JP2019127616A - Manufacturing method of grain-oriented electromagnetic steel sheet - Google Patents

Manufacturing method of grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2019127616A
JP2019127616A JP2018009432A JP2018009432A JP2019127616A JP 2019127616 A JP2019127616 A JP 2019127616A JP 2018009432 A JP2018009432 A JP 2018009432A JP 2018009432 A JP2018009432 A JP 2018009432A JP 2019127616 A JP2019127616 A JP 2019127616A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
soaking
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018009432A
Other languages
Japanese (ja)
Inventor
渡邉 誠
Makoto Watanabe
誠 渡邉
雅紀 竹中
Masanori Takenaka
雅紀 竹中
俊人 ▲高▼宮
俊人 ▲高▼宮
Toshihito Takamiya
敬 寺島
Takashi Terajima
寺島  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018009432A priority Critical patent/JP2019127616A/en
Publication of JP2019127616A publication Critical patent/JP2019127616A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for manufacturing a grain-oriented electromagnetic steel sheet which stably realizes a low iron loss at high magnetic flux density compared with the prior art.SOLUTION: In the method for manufacturing a grain-oriented electromagnetic steel sheet, a steel material containing C: 0.010-0.10 mass%, Si: 2.5-4.5 mass%, Mn: 0.01-0.50 mass% is hot rolled, subjected to hot-rolled sheet annealing as necessary, cold rolled, and decarburization-annealed, followed by application of an annealing separator and finish annealing. In the soaking annealing of the decarburization annealing, the soaking temperature in the entire region is controlled to be within a range of 750-950°C, and the average oxygen potential P/Pof the atmosphere in the entire region is controlled to a range of 0.25-0.50. In addition, the soaking process is divided into two or more stages, the soaking time from the start of soaking to a prior stage to the final stage is controlled to 70-200 seconds, the soaking time of the final stage is set to 5-40 seconds, and (the in-furnace pressure in the final stage to the in-furnace pressure in the prior stage to the final stage) is set to more than 0 mm HO and 7 mm HO or less.SELECTED DRAWING: Figure 1

Description

本発明は、方向性電磁鋼板の製造方法に関し、具体的には、磁気特性に優れる方向性電磁鋼板を安定的に製造する方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet, and specifically relates to a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties.

電磁鋼板は、変圧器やモータの鉄心等に広く用いられている軟磁性材料であり、中でも方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積することで優れた磁気特性を示すため、主として大型変圧器の鉄心材料等に使用されている。そのため、従来における方向性電磁鋼板の主な開発課題は、変圧器における無負荷損(エネルギーロス)を低減するため、鋼板を励磁した際に生じる損失すなわち鉄損を低減するということにあった。   Electrical steel sheets are soft magnetic materials widely used for transformers, motor iron cores, etc. Above all, directional electrical steel sheets are highly integrated in the {110} <001> orientation whose crystal orientation is called the Goss orientation. In order to show excellent magnetic properties, it is mainly used for iron core materials for large transformers. Therefore, the main development problem of the conventional grain-oriented electrical steel sheet has been to reduce the loss that occurs when the steel sheet is excited, that is, iron loss, in order to reduce no-load loss (energy loss) in the transformer.

上記方向性電磁鋼板の鉄損を低減する方法としては、従来から、Si含有量の増加や、板厚の低減、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化、二次再結晶組織の細粒化などが有効であることが知られている。そして、上記目的を達成するため、製造工程における脱炭焼鈍条件を適正化する技術が数多く提案されている。   Conventional methods for reducing the iron loss of the grain-oriented electrical steel sheet include increasing the Si content, reducing the plate thickness, improving the orientation of the crystal orientation, imparting tension to the steel sheet, smoothing the steel sheet surface, It is known that refinement of the secondary recrystallized structure is effective. And in order to achieve the said objective, many techniques which optimize the decarburization annealing conditions in a manufacturing process are proposed.

例えば、特許文献1には、雰囲気ガスの組成または露点が異なる複数の帯域と、各帯域間に雰囲気仕切りが設けられた連続焼鈍炉で脱炭焼鈍する際、焼鈍炉の雰囲気仕切り部に炉圧制御装置を備えた排気孔を有する雰囲気隔離室を設け、所定の炉内圧力に制御することにより、脱炭や酸化等の反応を安定化させる技術が開示されている。   For example, in Patent Document 1, when decarburization annealing is performed in a plurality of zones having different compositions or dew points of the atmosphere gas and a continuous annealing furnace in which an atmosphere partition is provided between the zones, the furnace pressure is applied to the atmosphere partition portion of the annealing furnace. There has been disclosed a technique for stabilizing a reaction such as decarburization or oxidation by providing an atmosphere isolation chamber having an exhaust hole provided with a control device and controlling the pressure to a predetermined furnace pressure.

また、特許文献2には、脱炭焼鈍の加熱過程、均熱過程における雰囲気の酸化度、具体的には、酸素ポテンシャルPH2O/PH2の範囲を特定し、かつ、脱炭焼鈍炉の後部にいくほどPH2O/PH2が高くなるように変動させること、および、少なくとも鋼板中の残留C量が30ppm以下となる時間の脱炭焼鈍を施すことにより、工業的規模における生産時の磁束密度の劣化を防止する技術が開示されている。 Further, in Patent Document 2, the heating process of decarburizing annealing, the oxidation degree of the atmosphere in the soaking process, specifically, the range of the oxygen potential P H2O / P H2 is specified, and the rear part of the decarburizing annealing furnace Magnetic flux density during production on an industrial scale by varying P h2O / P H2 so as to be higher, and by performing decarburization annealing for at least the time when the amount of residual C in the steel sheet is 30 ppm or less. A technique for preventing the deterioration of the battery is disclosed.

