JP2579717C - - Google Patents

Info

Publication number
JP2579717C
JP2579717C JP2579717C JP 2579717 C JP2579717 C JP 2579717C JP 2579717 C JP2579717 C JP 2579717C
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
film
decarburizing
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Publication date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】 本発明は、変圧器の鉄芯材料として用いられる方向性電磁鋼板の脱炭焼鈍方法
に関するものである。 【0002】 【従来の技術】 方向性電磁鋼板に最も必要な特性は鉄損が少ないことである。この鉄損を少な
くするため近年、2次再結晶後の鋼板表面に磁区細分化技術、即ちレーザ照射な
どの処理を施すことにより、鉄損が大幅に改善されてきた。この時、磁区細分化
後の鉄損値は製品の磁束密度によって支配される。即ち、磁束密度が高いほど磁
区細分化後の鉄損が良くなることから、磁束密度が高いことが益々重要になって
きた。 【0003】 現在、磁束密度B8が1.92T程度の方向性電磁鋼板をAlNをインヒビタ
ーとして利用して市場に出しているが、更に磁束密度の改善が求められている。
一方、皮膜特性として、顧客での曲げ加工時に皮膜が剥がれることがあるため、
皮膜密着性も重要な特性である。 【0004】 従来、磁気特性と皮膜密着性を改善する手段として、例えば特公昭54−24
686号公報や特公昭57−1575号公報に脱炭焼鈍の熱処理サイクルを2段
にする開示がある。特公昭57−1575号公報では脱炭焼鈍工程の前部領域の
温度を750〜880℃でその雰囲気のP H2O/P H2を0.15〜0.75とし
、引き続く後部領域の温度を750〜1200℃でその雰囲気のP H2O/P H2
0.15以下とする方向性電磁鋼板の脱炭焼鈍方法が開示されている。 【0005】 また、特開平2−240215号公報に3段の熱処理サイクルにすることが開
示されている。これらの方法により磁気特性と製品皮膜密着性は大幅に向上した
が、磁気特性とくに磁束密度不良および皮膜の密着性が不良なコイルがしばしば
発生し、問題となっていた。すなわち、磁気特性と皮膜密着性を同時に十分満足
する製品は工業的には安定して得ることができなかった。 【0006】 【発明が解決しようとする課題】 本発明は、磁気特性とくに磁束密度と皮膜密着性の両者を同時に優れたものと する方向性電磁鋼板を製造する技術を提供する。 【0007】 【課題を解決するための手段】 本発明の要旨は次の通りである。 (1)重量%で、 C :0.01〜0.10%、Si:2〜4%、 Mn:0.05〜0.10%、S+Se:0.01〜0.03%、 Sol Al:0.01〜0.04%、N :0.003〜0.01%、 Sn+Sb:0.01〜0.3%、 Cu≦0.3%、 Mo≦0.2%、 及び、残部Feと不可避的不純物からなる冷延板を脱炭焼鈍するに際して、 脱炭
焼鈍工程の前部領域の温度を750〜880℃で、その雰囲気のP H2O/P H2
0.15〜0.75とし、引き続く後部領域の温度を750〜1200℃でその
雰囲気のP H2O/P H2を0.15以下とする方向性電磁鋼板の脱炭焼鈍方法にお
いて、脱炭焼鈍処理後のMgOを含む鋼板融着防止剤をコーティング・乾燥した
工程の後で、鋼中酸素を重量比で0.03〜0.07%に制御することを特徴と
する方向性電磁鋼板の脱炭焼鈍方法。 【0008】 (2)前部領域を2段に分割し、前段部を750〜850℃で行い、後段部を
800〜880℃の前段部よりも高い温度で行う前記(1)記載の方向性電磁鋼
板の脱炭焼鈍方法。 【0009】 本発明は3つの発見から成立する。即ち、第1に脱炭焼鈍によって生じた鋼板
表面の酸化層はSiO2が主体で薄いことが、磁束密度を向上させること。第2
に脱炭焼鈍によって生じた鋼板表面の酸化層が厚い方が製品皮膜が良好となる傾
向にある。第3に、これら特性的に相反する現象は、脱炭焼鈍後のMgOを含む
