JP4171099B2 - Hard film with excellent wear resistance - Google Patents

Hard film with excellent wear resistance Download PDF

Info

Publication number
JP4171099B2
JP4171099B2 JP11492898A JP11492898A JP4171099B2 JP 4171099 B2 JP4171099 B2 JP 4171099B2 JP 11492898 A JP11492898 A JP 11492898A JP 11492898 A JP11492898 A JP 11492898A JP 4171099 B2 JP4171099 B2 JP 4171099B2
Authority
JP
Japan
Prior art keywords
film
wear resistance
hardness
hard
chemical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11492898A
Other languages
Japanese (ja)
Other versions
JPH11302831A (en
Inventor
兼司 山本
俊樹 佐藤
龍哉 安永
裕介 田中
夏樹 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Materials Corp
Original Assignee
Kobe Steel Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Materials Corp filed Critical Kobe Steel Ltd
Priority to JP11492898A priority Critical patent/JP4171099B2/en
Publication of JPH11302831A publication Critical patent/JPH11302831A/en
Application granted granted Critical
Publication of JP4171099B2 publication Critical patent/JP4171099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性に優れる硬質皮膜に関し、詳細には切削工具あるいは機械部品、金型、塑性加工用治工具などの部材の耐摩耗性が要求される基材表面に被覆して用いられる硬質皮膜に関するものである。
【0002】
【従来の技術】
近年、切削工具あるいは機械部品等の耐摩耗性性能を改善すべく、これら部材の耐摩耗性が要求される基材表面にTiN 、あるいは最近では耐摩耗性をさらに向上させるべく皮膜に添加元素を加えた複合窒化物、炭化物、炭窒化化合物などの硬度が高く耐摩耗性に優れる皮膜を形成することが頻繁に行われており、具体的にはTiAlCN系皮膜(特開平 8−209333号公報参照)、TiHfN 皮膜(特開昭62−207858号公報参照)、TiHfAlN 皮膜(特開平 9−104966号公報参照)等が提案されている。
【0003】
【発明が解決しようとする課題】
上記従来の皮膜は、硬度、耐摩耗性はもとより耐熱性(高温耐酸化性)等にも優れており、バイト、エンドミルなどの切削工具はもとより金型、ダイスやロールなどの塑性加工用治工具、ビット、ロッドなどの土木工具、機械部品類などの広い用途の部品の耐摩耗性が要求される基材表面に被覆して用いることが可能である。
【0004】
一方、本発明者等も近年の被切削材の高硬度化あるいは作業能率の向上に伴う切削速度の高速化に応じるべく、これまで切削工具に適用し得る特に耐摩耗性に優れた硬質皮膜の開発を行ってきており、近時、従来の硬質皮膜とは異なる化学成分でもって、従来の硬質皮膜と同等あるいはそれ以上の硬度、耐摩耗性を有する硬質皮膜を開発したものである。
【0005】
本発明は、上記のごとき事情に基づいてなしたものであって、その目的は、特に耐摩耗性に優れ、切削工具はもとより広い用途の部品に適用し得る硬質皮膜を提供するものである。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る硬質皮膜は、請求項1又は2に記載の耐摩耗性に優れる硬質皮膜としたもので、それは次のごとき構成としたものである。
【0007】
即ち、請求項1に記載の耐摩耗性に優れる硬質皮膜は、基材表面に耐摩耗性皮膜として形成される硬質皮膜であって、皮膜が(Tix Nby Alz)(Na C1-a ) 但し 0.6≦a≦1 、 0.1≦z≦0.65、0.05≦y≦0.75、0<x<0.6 であり、且つx+y+z=1を満たす化学組成からなる硬質皮膜であって、前記硬質皮膜の結晶構造が立方晶の岩塩型構造であり、且つ皮膜のX線回折により測定された(111)面と(200)面の回折線最大強度比が90≦I(111)/I(200)≦95の関係を満たすことを特徴とするものである。なお、上記数値はいずれもモル分率である。
【0008】
そして、上記請求項1に示した組成に限定する理由は以下の通りである。皮膜中にAlを添加するのは、添加により皮膜硬度の上昇及び切削時あるいは摺動時高温に耐え得る耐酸化性(耐熱性)の向上が期待できるためであり、その量が 0.1未満ではその効果が小さく、また0.65より多い場合には、逆に皮膜硬度の低下を招き、耐摩耗性が不十分となる。従って、Alの添加量zは 0.1≦z≦0.65とし、望ましくは 0.3≦z≦ 0.5の範囲である。
【0009】
また、Nbを添加するのは、その添加により更なる皮膜硬度及び耐熱性の向上を図ることができるためで、その量が0.05未満ではその効果が小さく、また0.75より多い場合には、逆に皮膜硬度の低下する傾向が認められ、耐摩耗性の低下が懸念される。従って、Nbの添加量yは0.05≦y≦0.75とし、望ましくは 0.1≦y≦0.5 の範囲である。なお、このNbを添加することによる硬度増加のメカニズムの詳細は明らかではないが、 NbNは単独で形成した場合、六方晶の結晶構造を有することから、 TiNのような立方晶系を有する物質との固溶体を形成した場合、TiN の立方格子にNbが置換型で置き換えられることにより、高硬度の皮膜が形成されていると考えられる。また耐酸化性は従来TiAlCN皮膜では、切削時の高温により皮膜表面においてAlの優先酸化が生じ、保護性に優れるアルミ酸化物が最表面に形成されることで、耐酸化性が向上するとされている。また、このアルミ酸化物の保護性は約 900℃で失われ、更なる高温ではTiの優先酸化が急激に進行する。Nbを添加することで酸化開始温度は増加する。ほぼ同一のAl量で比較した場合、Al0.6Ti0.4N では約 900℃で急激な酸化開始が認められるのに対して、Al0.5Ti0.3Nb0.2Nでは酸化開始温度は1000℃程度となる。この理由としてはアルミ酸化物中にNb酸化物が析出し、さらに保護性の優れる皮膜を形成しているものと推定される。