また、特許文献3には、一次再結晶焼鈍の加熱途中に短時間の保定処理を加えるとともに、均熱過程の温度、時間および雰囲気の酸素ポテンシャルPH2O/PH2を特定し、さらに、均熱過程をN段(N:2以上の整数)に分け、第1段〜(N−1)段までと、最終N段における温度、時間および雰囲気のPH2O/PH2をそれぞれ特定の範囲に制御することで、内部酸化層を改善し、磁気特性のバラつきを抑える技術が開示されている。 In addition, Patent Document 3 adds a short-term holding treatment during the heating of the primary recrystallization annealing, specifies the temperature and time of the soaking process, and the oxygen potential P H2O / P H2 of the atmosphere. The process is divided into N stages (N: integer of 2 or more), and the temperature, time and atmosphere P H2O / P H2 in the first N stage to the (N-1) stage and the final N stage are controlled to specific ranges, respectively. Thus, a technique for improving the internal oxide layer and suppressing variation in magnetic characteristics is disclosed.

また、特許文献4には、最終冷間圧延後の鋼板の表面粗さを特定し、脱炭焼鈍前に脱脂処理するとともに、脱炭焼鈍における均熱温度および雰囲気の酸素ポテンシャルPH2O/PH2を特定の範囲とし、かつ、焼鈍炉の炉長方向のPH2O/PH2の変動量を抑えることで、高磁束密度の方向性電磁鋼板を安定的に生産する技術が開示されている。 In Patent Document 4, the surface roughness of the steel sheet after the final cold rolling is specified and degreased before decarburization annealing, and the soaking temperature in the decarburization annealing and the oxygen potential P H2O / P H2 of the atmosphere. Is a specific range, and a technique for stably producing a directional electrical steel sheet having a high magnetic flux density by suppressing the fluctuation amount of P H2O / P H2 in the furnace length direction of the annealing furnace is disclosed.

特開平07−207348号公報Japanese Patent Application Publication No. 07-207348 特開平11−199939号公報Unexamined-Japanese-Patent No. 11-199939 特開2014−152392号公報Unexamined-Japanese-Patent No. 2014-152392 特開平09−041042号公報JP 09-041042 A

しかしながら、前述した特許文献1の技術では、装置が複雑となり過ぎて、炉の建設や改造にコストがかかる上、鋼板が雰囲気隔離層と接触して、耳割れや擦り傷の発生原因となる。また、特許文献2の技術では、磁気特性は改善されるものの、その効果が安定せず、ある頻度で磁気特性の劣化が発生し、製品歩留まりが大きく劣化するという問題がある。また、鋼板の残留C量を低下させるために長時間の焼鈍を行う場合が生じ、生産性を損なうという問題もある。また、特許文献3の技術では、昇温過程途中の保定処理中に、わずかな酸素分が混入し、鋼板表面が外部酸化してサブスケール構造が劣化することがある。また、均熱過程前段の温度を後段よりも高く設定することで、脱炭し難くなるという問題もある。また、特許文献4の技術では、雰囲気の露点が、その時々の炉況により変動するため、酸素ポテンシャルの変動を十分に抑えることができない問題がある。さらに、ある頻度で原因不明の磁気特性の劣化が起こることもある。   However, in the technique of Patent Document 1 described above, the apparatus becomes too complicated, and it costs a lot to construct and modify the furnace, and the steel plate comes into contact with the atmosphere isolation layer, causing the occurrence of ear cracks and scratches. Further, although the technique of Patent Document 2 improves the magnetic characteristics, the effect is not stable, and there is a problem that the magnetic characteristics are deteriorated at a certain frequency and the product yield is greatly deteriorated. In addition, there is a problem that the annealing is performed for a long time in order to reduce the residual C amount of the steel sheet, and the productivity is impaired. Further, in the technique of Patent Document 3, a slight amount of oxygen may be mixed during the holding process during the temperature rising process, and the steel sheet surface may be externally oxidized to deteriorate the subscale structure. In addition, there is a problem that it becomes difficult to decarburize by setting the temperature before the soaking process higher than the latter stage. Further, the technique of Patent Document 4 has a problem that the fluctuation of the oxygen potential cannot be sufficiently suppressed because the dew point of the atmosphere varies depending on the furnace condition at that time. Furthermore, the magnetic characteristics of unknown cause may be deteriorated at a certain frequency.

以上説明したように、上記の従来技術の適用により、磁気特性の改善は徐々に進んでいるとはいえ、まだ十分ではない。また、上記従来技術の製造条件を満たしていても、ある頻度で磁気特性の劣化が発生することがあり、その原因は明らかになっていないのが実情である。   As described above, although the improvement of the magnetic characteristics is gradually advanced by the application of the above-described conventional technology, it is not yet sufficient. Moreover, even if the manufacturing conditions of the above-described prior art are satisfied, the magnetic characteristics may be deteriorated at a certain frequency, and the cause is not clear.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、従来技術に比べて高磁束密度低鉄損を安定して実現することができる方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above problems of the prior art, and its object is to provide a grain-oriented electrical steel sheet capable of stably realizing high magnetic flux density and low core loss compared to the prior art. It is to propose a manufacturing method.