鋼板融着防止剤をコーティング・乾燥した工程の後で、鋼板酸素量を制御するこ
とにより、磁束密度と皮膜密着性を同時に満足させることが可能なことである。 【0010】 以下、実験データの例に基づいて説明する。 脱炭焼鈍前の鋼板成分が表1に示す3種類の0.20mm厚みの冷延板に対し、
830℃で2分間の均熱焼鈍を実施した。この時の雰囲気ガスとして、H2:1
0%とし水蒸気ガスをP H2O/P H2:0.0011〜0.1480(露点13〜
45℃)に変化させ、残部をN2で混合した。 【0011】 その後、室温まで冷却後、さらに900℃で30秒の均熱焼鈍をH2:10%
、N2:90%、P H2O/P H2:0.0051(露点−30℃)の雰囲気中で行
った。次いでTiO2を含むMgOコーティングをしてから、300℃で空気中
焼き付けした。この鋼板のO量はMgO膜を水洗除去してから化学分析により求
めた。 【0012】 それから、20℃/hrの昇温速度で1200℃までのバッチ・高温仕上焼鈍を
実施した。この鋼板の余剰MgOを水洗してから、張力皮膜を塗布し焼き付けと
鋼板平坦化焼鈍を800℃で行い、特性を評価した。 これらの試験結果を図1,2に示す。 【0013】 【表1】 【0014】 図2の皮膜密着性は、20mmφの丸鋼に巻き付けて皮膜が全く剥がれないもの
:Aとし、一部剥がれるもの:B、全て剥がれるもの:Cとした。図1で見るよ
うに、鋼板O量が増えると磁束密度が徐々に劣化する。図2に示す如く、皮膜密
着性は逆に向上する傾向であるが、900ppm を超えると劣化が始まることが明
らかである。 【0015】 磁束密度と皮膜密着性の両者を同時に満足させうる範囲は存在しており、その
範囲はO量が0.03〜0.07%であることが分かる。また、脱炭焼鈍後の鋼
板O量を、この3種類の成分系毎にそれぞれ別個の適正範囲に入れる必要はなく
、鋼板O量そのもので制御すれば磁束密度と皮膜密着性の品質特性を並立して満
足させうることも分かる。 【0016】 実験としては上記以外の供試材としてC:0.01〜0.10%、Si:2〜
4%、Mn:0.05〜0.10%、S+Sc:0.01〜0.03%、Sol
Al:0.01〜0.04%、N:0.003〜0.01%、Sn+Sb:0.
01〜0.3%、Cu≦0.3%、Mo≦0.2%の成分範囲内で試験したが、
この範囲であれば、図1,図2と同等の結果が得られた。 【0017】 脱炭焼鈍後の鋼板O量が増えると磁束密度が劣化する原因は、脱炭焼鈍後の鋼
板表面のSiO2やFe2SiO4酸化層量が増加すると、2次再結晶時の鋼板中
の微細析出物が界面を通じて微妙に形態変化を起こし、磁束密度が低下するもの
と考える。 【0018】 また、脱炭焼鈍後の鋼板O量が増えると、皮膜密着性が向上する傾向にあるの
は、高温仕上焼鈍で形成される皮膜が地鉄層と入り組んだ構造となり、地鉄と皮
膜との界面で剥がれ難くなるためであろう。 【0019】 なお、脱炭焼鈍前の板厚すなわち製品板厚0.15〜0.35mmの範囲内では 、脱炭焼鈍後の最適な鋼板O量は鋼板板厚によっては変わらず、いずれも0.0
3〜0.07%の範囲であった。 【0020】 第2の実験として、鋼板が含有する成分が脱炭焼鈍後の鋼板O量にどの程度影
響するかを調査した例について述べる。表2に示す脱炭焼鈍前の鋼板成分のもの
を用いて、一定の脱炭焼鈍条件のもとに焼鈍を行った後、鋼板のO量を測定した
。 【0021】 用いた鋼板の板厚は0.3mmである。脱炭焼鈍は、まず、850℃で5分間の
均熱焼鈍を実施した。この時の雰囲気ガスとしてはH2:30%とし、P H2O/P
H2:0.40、残部をN2とした。ついで、870℃で10秒の均熱処理をH2
:70%、P H2O/P H2:0.0284、残部をN2雰囲気中で行った。 これらの結果を表2に示す。 【0022】 【表2】 【0023】 表2に示す如く、成分すなわちCu,Sn,Sb,Moなどの微量添加量によ
って脱炭焼鈍後のO量が大きく変わる。これは表面に偏析し易い元素が、表面酸
化層の形成量に影響するためであろう。しかしながら、図1,2に示した如く、
脱炭焼鈍後の鋼板O量を制御することにより、添加成分系に依存しないで品質特
性を確保することが可能である。 【0024】 つまり、従来のように雰囲気のH2%、N2%、H2O%の一定制御ではなく、
脱炭焼鈍後の鋼板O量を含めた成分をまずチェックして、O量が0.03〜0.