【0010】
また、皮膜中のTiの添加量に関しては 0<x<0.6 としたが、これは元来TiN が耐酸化性に劣る物質のため皮膜中のTi量が増加することは、即ちTiN の割合が増加することで、皮膜の耐酸化性が低下することから皮膜中のTiの量xは0.6 未満とし、一方、皮膜中にTiが全く添加されない場合には結晶構造が変わり硬度、耐摩耗性が低下することが懸念されるので、必ず添加を要し、望ましくは 0.2≦x≦0.55の範囲である。
【0011】
また、皮膜中へのC の添加は炭化物を形成しやすい元素である、Ti、Nbとの反応により皮膜中にTiC あるいはNbC 成分を析出させ、皮膜のさらなる耐摩耗性増加を図るためのものであるが、aの値が 0.6未満、即ちC 量が 0.4以上になると逆に耐摩耗性の低下が生じる結果となっている。これは、C 量を増加させすぎると皮膜中に熱力学的に不安定なアルミ炭化物あるいは炭窒化物が形成されるためと考えられる。
【0013】
請求項1で規定される硬質皮膜の結晶構造は立方晶の岩塩型構造となるが、基板面に対する面配向はその成膜時の条件により、種々変化する。立方晶の岩塩型構造の皮膜を形成した場合、面配向を生じやすい面としては(111)、(200)及び(220)面が挙げられるが、本発明においては基板面の配向をX線回折により測定したところ、特に(111)面の回折強度の(200)面のそれに対する比I(111)/I(200)が1よりも大きく、95以下の範囲にある時に、硬度が増し、耐摩耗性が著しく改善され、I(111)/I(200)=90のときに、皮膜硬度は、他のピーク強度比の皮膜硬度よりも大きくなっている。(111)面は岩塩型結晶構造においては最も充填密度の高い面であり、その面が基板表面に規則的に配向することにより、さらに優れた耐摩耗性が実現できる。また、面配向は、成膜時の真空度、基板温度あるいは基板への印加電圧を変化させることにより(111)面が優先配向した皮膜を形成することが可能である。
【0014】
次に、請求項に記載の耐摩耗性に優れる硬質皮膜は、上記請求項1に記載の硬質皮膜を、カソード放電型アークイオンプレーティング法を用いて形成するものである。
【0015】
カソード放電型アークイオンプレーティング法では目的とする化学組成のターゲットを用いて皮膜を形成すれば、大電流のアークによりターゲットを蒸発、イオン化させるため元素間の蒸発率の差が少なく、皮膜の化学組成はほぼ一定となり、皮膜の化学組成のコントロールが非常に容易である。これに対して、ホローカソードイオンプレーティング(HCD)法や、電子ビームによって溶解、蒸発させる方式では元素によって蒸発率や蒸気圧が異なるために、ほとんどの場合、蒸発源と形成された皮膜の化学組成が異なるために、化学組成の制御が困難である。また、るつぼを使用して蒸発する場合、蒸発に伴い、蒸発源の量が変化するとそれによって、蒸発率が変化するためにさらに皮膜の化学組成が変化する可能性がある。またアーク法では他方式に比べて、イオン化効率が高く、基板に印加したバイアス電圧により密着性及び緻密性に優れた皮膜が容易に得られる。さらには、固体蒸発源を使用することから、ターゲットの配置が自由であり、3次元形状の部品への成膜が容易となる。
【0016】
【実施例】
(実施例1)
本発明例としてのTiNbAlターゲットと、比較例としてのTiNbAlターゲット及びNbを含まない化学組成のターゲットとを準備し、これらターゲットをカソードとし、純窒素雰囲気中でカソード放電型アークイオンプレーティング法にて超硬チップ及び超硬製エンドミル(6枚刃、直径10mm)に表1に示す化学組成の皮膜を形成した。この時の成膜条件は基板温度 400℃、窒素ガス圧20mtorr 、基板への印加バイアス電圧−150 Vとし、成膜厚みは約 3μm とした。また形成した皮膜の化学組成は蛍光X線分析法により測定した。
【0017】
上記により超硬チップ上に形成した皮膜の硬度をマイクロビッカース硬度計にて荷重25gf、保持時間15秒の条件で測定した。その結果を表1に併せて示す。
【0018】
【表1】

Figure 0004171099
【0019】
表1から明らかなように、本発明例2〜5は、形成された皮膜のAl量が 0.1〜0.65の範囲で比較例1及び6〜10の皮膜硬度より高いことが判る。特に、比較例1ではAl量が0.05と少なく、Ti量が0.6 よりも多いため、硬度においては従来AlTiN (比較例7)よりも劣る結果となった。また、比較例6ではAl量が0.7 と多いため、ビッカース硬度が本発明例と化学成分系が同じであっても低く、他の比較例と同様に低いものになった。
【0020】
また、比較のため成膜方法として電子ビーム蒸着法を選択し、るつぼ中に表1に示す本発明例2〜5と比較例1、6のTiNbAlターゲットと同一の化学組成のターゲットを投入し、電子ビーム蒸発を行いつつ、窒素ガスを導入することにより成膜を行った。成膜条件としては基板温度、窒素ガス圧は同一であり、基板への印加バイアス電圧は−300 Vとした。
【0021】
形成した皮膜の化学組成を蛍光X線分析法により測定した結果、皮膜の化学組成はるつぼ中のターゲット組成より大きく外れており、いずれも皮膜中のAl量が蒸発源組成より10〜20%程度高くなっていた。この原因は、融点の低いAlが電子ビーム加熱により、優先的に蒸発したためと考えられる。
【0022】
また、比較のため成膜方法としてスパッタリング法を選択し、表1に示す本発明例2〜5と比較例1、6のTiNbAlターゲットと同一の組成の皮膜を、Ar/窒素混合ガスを用いて成膜した。成膜条件は基板温度、基板への印加バイアス電圧は同一とし、Ar/窒素比は 5:1 で全圧3mtorrとした。 形成した皮膜の硬度をマイクロビッカース硬度計にて荷重25gf、保持時間15秒の条件で測定した。その測定結果を表2に示す。