発明者らは、上記課題の解決に向けて、脱炭焼鈍条件が磁気特性に及ぼす影響に着目して鋭意検討を重ねた。その結果、脱炭焼鈍の均熱過程における炉内雰囲気の圧力という、従来技術では全く考慮されていなかったパラメーターが磁気特性に大きく影響していることを見出し、本発明を開発するに至った。   In order to solve the above-mentioned problems, the inventors made extensive studies by paying attention to the influence of decarburization annealing conditions on magnetic properties. As a result, it has been found that a parameter which was not considered at all in the prior art, such as the pressure in the furnace atmosphere in the soaking process of decarburization annealing, has greatly influenced the magnetic characteristics, and has led to the development of the present invention.

すなわち、本発明は、C:0.010〜0.10mass%、Si:2.5〜4.5mass%、Mn:0.01〜0.50mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後あるいは熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、加熱過程、均熱過程および冷却過程からなる一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記脱炭焼鈍の均熱過程は、全領域の均熱温度を780〜950℃の範囲、かつ、全領域の雰囲気の平均酸素ポテンシャルPH2O/PH2を0.25〜0.50に範囲と制御するとともに、上記均熱過程を2段以上に分け、均熱開始から最終段の前段までの全均熱時間を80〜200秒、最終段の均熱時間を5〜40秒の範囲、かつ、最終段の炉内圧力とその直前の段の炉内圧力との差(最終段の炉内圧力−最終段直前の段の炉内圧力)を0mmHO超え7mmHO以下の範囲に制御することを特徴とする方向性電磁鋼板の製造方法を提案する。 That is, the present invention contains C: 0.010 to 0.10 mass%, Si: 2.5 to 4.5 mass%, Mn: 0.01 to 0.50 mass%, and the balance is Fe and inevitable impurities. The steel material having the following composition is hot-rolled to form a hot-rolled sheet, and after the hot-rolled sheet is subjected to hot-rolled sheet annealing or without being subjected to hot-rolled sheet annealing, After cold rolling as described above to obtain a cold-rolled sheet of the final thickness, after applying decarburization annealing that combines primary recrystallization annealing consisting of heating process, soaking process and cooling process, an annealing separator is applied to the steel sheet surface In the method of manufacturing a grain-oriented electrical steel sheet comprising a series of steps of annealing and annealing, the soaking process of the decarburizing annealing is carried out so that the soaking temperature of the whole area is in the range of 780 to 950 ° C. and the atmosphere of the whole area. 0.25 the average oxygen potential P H2O / P H2 The soaking process is divided into two or more stages, the total soaking time from the start of soaking to the previous stage of the last stage is 80 to 200 seconds, and the soaking time of the last stage is 5 to 40. range of seconds, and the difference of the furnace pressure in the final stage and the furnace pressure of the immediately preceding stage - a (furnace pressure in the last stage the final stage reactor pressure immediately before the stage) 0 mm H 2 O than 7mmH 2 O The manufacturing method of the grain-oriented electrical steel sheet characterized by controlling to the following ranges is proposed.

本発明の方向性電磁鋼板の製造方法は、上記脱炭焼鈍の均熱過程の最終段において、酸素ポテンシャルPH2O/PH2が0.20以下の雰囲気下で、800〜950℃の温度に保持する還元処理を施すことを特徴とする。 The method for producing a grain-oriented electrical steel sheet according to the present invention maintains the temperature of 800 to 950 ° C. in an atmosphere having an oxygen potential P H2O / P H2 of 0.20 or less in the final stage of the soaking process of the decarburizing annealing. The reduction process is performed.

また、本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍において、800〜950℃の温度範囲で5〜200hr保持して二次再結晶させた後、引き続き加熱し、もしくは、一旦、700℃以下まで降温した後、再加熱し、1120℃以上の温度で2hr以上保持する純化処理を施すことを特徴とする。   In the method of manufacturing a grain-oriented electrical steel sheet according to the present invention, secondary recrystallization is performed by maintaining the temperature for 5 to 200 hours in the temperature range of 800 to 950 ° C. in the above-mentioned finish annealing, and then heating or temporary heating 700 It is characterized in that after the temperature is lowered to not more than 0 ° C., reheating is performed and a purification treatment is performed at a temperature of 1120 ° C. or more for 2 hours or more.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Al:0.010〜0.04mass%およびN:0.003〜0.015mass%を含有する、あるいは、Se:0.003〜0.030mass%および/またはS:0.002〜0.030mass%を含有する、あるいは、Al:0.010〜0.04mass%、N:0.003〜0.015mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.030mass%を含有することを特徴とする。   The steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention further contains Al: 0.010 to 0.04 mass% and N: 0.003 to 0.015 mass% in addition to the above component composition. Or Se: 0.003-0.030 mass% and / or S: 0.002-0.030 mass%, or Al: 0.010-0.04 mass%, N: 0.003- 0.015 mass%, Se: 0.003-0.030 mass% and / or S: 0.002-0.030 mass% are contained.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Al:0.010mass%未満、N:0.005mass%未満、S:0.005mass%未満およびSe:0.005mass%未満を含有することを特徴とする。   In addition to the above component composition, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Al: less than 0.010 mass%, N: less than 0.005 mass%, and S: less than 0.005 mass%. And Se: characterized by containing less than 0.005 mass%.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜0.5mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%、Ti:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel raw material used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Ni: 0.010-0.5 mass%, Cr: 0.01-0.50 mass%, Cu : 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0 .50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.0100 mass%, V: One or two selected from 0.001 to 0.010 mass%, Ti: 0.001 to 0.010 mass%, and Ta: 0.001 to 0.010 mass% Characterized by containing the above.