07%になるべく雰囲気制御を行う必要がある。制御の具体的な方法としては例
えば、P H2O/P H2、雰囲気ガス投入量、焼鈍温度、鋼板の通板速度などを変更
する。 【0025】 このようにして得た鋼板を融着防止のためのMgOなどを塗布、乾燥したあと
、高温仕上焼鈍して絶縁皮膜を塗布、乾燥して製品となす。 【0026】 【実施例】 〔実施例1〕 転炉と真空脱ガス装置で成分調整した溶鋼を連続鋳造し、スラブを1420℃
に加熱し熱間圧延して熱延板を製造した。これを1100℃で焼鈍後、0.3mm
まで冷延し脱脂した。 【0027】 この鋼板の化学分析値は、重量%でC:0.065%、Si:3.1%、Mn
:0.71%、S:0.006%、Se:0.021%、N:0.0096%、
SolAl:0.022%、Sb:0.013%、Mo:0.02%、0:0.
0015%であった。次いで、まず830℃で2分の均熱焼鈍を実施した。この
時の雰囲気ガスとしては、vol%でH2:40%とし、P H2O/P H2を変更するべ
く水蒸気を吹き込み、残部をN2とした。引き続いて同一の焼鈍ラインで鋼板温
度を下げないで、890℃で20秒の2段目均熱処理をH2:40%、P H 2 O/P H2:0.003、残部をN2雰囲気中で行った。 【0028】 次に、マグネシア100部に対し酸化Tiを2重量部、硫酸Srを0.4重量
部含む焼鈍分離剤を塗布し焼き付けた。この鋼板を、塗布皮膜を水洗除去して鋼
板O量を化学分析して、表3に記した。 【0029】 次いで、H2雰囲気中で1200℃まで10℃/Hrで加熱した。結果は以下の
通りである。皮膜密着性の評価は、20mmφの丸鋼に巻き付けて皮膜が全く剥が
れないもの:○とし、一部剥がれるもの:△、全て剥がれるもの:×とした。 【0030】 【表3】 【0031】 表3に示すように、本発明範囲を満足するもので、優れた磁束密度と密着性を
有する方向性電磁鋼板が得られた。 【0032】 〔実施例2〕 転炉と真空脱ガス装置で成分調整した溶鋼を連続鋳造し、スラブを1300℃
に加熱し熱間圧延して熱延板を製造した。これを1000℃で焼鈍後、1.3mm
まで冷延し、1150℃で焼鈍後、0.15mmまで冷延した。 【0033】 脱脂後のこの鋼板の化学分析値は、重量%でC:0.055%、Si:3.0
%、Mn:0.80%、S:0.025%、N:0.0076%、SolAl:
0.031%、O:0.0011%であった。次いで、まず830℃で1分と8
50℃で30秒の均熱焼鈍を実施した。この時の雰囲気ガスとしては、vol%で
2:20%とし、P H2O/P H2を変更するべく水蒸気を吹き込み、残部をN2
した。 【0034】 引き続いて同一の焼鈍ラインで鋼板温度を下げないで、930℃で10秒の2
段目均熱処理を、H2:20%、P H2O/P H2:0.003、残部N2雰囲気中で
行った。次に、マグネシア100部に対し酸化Tiを2重量部、硫酸Sbを0.