【0023】
【表2】
Figure 0004171099
【0024】
上記表2に示す比較例1〜6の皮膜硬度は、表1に示す本発明例2〜5に比較していずれも20%程度低い結果となった。これはスパッタリング法では蒸発原子のイオン化率が低いため基板に入射するイオンの比率が低いために、緻密な皮膜が形成されなかったためと考えられる。
【0025】
(実施例2)
純窒素雰囲気中でカソード放電型アークイオンプレーティング法にて超硬チップ及び超硬製エンドミル(6枚刃、直径10mm)に表3に示す化学組成の皮膜を形成した。この時の成膜条件は基板温度 400℃、窒素ガス圧20mtorr 、基板への印加バイアス電圧−150 Vとし、成膜厚みは約 3μm とした。また形成した皮膜の化学組成は蛍光X線分析法により測定した。また超硬チップ上に形成した皮膜の硬度をマイクロビッカース硬度計にて荷重25gf、保持時間15秒の条件で測定した。その結果を表3に併せて示す。
【0026】
【表3】
Figure 0004171099
【0027】
表3から明らかなように、本発明例2〜5は、形成された皮膜のNb量が0.05〜0.75の範囲で比較例1及び6の皮膜硬度より高いことが判る。特に、比較例1ではNb量が0.01と少ないため、硬度がほとんど上昇せず前記表1に示す従来AlTiN (比較例7)よりも劣る結果となった。また、比較例6ではNb量が0.8 と多い上に、Tiを全く添加しなかったため、恐らく結晶構造が変わり、ビッカース硬度が本発明例と化学成分系が同じであっても低く、他の比較例と同様に低いものになった。
【0028】
(実施例3)
反応ガスとして窒素/メタン混合ガスを用い、カソード放電型アークイオンプレーティング法にて超硬チップ及び超硬製エンドミル(6枚刃、直径10mm)に表4に示す化学組成の皮膜を形成した。この時の成膜条件は基板温度 400℃、窒素ガス圧20mtorr 、基板への印加バイアス電圧−150 Vとし、成膜厚みは約 3μm とした。また、成膜時の窒素/メタン混合ガス比を変化させることにより、各々皮膜中のN 及びC 量の異なる皮膜を形成した。形成した皮膜のN 及びC 量はオージエ電子分光法により定量分析を行った。
【0029】
【表4】
Figure 0004171099
【0030】
(実施例4)
カソード放電型アークイオンプレーティング法にて超硬チップ及び超硬製エンドミル(6枚刃、直径10mm)に化学組成Ti0.3Nb0.3Al0.4 の皮膜を形成した。この時の成膜条件は基板温度 400℃、窒素ガス圧20mtorr とする一方、基板への印加バイアス電圧を−30〜−300 Vまで変化させ、成膜厚み約 3μm の皮膜を形成した。形成した皮膜の結晶構造及び配向をθ− 2θスキャンのX線回折(線源 CuKα、40kV− 200mA、走査速度 4度/分)の条件で測定を行った。形成された皮膜の結晶構造は全て立方晶、岩塩構造であった。次に測定結果より求めた(111)面と(200)面のピーク強度比〔I(111)/I(200)〕と皮膜マイクロビッカース硬度の関係を表5に示す。
【0031】
【表5】
Figure 0004171099
【0032】
表5から明らかなように、印加バイアス電圧が−30〜−70Vの領域では皮膜のピーク強度比〔I(111)/I(200)〕の値は1より小さく、かつ皮膜硬度も表1に示した比較例7〜9と同等あるいはそれより低い値を示し、一方それより高い印加バイアス電圧で形成された皮膜のピーク強度比〔I(111)/I(200)〕の値は1より大きく、皮膜硬度も高い値を示し、ピーク強度比〔I(111)/I(200)〕の値を1より大きく、即ち1<I(111)/I(200)≦95の関係を満たすように皮膜形成する必要のあることが判る。
【0033】
(実施例5)
実施例3(表4)及び表1の比較例7〜9に示す化学組成の皮膜を形成した超硬製エンドミルを用いて下記に示す切削条件で切削試験を行った。そして、切削後の切れ刃の膜が摩耗し、超硬素材が露出した部分の量から、各皮膜の耐摩耗性を比較した。その試験結果を表6に示す。
【0034】
切削条件
切削材:JIS−SKD11鋼(焼入れ材、硬度HRC60)
切込み:0.5mm ×10.0mm
送り :100mm /分(0.026mm /刃)
回転速度:637 回転/分
切削速度:20m/分
切削長:40m
その他:ダウンカット、エアブロー
【0035】
【表6】
Figure 0004171099
【0036】
表6から明らかなように、 C量が 0.4より多い、即ち N量が 0.6未満の比較例4、5の領域では比較例6のTiN よりは優れた耐摩耗性を示すものの、比較例7のAlTiN よりは耐摩耗性が劣っており、このことから耐摩耗性が得られる N量の範囲を 0.6〜1 としたものである。
【0037】
(実施例6)
実施例2(表3)及び表1の比較例7〜9に示す化学組成の皮膜を形成した超硬製エンドミルを用いて、上記実施例5と同様の条件で切削試験を行うとともに、同様の要領で各皮膜の耐摩耗性を比較した。その試験結果を表7に示す。
【0038】
【表7】
Figure 0004171099
【0039】
表7から明らかなように、Nb量が0.05〜75の範囲であれば、比較例7のAlTiN よりも耐摩耗性に優れ、その範囲を外れると比較例7のAlTiN よりも耐摩耗性が劣ることが判る。そして、これよりNb量を0.05〜75としたものである。
【0040】
(実施例7)
上記実施例1の表1に示す本発明例2〜5と比較例1、6の化学組成の皮膜を形成した超硬製エンドミルを用い、さらに比較のために行った本発明例4と同じ化学組成のターゲットを用いた電子ビーム蒸着法とスパッタリング法で皮膜形成した超硬製エンドミルを用い、上記実施例5及び6と同様の条件で切削試験を行うとともに、同様の要領で各皮膜の耐摩耗性を比較した。その試験結果を表8に示す。
【0041】
【表8】
Figure 0004171099
【0042】
表8から明らかなように、カソード放電式アークイオンプレーティング法(表中ではアーク法と表示)で作製した皮膜はAl量が0.1 〜0.65の範囲であれば、電子ビーム蒸着法とスパッタリング法で形成した皮膜はもとより、上記実施例5、6の表6、7の比較例6〜8の化学組成の皮膜と比較して、いずれも耐摩耗性に優れることが判る。
【0043】
【発明の効果】