本発明によれば、脱炭焼鈍の均熱過程における炉内雰囲気の圧力を適正に制御することで、従来技術よりも安定して低鉄損高磁束密度の方向性電磁鋼板を製造することが可能となる。   According to the present invention, by appropriately controlling the pressure in the furnace atmosphere in the soaking process of decarburization annealing, it is possible to manufacture a grain-oriented electrical steel sheet having a low iron loss and high magnetic flux density more stably than in the prior art. It becomes possible.

脱炭焼鈍の均熱過程における最終段とその直前段の炉内圧力の差が磁気特性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the difference in the furnace pressure of the last stage in the soaking | uniform-heating process of decarburization annealing and the stage immediately before has on a magnetic characteristic.

まず、本発明を開発する契機となった実験について説明する。
C:0.05mass%、Si:3.3mass%、Mn:0.07mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼を溶製し、連続鋳造法で鋼スラブとした後、1250℃の温度に加熱し、熱間圧延して板厚2.2mmの熱延板とし、1000℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚1.8mmとし、1100℃×80秒の中間焼鈍を施した後、二次冷間圧延(最終冷間圧延)して最終板厚0.23mmの冷延板とした。
次いで、上記冷延板に、加熱過程、均熱過程および冷却過程からなる一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、均熱温度までの加熱過程において、室温から550℃までを150℃/sで加熱し、550℃の温度で1s間保持する保定処理後、550〜700℃間を100℃/sで加熱し、さらに、均熱温度(800℃)までを8℃/sで加熱した。この時の炉内雰囲気は、酸素ポテンシャルPH2O/PH2が0.45の湿水素雰囲気とした。また、均熱過程は、均熱時間を150秒とし、それを前段の140秒と後段の10秒の2段に分け、前段を上記湿水素雰囲気とし、後段をPH2O/PH2が0.2以下の乾水素雰囲気とした上で、さらに、後段(最終段)の炉内雰囲気の圧力(炉内圧力)と前段(最終段の直前の段)の雰囲気の圧力(炉内圧力)の差(最終段の炉内圧力−最終段直前の段の炉内圧力)を種々に変化させた。
その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、乾燥した後、850℃で50hr保持して二次再結晶を完了させた後、引き続き加熱して、水素雰囲気下で1200℃×7hrの純化処理する仕上焼鈍を施した。
First, an experiment that triggered the development of the present invention will be described.
C: 0.05% by mass, Si: 3.3% by mass, Mn: 0.07% by mass, with the balance being composed of Fe and unavoidable impurities, the steel was melted and made into a steel slab by continuous casting. Then, it is heated to a temperature of 1250 ° C and hot-rolled to form a hot-rolled sheet with a thickness of 2.2 mm, subjected to hot-rolled sheet annealing at 1000 ° C x 60 seconds, and then primary cold-rolled to an intermediate sheet thickness After the intermediate annealing at 1100 ° C. for 80 seconds, the secondary cold rolling (final cold rolling) was performed to obtain a cold rolled sheet having a final thickness of 0.23 mm.
Next, the cold-rolled sheet was subjected to decarburization annealing that also served as primary recrystallization annealing consisting of a heating process, a soaking process, and a cooling process. At this time, in the heating process up to the soaking temperature, after a holding treatment of heating from room temperature to 550 ° C. at 150 ° C./s and holding at a temperature of 550 ° C. for 1 s, between 550 to 700 ° C. at 100 ° C./s. The sample was heated and further heated to a soaking temperature (800 ° C.) at 8 ° C./s. The furnace atmosphere at this time was a wet hydrogen atmosphere having an oxygen potential P H2O / PH2 of 0.45. In the soaking process, the soaking time is set to 150 seconds, which is divided into two stages of 140 seconds in the former stage and 10 seconds in the latter stage, the former stage is the above-mentioned wet hydrogen atmosphere, and the latter stage has a P H2O / PH2 of 0. In addition to a dry hydrogen atmosphere of 2 or less, the difference between the pressure in the furnace atmosphere in the subsequent stage (final stage) (pressure in the furnace) and the pressure in the atmosphere in the previous stage (stage immediately before the final stage) (internal pressure) (In-furnace pressure in the final stage−in-furnace pressure in the stage immediately before the final stage) was variously changed.
Thereafter, an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, dried, held at 850 ° C. for 50 hours to complete secondary recrystallization, and subsequently heated to 1200 ° C. under a hydrogen atmosphere. Finish annealing for 7 hours of purification treatment was performed.

斯くして得た仕上焼鈍後の鋼板から、板幅方向に幅100mmの試験片を各条件で10枚ずつ採取し、JIS C2556に記載の方法で磁束密度B(T)と鉄損W17/50(W/kg)を測定し、平均値を求めた。この時の結果を、炉内圧力差と磁気特性との関係として図1に示した。 Ten pieces of test pieces each having a width of 100 mm in the sheet width direction were collected from the steel sheet after finish annealing thus obtained under each condition, and the magnetic flux density B 8 (T) and iron loss W 17 were measured by the method described in JIS C2556. / 50 (W / kg) was measured and the average value was determined. The results at this time are shown in FIG. 1 as the relationship between the pressure difference in the furnace and the magnetic characteristics.