1重量部含む焼鈍分離剤を塗布し焼き付けた。この鋼板の塗布皮膜を水洗除去し
て鋼板O量を化学分析して表4に記した。 【0035】 次いで、N2+H2雰囲気中で1200℃まで20℃/Hrで加熱した。次いで、
余剰のMgOを水洗し張力皮膜を焼き付けた。結果は以下の通りである。皮膜密
着性の評価は、20mmφの丸鋼に巻き付けて皮膜が全く剥がれないもの:○とし
、一部剥がれるもの:△、全て剥がれるもの:×とした。 【0036】 【表4】 【0037】 表4に示すように、本発明範囲を満足するもので、優れた磁束密度と密着性を
有する方向性電磁鋼板が得られた。 【0038】 【発明の効果】 本発明によれば、磁束密度と皮膜密着性の両者を満足する方向性電磁鋼板を製
造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decarburizing annealing a grain-oriented electrical steel sheet used as an iron core material of a transformer. [0002] The most necessary characteristic of grain-oriented electrical steel sheets is that they have low iron loss. In recent years, in order to reduce the iron loss, the surface of the steel sheet after the secondary recrystallization is subjected to a magnetic domain refining technique, that is, a treatment such as laser irradiation, so that the iron loss has been greatly improved. At this time, the iron loss value after the magnetic domain refinement is governed by the magnetic flux density of the product. That is, the higher the magnetic flux density, the better the iron loss after the magnetic domain refinement. Therefore, the higher the magnetic flux density has become increasingly important. At present, a grain-oriented electrical steel sheet having a magnetic flux density B 8 of about 1.92 T is put on the market using AlN as an inhibitor, but further improvement in the magnetic flux density is required.
On the other hand, as a film property, the film may be peeled off at the time of bending by the customer,
Film adhesion is also an important property. Conventionally, as means for improving magnetic properties and film adhesion, for example, Japanese Patent Publication No. 54-24
No. 686 and Japanese Patent Publication No. 57-1575 disclose that the heat treatment cycle of decarburizing annealing is two stages. In Japanese Patent Publication No. 57-1575, the temperature in the front region of the decarburizing annealing process is set to 750 to 880 ° C., the PH 2 O / P H 2 in the atmosphere is set to 0.15 to 0.75, and the temperature in the subsequent rear region is set. A method for decarburizing and annealing a grain-oriented electrical steel sheet at a temperature of 750 to 1200 ° C. and a PH 2 O / P H 2 in the atmosphere of 0.15 or less is disclosed. Further, Japanese Patent Application Laid-Open No. 2-240215 discloses a three-stage heat treatment cycle. Although the magnetic properties and the adhesion of the product film were greatly improved by these methods, coils having poor magnetic properties, particularly poor magnetic flux density and poor adhesion of the film, often occurred, and were problematic. In other words, a product that sufficiently satisfies both the magnetic properties and the film adhesion at the same time could not be obtained industrially stably. SUMMARY OF THE INVENTION The present invention provides a technique for manufacturing a grain-oriented electrical steel sheet that simultaneously improves both magnetic properties, particularly magnetic flux density and film adhesion. [0007] The gist of the present invention is as follows. (1) By weight%, C: 0.01 to 0.10%, Si: 2 to 4%, Mn: 0.05 to 0.10 %, S + Se: 0.01 to 0.03%, Sol Al: 0.01 to 0.04%, N: 0.003 to 0.01%, Sn + Sb: 0.01 to 0.3%, Cu ≦ 0.3%, Mo ≦ 0.2%, and the balance Fe When decarburizing and annealing a cold rolled sheet made of unavoidable impurities, the temperature in the front region of the decarburizing annealing step is 750 to 880 ° C., and the PH 2 O / P H 2 in the atmosphere is 0.15 to 0. and 75, the decarburization annealing process oriented electrical steel sheet to a P H 2 O / P H 2 in the atmosphere and 0.15 the temperature of the subsequent back region at from 750 to 1200 ° C., MgO after decarburization annealing treatment Coated and dried
A method for decarburizing annealing a grain-oriented electrical steel sheet, comprising controlling oxygen in steel to a weight ratio of 0.03 to 0.07% after the step . (2) The directivity according to (1), wherein the front region is divided into two stages, the front stage is performed at 750 to 850 ° C., and the rear stage is performed at a temperature higher than the front stage at 800 to 880 ° C. Decarburization annealing method for electrical steel sheets. The present invention consists of three findings. That is, first, the oxide layer formed on the steel sheet surface by the decarburizing annealing is mainly composed of SiO 2 and is thin, thereby improving the magnetic flux density. Second
On the other hand, the thicker the oxidized layer on the steel sheet surface generated by the decarburizing annealing, the better the product film tends to be. Third, these characteristically opposite phenomena include MgO after decarburizing annealing.