上述したように、本発明に係る硬質皮膜によれば、特に耐摩耗性に優れ、硬度、耐熱性(高温耐酸化性)なども優れていることから、バイト、エンドミルなどの切削工具はもとより金型、ダイスやロールなどの塑性加工用治工具、ビット、ロッドなどの土木工具、機械部品類などの広い用途の部品の耐摩耗性が要求される基材表面に被覆して用いることが可能となる。
【0044】
また、本発明に係る硬質皮膜をカソード放電式アークイオンプレーティング法(アーク法)により、皮膜組成及び結晶構造及び配向を適切な範囲に制御しつつ成膜することにより、アーク法で形成された従来のTiN あるいはAlTiN 膜は言うまでもなく、電子ビーム蒸着法やスパッタリング法で形成した皮膜よりも耐摩耗性に優れた部材が得られることは明らかである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hard film having excellent wear resistance, and in particular, is used by coating the surface of a base material that requires wear resistance of members such as cutting tools or machine parts, molds, jigs for plastic working, and the like. It relates to a hard coating.
[0002]
[Prior art]
In recent years, in order to improve the wear resistance performance of cutting tools or machine parts, TiN has been added to the surface of the substrate where wear resistance of these members is required, or recently, an additive element has been added to the coating to further improve the wear resistance. It is frequently practiced to form coatings with high hardness and excellent wear resistance, such as added composite nitrides, carbides, carbonitride compounds, and more specifically, TiAlCN-based coatings (see JP-A-8-209333) ), TiHfN coating (see JP-A-62-207858), TiHfAlN coating (see JP-A-9-104966), and the like.
[0003]
[Problems to be solved by the invention]
The above-mentioned conventional coatings are excellent not only in hardness and wear resistance but also in heat resistance (high temperature oxidation resistance), etc. In addition to cutting tools such as cutting tools and end mills, jigs and tools for plastic working such as dies and rolls In addition, it is possible to coat a base material surface that requires wear resistance of parts for a wide range of applications such as civil tools such as bits and rods and machine parts.
[0004]
On the other hand, in order to respond to the recent increase in the cutting speed accompanying the increase in the hardness or work efficiency of the work material, the present inventors have also been able to apply a hard coating particularly excellent in wear resistance that can be applied to cutting tools so far. Recently, a hard film having a chemical composition different from that of the conventional hard film and having a hardness and wear resistance equal to or higher than that of the conventional hard film has been developed.
[0005]
The present invention has been made on the basis of the circumstances as described above, and its object is to provide a hard coating that is particularly excellent in wear resistance and that can be applied to a wide range of parts as well as cutting tools.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a hard coating according to the present invention is a hard coating excellent in abrasion resistance according to claim 1 or 2 , and has the following configuration.