この図から、脱炭焼鈍の均熱過程における後段(最終段)と前段(最終段の直前の段)との炉内圧力差により、磁気特性が大きく変化することがわかった。すなわち、前段よりも後段の炉内圧力が低いと、磁気特性はいずれも劣化している。また、前段よりも後段の圧力が高いと、磁気特性は大きく向上するが、炉内圧力差が大きくなり過ぎても、磁気特性が劣化している。したがって、後段と前段との炉内圧力差には適正範囲があり、具体的には、0mmHO超え7mmHO以下の範囲が適正であることが明らかとなった。 From this figure, it was found that the magnetic characteristics greatly change depending on the pressure difference in the furnace between the latter stage (final stage) and the former stage (stage immediately before the final stage) in the soaking process of decarburization annealing. That is, when the pressure in the furnace at the rear stage is lower than that at the front stage, the magnetic properties are all deteriorated. Further, when the pressure at the rear stage is higher than that at the front stage, the magnetic characteristics are greatly improved, but the magnetic characteristics are deteriorated even if the pressure difference in the furnace becomes too large. Therefore, there is a proper range in the inner pressure difference between the subsequent and the preceding, specifically, it became clear that 0 mm H 2 O than 7mmH 2 O following ranges is appropriate.

このような結果が得られた理由については、また十分に明らかとなっていないが、発明者らは以下のように考えている。
脱炭焼鈍の均熱過程の前段では、雰囲気ガスと鋼板が反応して微量ガスが発生する。これらの微量ガスは、主に鋼中のCの酸化によるCOや、鋼中のSやNと雰囲気中の水素との反応によるHSやNH等である。このような鋼中のSやNなどのインヒビター形成成分の脱離により、仕上焼鈍の二次再結晶時における鋼板表層部のインヒビターの抑制力が低下する。そのため、仕上焼鈍時には、鋼板の板厚中心部ではインヒビターの抑制力が高いままとなり、一次粒成長は抑制されるが、表層部ではインヒビターの抑制力が低下しているため、一次粒成長が促進される。その結果、鋼板表層部では、Goss方位からずれた結晶粒の成長が抑制され、鋼板内部のGoss方位に揃った結晶粒が成長することができる。そのため、良好な磁気特性が得られる。
Although the reason why such a result is obtained is not sufficiently clear, the inventors consider as follows.
In the previous stage of the soaking process of the decarburization annealing, the atmosphere gas and the steel plate react to generate a trace gas. These trace gases are mainly CO 2 due to oxidation of C in steel, H 2 S and NH 3 due to reaction between S and N in steel and hydrogen in the atmosphere. By such desorption of inhibitor-forming components such as S and N in the steel, the inhibitory power of the inhibitor on the steel sheet surface layer portion during the secondary recrystallization of finish annealing is reduced. Therefore, at the time of finish annealing, the inhibitor's inhibitory power remains high in the central part of the steel plate thickness, and primary grain growth is suppressed, but the inhibitor's inhibitory power is reduced in the surface layer part, so primary grain growth is accelerated. Is done. As a result, in the steel sheet surface layer portion, the growth of crystal grains deviated from the Goss orientation is suppressed, and crystal grains aligned in the Goss orientation inside the steel plate can grow. Therefore, good magnetic properties can be obtained.

しかし、後段の炉内圧力が前段より低い場合には、前段の雰囲気ガスが後段に流入するため、前段で発生したCOやHS,NHなどの微量ガス成分が鋼板中に再び侵入し、表層部におけるインヒビターの抑制力が強化されてしまう。そのため、上述したような、二次再結晶時の表層部の一次粒成長が阻害されるため、鋼板内部のGoss方位に揃った結晶粒が成長することができなくなり、磁気特性が劣化する。
一方、後段の炉内圧力が前段に対して高くなり過ぎると、前段からの雰囲気ガスの流入はないものの、逆に、後段から前段への雰囲気ガスの流入が起こり、前段の炉内のガスの流れが不均一となる。その結果、前段における鋼板の表裏面や板幅方向でのガスの流速や流量に変化が生じる。脱炭焼鈍炉内の脱炭反応や脱窒、脱硫反応は、非平衡反応であるため、雰囲気の酸化性等が適正な値に制御されていたとしても、雰囲気ガスの流速や流量により反応速度が大きく変化する。流速や流量が大きいと、雰囲気ガス中のHOやHの鋼板表面への吸着確率が高まり、反応が促進する。逆に、流速や流量が小さいと反応は遅滞する。従って、雰囲気ガスの流れが不均一となると、上記反応が不均一となり、反応が抑制された部位はインヒビターの抑制力が大、反応が促進された部位はインヒビターの抑制力が小となり、鋼板内部で磁気特性にむらが生じるようになる。
However, if the pressure in the furnace in the latter stage is lower than that in the former stage, the atmosphere gas in the former stage flows into the latter stage, so that trace gas components such as CO 2 , H 2 S, and NH 3 generated in the former stage enter the steel sheet again. And the inhibitory power of the inhibitor in a surface layer part will be strengthened. Therefore, as described above, primary grain growth in the surface layer portion during secondary recrystallization is inhibited, so that crystal grains aligned with Goss orientation inside the steel plate can not grow, and the magnetic characteristics deteriorate.
On the other hand, if the pressure in the latter furnace is too high compared to the previous stage, the atmospheric gas does not flow from the previous stage, but conversely, the atmospheric gas flows from the latter stage to the previous stage, and the gas in the previous furnace The flow becomes uneven. As a result, changes occur in the flow rate and flow rate of the gas in the front and back surfaces and the plate width direction of the steel plate in the previous stage. Since decarburization reaction, denitrification reaction and desulfurization reaction in the decarburization annealing furnace are non-equilibrium reactions, even if the oxidizing property of the atmosphere is controlled to an appropriate value, the reaction rate is determined by the flow rate or flow rate of the atmosphere gas Changes significantly. When the flow rate or flow rate is large, the adsorption probability of H 2 O or H 2 in the atmospheric gas to the steel sheet surface increases, and the reaction is promoted. Conversely, when the flow rate or flow rate is small, the reaction is delayed. Therefore, if the atmosphere gas flow becomes non-uniform, the above reaction becomes non-uniform, and the site where the reaction is suppressed has a large inhibitory suppressive force, and the site where the reaction is promoted has a small inhibitory suppressive force. As a result, the magnetic characteristics become uneven.

