφ high speed drill under the same conditions as in Comparative Example 2. The film thickness was 5 μm.

【0035】更に下記の比較ハイスドリル試料を製作し
た。夫々の膜組成と膜厚を示す。比較例13 膜組成:(Al0.43Ti0.57)N 膜厚:4.5 μm比較例14 膜組成:(Al0.63Ti0.37)N 膜厚:13μm 実施例5及び比較例12〜14によって得られたハイス
ドリル試料を用い、下記切削条件により穴明けを行っ
た。結果を穴明け個数として表3に示す。
Further, the following comparative HSS drill samples were manufactured. The respective film composition and film thickness are shown. Comparative Example 13 Film composition: (Al 0.43 Ti 0.57 ) N Film thickness: 4.5 μm Comparative example 14 Film composition: (Al 0.63 Ti 0.37 ) N Film thickness: 13 μm High speed drill samples obtained by Example 5 and Comparative Examples 12-14 Was drilled under the following cutting conditions. The results are shown in Table 3 as the number of punched holes.

【0036】[0036]

【表3】 [Table 3]

【0037】切削条件: 被削材 S50C,10mmt 切削速度 30m/min 送り速度 0.15mm/rev 潤滑 エマルジョンによる 表3より明らかな様に本発明方法で得られたハイスドリ
ルは、比較例に比べて穴明け個数の大幅な増加がみら
れ、耐摩耗性が良好であった。
Cutting conditions: Work material S50C, 10 mm t Cutting speed 30 m / min Feed speed 0.15 mm / rev Lubrication Emulsion As is apparent from Table 3, the high speed drill obtained by the method of the present invention has a hole compared to the comparative example. A great increase in the number of dawns was observed, and the wear resistance was good.

【0038】[0038]

【発明の効果】本発明は以上の様に構成されているの
で、TiNを基本とした従来の(Ti,Al)Nと異な
り、IIIb 族の窒化物であるAlNにTiが固溶した皮
膜である為、耐熱性,熱伝導性等に関し、AlNに近似
した優れた特性が発揮され、その結果として、耐摩耗
性、耐酸化性及び硬度に優れた皮膜が密着性良く被覆形
成された耐摩耗性部材を提供することに成功した。
While preferred embodiments of the present invention is constructed as described above, unlike the TiN basic and the conventional (Ti, Al) N, it was dissolved Ti is the AlN which is a nitride of III b Group film Therefore, regarding heat resistance, thermal conductivity, etc., excellent properties similar to AlN are exhibited, and as a result, a film excellent in wear resistance, oxidation resistance, and hardness is formed with good adhesion. Succeeded in providing an abradable member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における(Alx Ti1-x)( Ny
1-y )組成(窒化物で代表)と結晶構造の関係を示す
図。
FIG. 1 shows (Al x Ti 1-x ) (N y C in the present invention.
1-y ) Diagram showing the relationship between the composition (typically represented by nitride) and the crystal structure.

【図2】本発明における(Alx Ti1-x)( Ny
1-y )組成(窒化物で代表)と結晶構造の関係を示す
図。
FIG. 2 shows (Al x Ti 1-x ) (N y C in the present invention.
1-y ) Diagram showing the relationship between the composition (typically represented by nitride) and the crystal structure.

【図3】(Alx Ti1-x)( Ny1-y )組成(窒化物
で代表)においてxを変化させた場合の硬度への影響を
示すグラフ。
FIG. 3 is a graph showing the effect on hardness when x is changed in an (Al x Ti 1-x ) (N y C 1-y ) composition (typically a nitride).

【図4】(Alx Ti1-x)( Ny1-y )組成(窒化物
で代表)においてxを変化させた場合の温度変化に対す
る酸化増量の程度を示すグラフ。
FIG. 4 is a graph showing the degree of increase in oxidation with respect to temperature change when x is changed in the (Al x Ti 1-x ) (N y C 1-y ) composition (represented by a nitride).

【図5】(Alx Ti1-x)( Ny1-y )組成(窒化物
で代表)においてxを変化させた場合の酸化開始温度へ
の影響を示すグラフ。
FIG. 5 is a graph showing the influence on the oxidation start temperature when x is changed in the (Al x Ti 1-x ) (N y C 1-y ) composition (represented by a nitride).