[0007]
That is, the hard film having excellent wear resistance according to claim 1 is a hard film formed as a wear-resistant film on the surface of the substrate, and the film is (Tix Nby Alz) (Na C1-a) where 0.6 ≦ a ≦ 1, 0.1 ≦ z ≦ 0.65, 0.05 ≦ y ≦ 0.75, 0 <x <0.6, and a hard film having a chemical composition satisfying x + y + z = 1, and the crystal structure of the hard film is cubic And the maximum intensity ratio of diffraction lines of (111) plane and (200) plane measured by X-ray diffraction of the film satisfies the relationship of 90 ≦ I (111) / I (200) ≦ 95 It is characterized by this. All the above numerical values are mole fractions.
[0008]
And the reason for limiting to the composition shown in the said Claim 1 is as follows. The reason why Al is added to the film is that it can be expected to increase the film hardness and improve the oxidation resistance (heat resistance) that can withstand high temperatures during cutting or sliding. If the effect is small and more than 0.65, on the contrary, the film hardness is lowered and the wear resistance becomes insufficient. Therefore, the additive amount z of Al is set to 0.1 ≦ z ≦ 0.65, and preferably in the range of 0.3 ≦ z ≦ 0.5.
[0009]
In addition, Nb is added because it can further improve the hardness and heat resistance of the coating. If the amount is less than 0.05, the effect is small. There is a tendency for the film hardness to decrease, and there is concern about a decrease in wear resistance. Therefore, the addition amount y of Nb is set to 0.05 ≦ y ≦ 0.75, preferably 0.1 ≦ y ≦ 0.5. Although the details of the mechanism of the increase in hardness due to the addition of Nb are not clear, NbN has a hexagonal crystal structure when formed alone, so that it has a cubic crystal structure such as TiN. When the solid solution is formed, it is considered that a high hardness film is formed by replacing Nb with a substitution type in the cubic lattice of TiN. In addition, oxidation resistance of conventional TiAlCN coating is said to be improved by preferential oxidation of Al on the coating surface due to high temperature during cutting, and the formation of aluminum oxide with excellent protective properties on the outermost surface. Yes. In addition, the protective property of this aluminum oxide is lost at about 900 ° C, and the preferential oxidation of Ti proceeds rapidly at higher temperatures. Addition of Nb increases the oxidation start temperature. Compared with almost the same amount of Al, Al 0.6 Ti 0.4 N shows a rapid oxidation start at about 900 ° C, whereas Al 0.5 Ti 0.3 Nb 0.2 N has an oxidation start temperature of about 1000 ° C. The reason for this is presumed that Nb oxide is precipitated in the aluminum oxide, and a film having further excellent protective properties is formed.
[0010]
In addition, the amount of Ti added in the film was set to 0 <x <0.6. This is because TiN is originally inferior in oxidation resistance, so the amount of Ti in the film increases, that is, the ratio of TiN Since the oxidation resistance of the film decreases with the increase, the amount x of Ti in the film is less than 0.6. On the other hand, when no Ti is added to the film, the crystal structure changes and the hardness and wear resistance are reduced. Since there is a concern about the decrease, it is necessary to add, and preferably 0.2 ≦ x ≦ 0.55.
[0011]
In addition, the addition of C to the film is an element that tends to form carbides, and is intended to further increase the wear resistance of the film by precipitating TiC or NbC components in the film by reaction with Ti and Nb. However, when the value of a is less than 0.6, that is, when the C content is 0.4 or more, the wear resistance is reduced. This is presumably because if the C content is increased too much, aluminum carbide or carbonitride that is thermodynamically unstable is formed in the film.
[0013]
The crystal structure of the hard film defined in claim 1 is a cubic rock salt structure, but the plane orientation with respect to the substrate surface varies depending on the conditions during the film formation. When a film having a cubic rock salt structure is formed, planes that are likely to cause plane orientation include (111), (200), and (220) planes. In the present invention, the orientation of the substrate plane is determined by X-ray diffraction. In particular, when the ratio I (111) / I (200) of the diffraction intensity of the (111) plane to that of the (200) plane is greater than 1 and in the range of 95 or less, the hardness increases and the resistance to resistance increases. When the wearability is remarkably improved and I (111) / I (200) = 90, the film hardness is larger than the film hardness of other peak intensity ratios. The (111) plane is the plane with the highest packing density in the rock salt type crystal structure, and by further regularly orienting the plane on the substrate surface, further excellent wear resistance can be realized. In the plane orientation, a film with the (111) plane preferentially oriented can be formed by changing the degree of vacuum at the time of film formation, the substrate temperature, or the voltage applied to the substrate.
[0014]
Next, the hard film excellent in abrasion resistance according to claim 2 is formed by forming the hard film according to claim 1 using a cathode discharge arc ion plating method.
[0015]
In the cathode discharge type arc ion plating method, if a film is formed using a target having a target chemical composition, the target is evaporated and ionized by a high-current arc, so there is little difference in evaporation rate between elements, and the film chemistry The composition is almost constant, and the chemical composition of the film is very easy to control. On the other hand, in the case of the hollow cathode ion plating (HCD) method and the method of melting and evaporating with an electron beam, the evaporation rate and the vapor pressure differ depending on the element. Since the composition is different, it is difficult to control the chemical composition. Further, when evaporating using a crucible, if the amount of the evaporation source changes with evaporation, there is a possibility that the chemical composition of the film will further change because the evaporation rate changes accordingly. The arc method has higher ionization efficiency than other methods, and a film excellent in adhesion and denseness can be easily obtained by a bias voltage applied to the substrate. Furthermore, since a solid evaporation source is used, the target can be arranged freely, and film formation on a three-dimensional shaped part becomes easy.