上記したように、均熱過程の最終段とその直前の段との炉内圧力差には、適正な範囲が存在し、その範囲内に制御することで、安定して優れた磁気特性が得られる。
なお、これまで脱炭焼鈍の均熱過程を複数段に分ける技術は数多く提案されているが、炉内圧力差に着目した技術はない。また、例えば、雰囲気ガスの流量を適正範囲に収める方法も提案されているが、炉内圧力については考慮されていないため、得られる効果は十分ではなかった。
As described above, there is an appropriate range for the pressure difference in the furnace between the final stage of the soaking process and the stage immediately before it, and by controlling within that range, stable and excellent magnetic properties can be obtained. It is done.
Many technologies have been proposed to divide the soaking process of decarburization annealing into multiple stages, but there is no technology that focuses on the pressure difference in the furnace. Also, for example, a method for keeping the flow rate of the atmospheric gas within an appropriate range has been proposed, but since the furnace pressure is not taken into consideration, the obtained effect is not sufficient.

次に、本発明の方法性電磁鋼板の製造に用いる鋼素材(スラブ)が有すべき成分組成について説明する。
C:0.010〜0.10mass%
Cは、0.010mass%に満たないと、Cによる粒界強化効果が失われて、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずるようになる。一方、0.10mass%を超えると、脱炭焼鈍において、Cを磁気時効の起こらない0.004mass%以下に低減することが困難となる。よって、Cの含有量は0.010〜0.10mass%の範囲とするのが好ましい。より好ましくは0.02〜0.08mass%の範囲である。
Next, the component composition which the steel raw material (slab) used for manufacture of the method electrical steel sheet of the present invention should have will be described.
C: 0.010-0.10 mass%
If C is less than 0.010 mass%, the grain boundary strengthening effect due to C is lost, and defects such as cracks in the slab are produced. On the other hand, when it exceeds 0.10 mass%, it becomes difficult to reduce C to 0.004 mass% or less at which no magnetic aging occurs in decarburization annealing. Therefore, the C content is preferably in the range of 0.010 to 0.10 mass%. More preferably, it is the range of 0.02-0.08 mass%.

Si:2.5〜4.5mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.5mass%未満では十分ではなく、一方、4.5mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siの含有量は2.5〜4.5mass%の範囲とするのが好ましい。より好ましくは2.8〜3.7mass%の範囲である。
Si: 2.5-4.5 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.5 mass%, it is not sufficient. On the other hand, if it exceeds 4.5 mass%, the workability deteriorates and it becomes difficult to roll and manufacture. Therefore, the Si content is preferably in the range of 2.5 to 4.5 mass%. More preferably, it is in the range of 2.8 to 3.7 mass%.

Mn:0.01〜0.50mass%
Mnは、鋼の熱間加工性を改善するのに必要な元素である。上記効果は、0.01mass%未満では十分ではなく、一方、0.50mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnの含有量は0.01〜0.50mass%の範囲とするのが好ましい。より好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.01 to 0.50 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.01 mass%, it is not sufficient. On the other hand, if it exceeds 0.50 mass%, the magnetic flux density of the product plate decreases. Therefore, the Mn content is preferably in the range of 0.01 to 0.50 mass%. More preferably, it is the range of 0.02-0.20 mass%.

上記C,SiおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とで異なる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときは、AlおよびNを、それぞれAl:0.01〜0.04mass%、N:0.003〜0.015mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用するときは、S:0.002〜0.030mass%およびSe:0.003〜0.030mass%のうちの1種または2種を含有させることが好ましい。また、インヒビターとして、AlN系とMnS・MnSe系を併用してもよく、そのときは、Al:0.01〜0.04mass%、N:0.003〜0.015mass%、S:0.002〜0.030mass%および/またはSe:0.003〜0.030mass%を含有させることが好ましい。それぞれ含有量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上記上限値を超えると、インヒビター形成成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。
About components other than the said C, Si, and Mn, in order to produce secondary recrystallization, it differs with the case where an inhibitor is utilized, and the case where it does not use.
First, in the case where an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are respectively added to Al: 0.01 to 0.04 mass%, N: 0. It is preferable to make it contain in the range of 003-0.015 mass%. Moreover, when utilizing a MnS * MnSe type | system | group inhibitor, it is preferable to contain 1 type or 2 types in S: 0.002-0.030 mass% and Se: 0.003-0.030 mass%. Moreover, as an inhibitor, you may use together an AlN type | system | group and a MnS * MnSe type | system | group, In that case, Al: 0.01-0.04mass%, N: 0.003-0.015mass%, S: 0.002 It is preferable to contain -0.030 mass% and / or Se: 0.003-0.030 mass%. When the content is less than the lower limit, the inhibitor effect cannot be sufficiently obtained. On the other hand, when the content exceeds the upper limit, the inhibitor-forming component remains undissolved during slab heating, resulting in a decrease in magnetic properties. .