By controlling the oxygen content of the steel sheet after the step of coating and drying the steel sheet anti-fusing agent, it is possible to simultaneously satisfy the magnetic flux density and the film adhesion. Hereinafter, a description will be given based on examples of experimental data. Before the decarburization annealing, the three types of cold-rolled sheets with the composition of the steel sheet of 0.20 mm thickness shown in Table 1
Soaking annealing at 830 ° C. for 2 minutes was performed. Atmosphere gas at this time is H 2 : 1
0%, and the steam gas is PH 2 O / P H 2 : 0.0011 to 0.1480 (dew point 13 to
45 ° C.) and the remainder was mixed with N 2 . Then, after cooling to room temperature, further soaking annealing at 900 ° C. for 30 seconds is performed on H 2 : 10%
, N 2 : 90%, PH 2 O / P H 2 : 0.0051 (dew point −30 ° C.). Then, a MgO coating containing TiO 2 was applied and baked in air at 300 ° C. The O content of this steel sheet was determined by chemical analysis after washing the MgO film with water. Then, a batch / high-temperature finish annealing up to 1200 ° C. at a heating rate of 20 ° C./hr was performed. After washing the excess MgO of the steel sheet with water, a tension film was applied and baked, and flattening annealing of the steel sheet was performed at 800 ° C., and the characteristics were evaluated. The test results are shown in FIGS. [Table 1] The film adhesion shown in FIG. 2 was A when the film was wound around a round bar of 20 mmφ and the film was not peeled at all: A, B was partially peeled, and C was completely peeled. As seen in FIG. 1, when the amount of the steel sheet O increases, the magnetic flux density gradually deteriorates. As shown in FIG. 2, the adhesiveness of the coating tends to be improved, but it is clear that the degradation starts when the content exceeds 900 ppm. There is a range that can simultaneously satisfy both the magnetic flux density and the film adhesion, and it can be seen that the range is such that the O content is 0.03 to 0.07%. Further, it is not necessary to set the steel sheet O amount after the decarburization annealing in an appropriate range which is different for each of these three types of component systems. It can be understood that it can be satisfied. In the experiment, C: 0.01 to 0.10%, Si: 2 to 2
4%, Mn: 0.05 to 0.10%, S + Sc: 0.01 to 0.03%, Sol
Al: 0.01-0.04%, N: 0.003-0.01%, Sn + Sb: 0.
Tested within the component ranges of 01-0.3%, Cu ≦ 0.3%, Mo ≦ 0.2%,
Within this range, results equivalent to those in FIGS. 1 and 2 were obtained. When the amount of steel sheet O after decarburization annealing increases, the magnetic flux density deteriorates because the amount of SiO 2 or Fe 2 SiO 4 oxide layer on the steel sheet surface after decarburization annealing increases, It is thought that the fine precipitates in the steel sheet cause a subtle morphological change through the interface, and the magnetic flux density decreases. When the amount of steel sheet O after decarburizing annealing increases, the film adhesion tends to be improved because the film formed by high-temperature finish annealing has a structure in which the film is intertwined with the base iron layer. This may be because the film hardly peels off at the interface with the film. In the sheet thickness before the decarburizing annealing, that is, in the range of the product sheet thickness of 0.15 to 0.35 mm, the optimum amount of the steel sheet O after the decarburizing annealing does not change depending on the sheet thickness. .0
It was in the range of 3 to 0.07%. As a second experiment, an example will be described in which the extent to which the components contained in the steel sheet affect the amount of steel sheet O after decarburization annealing is investigated. Using the steel sheet components before decarburization annealing shown in Table 2, annealing was performed under constant decarburization annealing conditions, and then the O content of the steel sheet was measured. The thickness of the steel plate used is 0.3 mm. In the decarburizing annealing, first, soaking annealing at 850 ° C. for 5 minutes was performed. At this time, the atmosphere gas was H 2 : 30%, and PH 2 O / P
H 2 : 0.40, the balance being N 2 . Next, a soaking heat treatment at 870 ° C. for 10 seconds was performed using H 2.
: 70%, P H 2 O / P H 2: 0.0284, was balance in an N 2 atmosphere. Table 2 shows the results. [Table 2] As shown in Table 2, the amount of O after decarburizing annealing varies greatly depending on the amount of the component, that is, the small amount of Cu, Sn, Sb, Mo, or the like. This may be because elements that are easily segregated on the surface affect the formation amount of the surface oxide layer. However, as shown in FIGS.