[0016]
【Example】
(Example 1)
A TiNbAl target as an example of the present invention, a TiNbAl target as a comparative example and a target having a chemical composition not containing Nb were prepared, and these targets were used as cathodes by a cathode discharge type arc ion plating method in a pure nitrogen atmosphere. A film having the chemical composition shown in Table 1 was formed on a cemented carbide tip and a cemented carbide end mill (6 blades, diameter 10 mm). The film formation conditions at this time were a substrate temperature of 400 ° C., a nitrogen gas pressure of 20 mtorr, an applied bias voltage of −150 V to the substrate, and a film thickness of about 3 μm. The chemical composition of the formed film was measured by fluorescent X-ray analysis.
[0017]
The hardness of the film formed on the cemented carbide chip as described above was measured with a micro Vickers hardness meter under a load of 25 gf and a holding time of 15 seconds. The results are also shown in Table 1.
[0018]
[Table 1]
Figure 0004171099
[0019]
As is clear from Table 1, Examples 2 to 5 of the present invention show that the Al amount of the formed film is higher than the film hardness of Comparative Examples 1 and 6 to 10 in the range of 0.1 to 0.65. In particular, in Comparative Example 1, since the Al amount was as small as 0.05 and the Ti amount was larger than 0.6, the hardness was inferior to that of conventional AlTiN (Comparative Example 7). Further, in Comparative Example 6, since the Al amount was as large as 0.7, the Vickers hardness was low even when the chemical component system was the same as that of the inventive example, and was low as in the other Comparative Examples.
[0020]
For comparison, an electron beam evaporation method was selected as a film formation method, and targets having the same chemical composition as the TiNbAl targets of Invention Examples 2 to 5 and Comparative Examples 1 and 6 shown in Table 1 were put in a crucible. A film was formed by introducing nitrogen gas while performing electron beam evaporation. As film formation conditions, the substrate temperature and the nitrogen gas pressure were the same, and the bias voltage applied to the substrate was −300 V.
[0021]
As a result of measuring the chemical composition of the formed film by X-ray fluorescence analysis, the chemical composition of the film is significantly different from the target composition in the crucible, and the amount of Al in the film is about 10 to 20% of the evaporation source composition. It was high. This is probably because Al having a low melting point was preferentially evaporated by electron beam heating.
[0022]
For comparison, a sputtering method was selected as a film formation method, and a film having the same composition as the TiNbAl target of Invention Examples 2 to 5 and Comparative Examples 1 and 6 shown in Table 1 was used using an Ar / nitrogen mixed gas. A film was formed. The film formation conditions were the same substrate temperature and the same bias voltage applied to the substrate, the Ar / nitrogen ratio was 5: 1, and the total pressure was 3 mtorr. The hardness of the formed film was measured with a micro Vickers hardness tester under the conditions of a load of 25 gf and a holding time of 15 seconds. The measurement results are shown in Table 2.
[0023]
[Table 2]
Figure 0004171099
[0024]
The film hardness of Comparative Examples 1 to 6 shown in Table 2 was about 20% lower than Examples 2 to 5 of the present invention shown in Table 1. This is presumably because in the sputtering method, the ionization rate of the evaporated atoms is low and the ratio of ions incident on the substrate is low, so that a dense film is not formed.
[0025]
(Example 2)
A film having the chemical composition shown in Table 3 was formed on a cemented carbide tip and a cemented carbide end mill (6 blades, diameter 10 mm) by a cathode discharge arc ion plating method in a pure nitrogen atmosphere. The film formation conditions at this time were a substrate temperature of 400 ° C., a nitrogen gas pressure of 20 mtorr, an applied bias voltage of −150 V to the substrate, and a film thickness of about 3 μm. The chemical composition of the formed film was measured by fluorescent X-ray analysis. The hardness of the film formed on the cemented carbide chip was measured with a micro Vickers hardness tester under the conditions of a load of 25 gf and a holding time of 15 seconds. The results are also shown in Table 3.
[0026]
[Table 3]
Figure 0004171099
[0027]
As is apparent from Table 3, Examples 2 to 5 of the present invention show that the Nb content of the formed film is higher than the film hardness of Comparative Examples 1 and 6 in the range of 0.05 to 0.75. In particular, in Comparative Example 1, since the Nb amount was as small as 0.01, the hardness hardly increased and the result was inferior to the conventional AlTiN shown in Table 1 (Comparative Example 7). In Comparative Example 6, the amount of Nb was as high as 0.8 and Ti was not added at all. Therefore, the crystal structure was probably changed, and the Vickers hardness was low even when the chemical component system was the same as that of the present invention. It was as low as the example.
[0028]
(Example 3)
Using a nitrogen / methane mixed gas as a reaction gas, a coating having the chemical composition shown in Table 4 was formed on a cemented carbide tip and a cemented carbide end mill (6 blades, 10 mm in diameter) by a cathode discharge arc ion plating method. The film formation conditions at this time were a substrate temperature of 400 ° C., a nitrogen gas pressure of 20 mtorr, an applied bias voltage of −150 V to the substrate, and a film thickness of about 3 μm. In addition, by changing the nitrogen / methane mixed gas ratio at the time of film formation, films with different amounts of N and C in the films were formed. The amount of N and C in the formed film was quantitatively analyzed by Auger electron spectroscopy.