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.010mass%未満、N:0.005mass%未満、S:0.005mass%未満およびSe:0.005mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: less than 0.010 mass%, N : It is preferable to use a steel material reduced to less than 0.005 mass%, S: less than 0.005 mass%, and Se: less than 0.005 mass%.

本発明に用いる鋼素材における上記成分以外の残部は、基本的に、Feおよび不可避的不純物である。ただし、本発明に用いる鋼素材は、上記成分以外に、磁気特性の改善を目的として、Ni:0.010〜0.5mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%、Ti:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を適宜含有していてもよい。   The balance other than the above components in the steel material used in the present invention is basically Fe and inevitable impurities. However, in addition to the above components, the steel material used in the present invention has Ni: 0.010 to 0.5 mass%, Cr: 0.01 to 0.50 mass%, and Cu: 0.01 for the purpose of improving magnetic properties. -0.50 mass%, P: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.0100 mass%, V: 0.001- One or more selected from 0.010 mass%, Ti: 0.001 to 0.010 mass%, and Ta: 0.001 to 0.010 mass%, as appropriate It may have.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよい。または、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは、常法に従い、例えば、インヒビター形成成分を含有する場合には、1400℃程度の温度に加熱した後、一方、インヒビター形成成分を含有していない場合は、1250℃程度の温度に加熱した後、熱間圧延して所定の板厚の熱延板とする。なお、インヒビター形成成分を含有しない場合には、鋳造後、加熱することなく直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略してもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
After the steel having the above-described composition is melted by a conventional refining process, a steel material (slab) may be manufactured by a conventionally known ingot-lump rolling method or continuous casting method. Alternatively, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. According to a conventional method, the slab is heated to a temperature of about 1400 ° C. when it contains an inhibitor-forming component, and is heated to a temperature of about 1250 ° C. when it does not contain an inhibitor-forming component. After that, hot rolling is performed to obtain a hot-rolled sheet having a predetermined thickness. In addition, when not containing an inhibitor formation component, you may use for a hot rolling immediately after casting, without heating. Further, in the case of a thin cast slab, hot rolling may be performed, or hot rolling may be omitted.

次いで、上記熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の均熱温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱延板焼鈍の効果が不十分となり、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなるため、二次再結晶の発達が阻害されるおそれがある。一方、1150℃を超えると、熱延板焼鈍後の結晶粒が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The soaking temperature of this hot-rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If the temperature is less than 800 ° C., the effect of hot-rolled sheet annealing becomes insufficient, the band structure formed by hot rolling remains, and it becomes difficult to obtain a primary recrystallization structure of sized grains, so the development of secondary recrystallization May be inhibited. On the other hand, if the temperature exceeds 1150 ° C., the crystal grains after hot-rolled sheet annealing become too coarse, and it is also difficult to obtain a primary recrystallized structure of sized grains.

上記熱間圧延後あるいは熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とする。上記中間焼鈍の均熱温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では中間焼鈍後の再結晶粒が細かくなり、一次再結晶組織におけるGoss核が減少するため、製品板の磁気特性が劣化する傾向がある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。   The hot-rolled sheet after the hot rolling or after the hot-rolled sheet annealing is cold-rolled twice or more across one cold rolling or intermediate annealing to obtain a cold-rolled sheet having a final thickness. The soaking temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. If it is less than 900 ° C., the recrystallized grains after the intermediate annealing become fine and the Goss nuclei in the primary recrystallized structure decrease, so that the magnetic properties of the product plate tend to deteriorate. On the other hand, when it exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of grain size.

なお、冷間圧延において最終板厚とする圧延(最終冷間圧延)は、冷間圧延時の鋼板温度を100〜300℃に上昇させて圧延する温間圧延としたり、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施したりすることが好ましい。これにより、一次再結晶集合組織が改善され、磁気特性がさらに向上する。   In addition, the rolling (final cold rolling) which makes the final sheet thickness in the cold rolling is a warm rolling in which the steel plate temperature during the cold rolling is increased to 100 to 300 ° C., or during the cold rolling. An aging treatment is preferably performed once or a plurality of times at a temperature of 100 to 300 ° C. This improves the primary recrystallization texture and further improves the magnetic properties.