By controlling the amount of the steel sheet O after the decarburizing annealing, it is possible to secure quality characteristics without depending on the additive component system. That is, instead of the constant control of the H 2 %, N 2 %, and H 2 O% of the atmosphere as in the related art,
First, the components including the O content of the steel sheet after the decarburizing annealing are checked, and the O content is 0.03-0.
It is necessary to control the atmosphere as much as possible to reach 07%. As a specific method of the control, for example, P H 2 O / P H 2 , an atmosphere gas input amount, an annealing temperature, a sheet passing speed, and the like are changed. The steel sheet thus obtained is coated with MgO or the like for preventing fusion, dried, then annealed at a high temperature, coated with an insulating film, and dried to form a product. [Example 1] Molten steel whose components were adjusted by a converter and a vacuum degassing apparatus was continuously cast, and a slab was produced at 1420 ° C.
And hot-rolled to produce a hot-rolled sheet. After annealing at 1100 ° C, 0.3mm
And degreased. The chemical analysis values of this steel sheet were as follows: C: 0.065% by weight, Si: 3.1%, Mn
: 0.71%, S: 0.006%, Se: 0.021%, N: 0.0096%,
SolAl: 0.022%, Sb: 0.013%, Mo: 0.02%, 0: 0.
0015%. Next, first, soaking annealing at 830 ° C. for 2 minutes was performed. Atmosphere gas at this time was H 2 : 40% by vol%, steam was blown to change P H 2 O / P H 2 , and the remainder was N 2 . Subsequently, in the same annealing line, without lowering the temperature of the steel sheet, a second-stage soaking process at 890 ° C. for 20 seconds was performed in H 2 : 40%, PH 2 O / P H 2 : 0.003, and the rest in an N 2 atmosphere. Went inside. Next, an annealing separator containing 2 parts by weight of Ti oxide and 0.4 part by weight of Sr sulfate was applied to 100 parts of magnesia and baked. This steel sheet was subjected to a chemical analysis of the steel sheet O amount by removing the coating film by washing with water, and the results are shown in Table 3. Then, the substrate was heated to 1200 ° C. at 10 ° C./Hr in an H 2 atmosphere. The results are as follows. The evaluation of film adhesion was evaluated as ○ when the film was not peeled at all when wound around a round bar of 20 mmφ, evaluated as △ when partially peeled, and evaluated as × when completely peeled. [Table 3] As shown in Table 3, a grain-oriented electrical steel sheet satisfying the range of the present invention and having excellent magnetic flux density and adhesion was obtained. Example 2 Molten steel whose components were adjusted by a converter and a vacuum degassing apparatus was continuously cast, and the slab was heated to 1300 ° C.
And hot-rolled to produce a hot-rolled sheet. After annealing at 1000 ° C., 1.3 mm
After annealing at 1150 ° C., it was cold-rolled to 0.15 mm. The chemical analysis values of this steel sheet after degreasing are as follows: C: 0.055%, Si: 3.0% by weight.
%, Mn: 0.80%, S: 0.025%, N: 0.0076%, SolAl:
0.031%, O: 0.0011%. Then, first at 830 ° C for 1 minute and 8
An isothermal annealing at 50 ° C. for 30 seconds was performed. The atmosphere gas at this time was H 2 : 20% by vol%, steam was blown to change P H 2 O / P H 2 , and the remainder was N 2 . Subsequently, in the same annealing line, without lowering the temperature of the steel sheet, 2 seconds at 930 ° C. for 10 seconds.
The step heat treatment was performed in an atmosphere of H 2 : 20%, PH 2 O / P H 2 : 0.003, and the balance being N 2 . Next, 2 parts by weight of Ti oxide and 0.1 part of sulfuric acid Sb were added to 100 parts of magnesia.