【図6】(Al0.65Ti0.35)(Ny1-y )において
yを変化させた時の超硬チップの切削時のクレータ摩耗
量を示す図。
FIG. 6 is a diagram showing a crater wear amount during cutting of a cemented carbide tip when y is changed in (Al 0.65 Ti 0.35 ) (N y C 1-y ).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に、 (Alx Ti1-x)( Ny1-y ) 但し 0.56≦x≦0.75 0.6 ≦y≦1 で示される化学組成からなる、厚さ0.8−10μmの
耐摩耗性皮膜が形成されたものであることを特徴とする
耐摩耗性皮膜被覆部材。
1. A surface of a substrate is formed of a chemical composition represented by (Al x Ti 1-x ) (N y C 1-y ) where 0.56 ≦ x ≦ 0.75 0.6 ≦ y ≦ 1, and a thickness of 0.8 A wear resistant film coated member having a wear resistant film of -10 μm formed thereon.
JP18613794A 1994-08-08 1994-08-08 Member coated with wear resistant film Pending JPH07197235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18613794A JPH07197235A (en) 1994-08-08 1994-08-08 Member coated with wear resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18613794A JPH07197235A (en) 1994-08-08 1994-08-08 Member coated with wear resistant film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63278324A Division JPH02194159A (en) 1988-03-24 1988-11-02 Formation of wear resistant coating film

Publications (1)

Publication Number Publication Date
JPH07197235A true JPH07197235A (en) 1995-08-01

Family

ID=16183029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18613794A Pending JPH07197235A (en) 1994-08-08 1994-08-08 Member coated with wear resistant film

Country Status (1)

Country Link
JP (1) JPH07197235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824601B2 (en) 2000-12-28 2004-11-30 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
JP2009082993A (en) * 2007-09-27 2009-04-23 Kyocera Corp Surface-coated tool
EP2402476A1 (en) * 2010-06-29 2012-01-04 Kabushiki Kaisha Kobe Seiko Sho Shearing die and method for manufacturing the same
WO2022069589A1 (en) * 2020-09-29 2022-04-07 Oerlikon Surface Solutions Ag, Pfäffikon Al-rich altin coating layers produced by pvd from metallic targets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411961A (en) * 1987-07-06 1989-01-17 Nippon Light Metal Co Formation of thin composite nitride film by ion plating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411961A (en) * 1987-07-06 1989-01-17 Nippon Light Metal Co Formation of thin composite nitride film by ion plating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824601B2 (en) 2000-12-28 2004-11-30 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
US6919288B2 (en) 2000-12-28 2005-07-19 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
US7186324B2 (en) 2000-12-28 2007-03-06 Kabushiki Kaisha Kobe Seiko Sho Hard film cutting tools, cutting tool coated with hard film, process for forming hard film and target used to form hard film
JP2009082993A (en) * 2007-09-27 2009-04-23 Kyocera Corp Surface-coated tool
EP2402476A1 (en) * 2010-06-29 2012-01-04 Kabushiki Kaisha Kobe Seiko Sho Shearing die and method for manufacturing the same
CN102310226A (en) * 2010-06-29 2012-01-11 株式会社神户制钢所 Shear with mould and manufacturing approach thereof
US9017830B2 (en) 2010-06-29 2015-04-28 Kobe Steel, Ltd. Shearing die and method for manufacturing the same
WO2022069589A1 (en) * 2020-09-29 2022-04-07 Oerlikon Surface Solutions Ag, Pfäffikon Al-rich altin coating layers produced by pvd from metallic targets

Similar Documents

Publication Publication Date Title
JP2644710B2 (en) Abrasion resistant coating
US5318840A (en) Wear resistant coating films and their coated articles
US5580653A (en) Hard coating having excellent wear resistance properties, and hard coating coated member
JP2638406B2 (en) Wear resistant multilayer hard film structure
JP5046726B2 (en) Surface coated cutting tool
JP3166919B2 (en) Coating, method for producing the coating and use thereof
JP4018480B2 (en) Coated hard tool
JPH0941127A (en) Hard film
JP5084369B2 (en) Cutting tools
JP7067689B2 (en) Surface coating cutting tool and its manufacturing method
KR930010710B1 (en) Surface-coated hard member for cutting and abrasion resistant tools
JP4268558B2 (en) Coated cutting tool
JP4171099B2 (en) Hard film with excellent wear resistance
JPH08118106A (en) Cutting tool coated with hard layer
JP2580330B2 (en) Wear resistant coating
JP6984108B2 (en) Surface coating cutting tool and its manufacturing method
RU2096518C1 (en) Layered composite coating on cutting and stamping tools
JPH07197235A (en) Member coated with wear resistant film
JP3045184B2 (en) Wear-resistant hard coating, method for forming the same, and wear-resistant hard coating-coated tool
JP2008155329A (en) Surface-coated tool
JP7055961B2 (en) Surface coating cutting tool and its manufacturing method
JP2005138208A (en) Surface coated cutting tool and its manufacturing method
JP2926883B2 (en) Surface-coated hard member with excellent wear resistance
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP2001322003A (en) Surface coated tungsten carbide group cemented carbide cutting tool having physically depositing hard coating layer with excellent chipping resistance