[0029]
[Table 4]
Figure 0004171099
[0030]
Example 4
A film of the chemical composition Ti0.3Nb0.3Al0.4 was formed on a cemented carbide tip and a cemented carbide end mill (6 blades, diameter 10 mm) by the cathode discharge type arc ion plating method. The film formation conditions at this time were a substrate temperature of 400 ° C. and a nitrogen gas pressure of 20 mtorr, while the bias voltage applied to the substrate was changed from −30 to −300 V to form a film with a film thickness of about 3 μm. The crystal structure and orientation of the formed film were measured under the conditions of θ-2θ scanning X-ray diffraction (source CuKα, 40 kV-200 mA, scanning speed 4 ° / min). The crystal structure of the formed film was all cubic and rock salt structure. Next, Table 5 shows the relationship between the peak intensity ratio [I (111) / I (200)] between the (111) plane and the (200) plane and the coating micro Vickers hardness obtained from the measurement results.
[0031]
[Table 5]
Figure 0004171099
[0032]
As is apparent from Table 5, the value of the peak intensity ratio [I (111) / I (200)] of the film is smaller than 1 and the film hardness is also shown in Table 1 in the region where the applied bias voltage is -30 to -70V. The value of the peak intensity ratio [I (111) / I (200)] of the film formed with a higher applied bias voltage is larger than 1 while showing a value equivalent to or lower than the comparative examples 7 to 9 shown. The film hardness also shows a high value, and the value of the peak intensity ratio [I (111) / I (200)] is larger than 1, that is, the relationship 1 <I (111) / I (200) ≦ 95 is satisfied. It turns out that a film needs to be formed.
[0033]
(Example 5)
A cutting test was performed under the following cutting conditions using a cemented carbide end mill on which a film having the chemical composition shown in Example 3 (Table 4) and Comparative Examples 7 to 9 in Table 1 was formed. And the abrasion resistance of each film | membrane was compared from the quantity of the part which the film | membrane of the cutting edge after cutting was abraded and the carbide | carbonized_material was exposed. The test results are shown in Table 6.
[0034]
Cutting conditions Cutting material: JIS-SKD11 steel (hardened material, hardness HRC60)
Cutting depth: 0.5mm x 10.0mm
Feed: 100mm / min (0.026mm / tooth)
Rotational speed: 637 rev / min Cutting speed: 20m / min Cutting length: 40m
Others: Down cut, air blow [0035]
[Table 6]
Figure 0004171099
[0036]
As can be seen from Table 6, in the regions of Comparative Examples 4 and 5 where the amount of C is greater than 0.4, that is, the amount of N is less than 0.6, the wear resistance superior to that of TiN of Comparative Example 6 is exhibited. The wear resistance is inferior to that of AlTiN. Therefore, the range of N content that provides wear resistance is 0.6 to 1.
[0037]
(Example 6)
A cutting test was performed under the same conditions as in Example 5 above using a cemented carbide end mill formed with a film having the chemical composition shown in Example 2 (Table 3) and Comparative Examples 7 to 9 in Table 1. The wear resistance of each film was compared in the same way. The test results are shown in Table 7.
[0038]
[Table 7]
Figure 0004171099
[0039]
As is clear from Table 7, if the Nb amount is in the range of 0.05 to 75, the wear resistance is superior to the AlTiN of Comparative Example 7, and if it is outside the range, the wear resistance is inferior to the AlTiN of Comparative Example 7. I understand that. From this, the Nb amount is 0.05 to 75.
[0040]
(Example 7)
The same chemistry as Example 4 of the present invention was carried out for comparison, using a cemented carbide end mill formed with coatings of chemical compositions of Invention Examples 2 to 5 and Comparative Examples 1 and 6 shown in Table 1 of Example 1 above. Using a cemented carbide end mill coated with an electron beam evaporation method using a composition target and a sputtering method, a cutting test was performed under the same conditions as in Examples 5 and 6 above, and the wear resistance of each coating was performed in the same manner. Sex was compared. The test results are shown in Table 8.
[0041]
[Table 8]
Figure 0004171099
[0042]
As is apparent from Table 8, the film produced by the cathode discharge type arc ion plating method (indicated as the arc method in the table) has an Al content in the range of 0.1 to 0.65. It can be seen that both the films formed are superior in wear resistance as compared with the films having the chemical compositions of Comparative Examples 6 to 8 in Tables 6 and 7 in Examples 5 and 6 above.
[0043]
【The invention's effect】
As described above, the hard coating according to the present invention is particularly excellent in abrasion resistance, hardness, heat resistance (high temperature oxidation resistance), and the like. It is possible to coat and use on the surface of base materials that require wear resistance of parts such as molds, dies and rolls for plastic working, civil engineering tools such as bits and rods, machine parts, etc. Become.
[0044]
In addition, the hard film according to the present invention was formed by the arc method by depositing the hard film according to the cathode discharge type arc ion plating method (arc method) while controlling the film composition, crystal structure and orientation within an appropriate range. Needless to say, the conventional TiN or AlTiN film, it is clear that a member having better wear resistance than the film formed by the electron beam evaporation method or the sputtering method can be obtained.