An annealing separator containing 1 part by weight was applied and baked. The coating film of the steel sheet was removed by washing with water and the amount of the steel sheet O was chemically analyzed. Then, the substrate was heated to 1200 ° C. at 20 ° C./Hr in an N 2 + H 2 atmosphere. Then
Excess MgO was washed with water and a tension film was baked. The results are as follows. The evaluation of film adhesion was evaluated as ○ when the film was not peeled at all when wound around a round bar of 20 mmφ, evaluated as △ when partially peeled, and evaluated as × when completely peeled. [Table 4] As shown in Table 4, a grain-oriented electrical steel sheet satisfying the range of the present invention and having excellent magnetic flux density and adhesion was obtained. According to the present invention, a grain-oriented electrical steel sheet satisfying both the magnetic flux density and the film adhesion can be manufactured.

【図面の簡単な説明】 【図1】 鋼板O量と磁束密度との関係を示す図表である。 【図2】 鋼板O量と皮膜密着性との関係を示す図表である。[Brief description of the drawings]     FIG.   It is a table | surface which shows the relationship between the steel plate O amount and magnetic flux density.     FIG. 2   It is a table | surface which shows the relationship between steel sheet O amount and film adhesion.

Claims (1)

【特許請求の範囲】 【請求項1】 重量%で、 C :0.01〜0.10%、 Si:2〜4%、 Mn:0.05〜0.10%、 S+Se:0.01〜0.03%、 Sol Al:0.01〜0.04%、 N :0.003〜0.01%、 Sn+Sb:0.01〜0.3%、 Cu≦0.3%、 Mo≦0.2%、 及び、残部Fcと不可避的不純物からなる冷延板を脱炭焼鈍するに際して、 脱炭
焼鈍工程の前部領域の温度を750〜880℃で、その雰囲気のP H2O/P H2
0.15〜0.75とし、引き続く後部領域の温度を750〜1200℃でその
雰囲気のP H2O/P H2を0.15以下とする方向性電磁鋼板の脱炭焼鈍方法にお
いて、脱炭焼鈍処理後のMgOを含む鋼板融着防止剤をコーティング・乾燥した
工程の後で、鋼中酸素を重量比で0.03〜0.07%に制御することを特徴と
する方向性電磁鋼板の脱炭焼鈍方法。 【請求項2】 前部領域を2段に分割し、前段部を750〜850℃で行い、
後段部を800〜880℃の前段部よりも高い温度で行う請求項1記載の方向性
電磁鋼板の脱炭焼鈍方法。
Claims: 1. In weight%, C: 0.01 to 0.10%, Si: 2 to 4%, Mn: 0.05 to 0.10 %, S + Se: 0.01 to 0.03%, Sol Al: 0.01 to 0.04%, N: 0.003 to 0.01%, Sn + Sb: 0.01 to 0.3%, Cu ≦ 0.3%, Mo ≦ 0. When decarburizing and annealing a cold-rolled sheet composed of 2% and the balance Fc and inevitable impurities , the temperature in the front region of the decarburizing annealing step is 750 to 880 ° C., and the PH 2 O / P H of the atmosphere is 2 is set to 0.15 to 0.75, and the temperature of the subsequent rear region is set to 750 to 1200 ° C., and the PH 2 O / P H 2 of the atmosphere is set to 0.15 or less. , Coated and dried with a steel sheet fusion inhibitor containing MgO after decarburizing annealing
A method for decarburizing annealing a grain-oriented electrical steel sheet, comprising controlling oxygen in steel to a weight ratio of 0.03 to 0.07% after the step . 2. The front region is divided into two stages, and the front region is performed at 750 to 850 ° C.,
The decarburizing annealing method for a grain-oriented electrical steel sheet according to claim 1, wherein the rear part is performed at a temperature higher than that of the front part at 800 to 880C.

Family

ID=

Similar Documents

Publication Publication Date Title
JP4746716B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core
WO2020149321A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7110642B2 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2019127616A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
JP2579717B2 (en) Decarburization annealing method for grain-oriented electrical steel sheets with excellent magnetic flux density and film adhesion
JPH0633138A (en) Manufacture of grain-oriented silicon steel sheet having excellent coating characteristic and magnetic characteristic
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP6859935B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP7329049B2 (en) Electrical steel sheet and manufacturing method thereof
JP2579717C (en)
JP2016216779A (en) Grain oriented magnetic steel sheet and production method therefor
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
WO2023176855A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JP2992213B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH07188759A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2002129235A (en) Method for producing grain oriented silicon steel sheet having excellent film characteristic
JP2004292834A (en) Method for producing grain-oriented silicon steel sheet excellent in coating characteristics
KR20220057582A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2755414B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method