Claims (2)

基材表面に耐摩耗性皮膜として形成される硬質皮膜であって、皮膜が (Tix Nby Alz)(Na C1-a ) 但し 0.6≦a≦1 、 0.1≦z≦0.65、0.05≦y≦0.75、 0<x<0.6 であり、且つx+y+z=1を満たす化学組成からなり、その結晶構造が立方晶の岩塩型構造であり、且つ皮膜のX線回折により測定された(111)面と(200)面の回折線最大強度比が、90≦I(111)/I(200)≦95の関係を満たすことを特徴とする耐摩耗性に優れる硬質皮膜。It is a hard film formed as a wear-resistant film on the surface of a substrate, and the film is (Tix Nby Alz) (Na C1-a) where 0.6 ≦ a ≦ 1, 0.1 ≦ z ≦ 0.65, 0.05 ≦ y ≦ 0.75, It has a chemical composition satisfying 0 <x <0.6 and satisfying x + y + z = 1, its crystal structure is a cubic rock salt structure, and (111) plane and (200) measured by X-ray diffraction of the film A hard film excellent in wear resistance, characterized in that the diffraction line maximum intensity ratio of the surface satisfies a relationship of 90 ≦ I (111) / I (200) ≦ 95. 請求項1に記載の耐摩耗性に優れる硬質皮膜が、カソード放電型アークイオンプレーティング法により形成されたものである耐摩耗性に優れる硬質皮膜。  A hard coating having excellent wear resistance, wherein the hard coating having excellent wear resistance according to claim 1 is formed by a cathode discharge arc ion plating method.
JP11492898A 1998-04-24 1998-04-24 Hard film with excellent wear resistance Expired - Lifetime JP4171099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11492898A JP4171099B2 (en) 1998-04-24 1998-04-24 Hard film with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11492898A JP4171099B2 (en) 1998-04-24 1998-04-24 Hard film with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH11302831A JPH11302831A (en) 1999-11-02
JP4171099B2 true JP4171099B2 (en) 2008-10-22

Family

ID=14650141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11492898A Expired - Lifetime JP4171099B2 (en) 1998-04-24 1998-04-24 Hard film with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP4171099B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062582B2 (en) * 2001-07-23 2008-03-19 株式会社神戸製鋼所 Hard coating for cutting tool, method for producing the same, and target for forming hard coating
JP4817799B2 (en) * 2004-10-26 2011-11-16 京セラ株式会社 Surface covering
SE529223C2 (en) * 2005-05-06 2007-06-05 Seco Tools Ab Coated cutting tool comprising hexagonal h- (Mel, Me2) X phase
JP4721281B2 (en) * 2006-04-27 2011-07-13 日立ツール株式会社 Oxidation resistant film and member coated with the film
WO2009016938A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Hard coating film, material covered with hard coating film, mold for cold plastic forming, and method for forming hard coating film
JP4774080B2 (en) 2007-08-02 2011-09-14 株式会社神戸製鋼所 Hard coating material and cold plastic working mold
JP5662680B2 (en) * 2007-08-22 2015-02-04 住友電気工業株式会社 Surface coated cutting tool
WO2009119682A1 (en) 2008-03-26 2009-10-01 京セラ株式会社 Cutting tool
US8586214B2 (en) * 2010-03-29 2013-11-19 Kyocera Corporation Cutting tool
CN102821897B (en) * 2010-03-29 2015-08-05 京瓷株式会社 Cutting element
JP5542925B2 (en) 2010-05-27 2014-07-09 京セラ株式会社 Cutting tools
JP5713663B2 (en) * 2010-12-25 2015-05-07 京セラ株式会社 Cutting tools
JP5979927B2 (en) 2012-03-19 2016-08-31 シチズンホールディングス株式会社 Golden hard decorative material
JP6242751B2 (en) * 2014-06-04 2017-12-06 株式会社神戸製鋼所 Manufacturing method of machining tool and machining tool

Also Published As

Publication number Publication date
JPH11302831A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP2644710B2 (en) Abrasion resistant coating
US7901796B2 (en) Coated cutting tool and manufacturing method thereof
US7601440B2 (en) Hard coating excellent in wear resistance and in oxidation resistance and target for forming the same
JP2793773B2 (en) Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP4171099B2 (en) Hard film with excellent wear resistance
US5318840A (en) Wear resistant coating films and their coated articles
EP2446066A1 (en) Nanolaminated coated cutting tool
KR101779634B1 (en) Pvd hybrid method for depositing mixed crystal layers
KR20070077083A (en) Hard coating film
WO2013131961A1 (en) Nanolaminated coated cutting tool
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
JP5695720B2 (en) Hard coating with excellent wear and oxidation resistance
US10669622B2 (en) Coated cutting tool and a method for coating the cutting tool
KR20160050056A (en) A coated cutting tool and a method for coating the cutting tool
JP2012505308A (en) Non-gamma phase cubic AlCrO
KR20110014576A (en) Tool having a metal oxide coating
CN110945156A (en) Coated cutting tool and method of making same
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP4753281B2 (en) Hard film forming target
JP3950385B2 (en) Surface coated cutting tool
JP2840541B2 (en) Hard coating, hard coating tool and hard coating member excellent in wear resistance
JP4808972B2 (en) Surface coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP3836640B2 (en) Hard film and hard film coated member with excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term