次いで、最終板厚とした上記冷延板は、加熱過程、均熱過程および冷却過程からなる一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。ここで、本発明において最も重要なことは、均熱過程を2以上の段に分けるとともに、最終段直前の段の炉内雰囲気ガスが、最終段の炉内に流入するのを防ぎ、鋼板表層のインヒビターの抑制力を適正化するため、それぞれの段の炉内雰囲気の圧力(炉内圧力)が特定の関係を満たすように制御する、具体的には、最終段の炉内圧力とその直前の段の炉内圧力との差(最終段の炉内圧力−最終段直前の段の炉内圧力)が0mmHO超え7mmH以下の範囲となるよう制御することである。上記の差が、0mmHO未満では、最終段直前の段の炉内雰囲気ガスが最終段の炉内に流入するため、磁気特性の劣化の原因となる。一方、7mmHOを超えると、逆に最終段の炉内雰囲気ガスが最終段直前の炉内に流入して炉内のガスの流れが不均一となり、やはり、磁気特性のバラつきの原因となる。上記圧力差は、好ましくは0mmHO超え5mmHO以下、さらに好ましくは0mmHO超え3mmHO以下である。なお、均熱炉の各段の炉内圧力(絶対値)については、特に限定しないが、炉内への外気の侵入を防止する観点から、各段とも1〜50mmHO程度とするのが一般的であり、本発明でもこの範囲で支障はない。 Next, the cold-rolled sheet having a final thickness is subjected to decarburization annealing that also serves as primary recrystallization annealing including a heating process, a soaking process, and a cooling process. Here, the most important thing in the present invention is to divide the soaking process into two or more stages, and prevent the furnace atmosphere gas in the stage immediately before the final stage from flowing into the furnace of the final stage, and the steel sheet surface layer The pressure in the furnace atmosphere (in-furnace pressure) of each stage is controlled to satisfy a specific relationship in order to optimize the suppression power of the inhibitor. Specifically, the pressure in the last The difference from the in-furnace pressure in the second stage (the in-furnace pressure in the last stage−the in-furnace pressure in the stage immediately before the last stage) is controlled to be in the range of 0 mmH 2 O to 7 mmH 2 or less. If the above difference is less than 0 mmH 2 O, the atmospheric gas in the furnace immediately before the final stage flows into the final stage furnace, which causes deterioration of magnetic characteristics. On the other hand, if it exceeds 7 mmH 2 O, the atmospheric gas in the final stage flows into the furnace immediately before the final stage, the gas flow in the furnace becomes non-uniform, and this also causes variations in magnetic properties. . The pressure difference is preferably 0 mm H 2 O than 5mmH 2 O, and more preferably not more than 0 mm H 2 O than 3mmH 2 O. The pressure (absolute value) in the furnace of each stage of the soaking furnace is not particularly limited, but from the viewpoint of preventing the outside air from entering the furnace, each stage is about 1 to 50 mm H 2 O. In general, the present invention has no problem within this range.

また、本発明においては、上記脱炭焼鈍の加熱過程は、二次再結晶粒が微細化し、鉄損特性をより改善するために、500〜700℃間の昇温速度は50℃/s以上とするのが好ましい。より好ましくは80℃/s以上である。   In the present invention, in the heating process of the decarburization annealing, the secondary recrystallized grains are refined and the iron loss characteristics are further improved, so that the heating rate between 500 and 700 ° C. is 50 ° C./s or more. It is preferable to More preferably, it is 80 ° C./s or more.

なお、上記加熱過程で50℃/s以上の急速加熱を行う場合には、その加熱途中の300〜500℃間のいずれかの温度で0.5〜10s間保持する保定処理を行ってもよい。この保定処理により、集合組織がさらに改善されて、二次再結晶粒が微細化するという効果がある。   In addition, when performing the rapid heating of 50 degreeC / s or more in the said heating process, you may perform the retention process hold | maintained for 0.5 to 10 second at any temperature between 300-500 degreeC in the middle of the heating. . This retaining treatment has an effect that the texture is further improved and the secondary recrystallized grains are refined.

また、均熱過程の均熱温度は、均熱過程のすべてにおいて780〜950℃の範囲とする。780℃より低いと、脱炭が不十分となったり、一次再結晶粒の粒成長が不十分となる。一方、950℃を超えると、同じく脱炭が不十分となったり、一次再結晶粒の粒成長が進み過ぎて、二次再結晶不良を起こすおそれがある。より好ましくは800〜930℃の範囲である。   The soaking temperature in the soaking process is in the range of 780 to 950 ° C. in all the soaking processes. If it is lower than 780 ° C., decarburization will be insufficient, and primary recrystallized grains will have insufficient grain growth. On the other hand, when the temperature exceeds 950 ° C., decarburization may be insufficient, or primary recrystallized grains may grow excessively, resulting in secondary recrystallization failure. More preferably, it is in the range of 800 to 930 ° C.

また、上記脱炭焼鈍の均熱過程は、均熱から最終段の前段までの均熱時間を80〜200sの範囲とする。80秒未満では、脱炭が不十分となったり、一次再結晶粒の粒成長が不十分となったりするおそれがある。一方、200sを超えると、一次再結晶粒の粒成長が進み過ぎて、二次再結晶不良を起こすおそれがある。より好ましくは90〜150sの範囲である。   Moreover, the soaking process of the said decarburization annealing sets the soaking time from soaking to the front | former stage of the last stage to the range of 80-200 s. If it is less than 80 seconds, decarburization may be insufficient, or primary recrystallized grains may be insufficiently grown. On the other hand, if it exceeds 200 s, the primary recrystallized grains may grow too much and cause secondary recrystallization failure. More preferably, it is in the range of 90 to 150 s.

なお、均熱過程を2以上の複数段に分けたときの最終段の均熱時間は5〜40sの範囲とする。5s未満では、本発明の効果が小さく、一方、40sを超えると、内部酸化層の形態が変化し、磁気特性が不安化するおそれがある。より好ましくは10〜35sの範囲である。   The soaking time at the final stage when the soaking process is divided into two or more stages is in the range of 5 to 40 s. If it is less than 5 s, the effect of the present invention is small. On the other hand, if it exceeds 40 s, the form of the internal oxide layer may change and the magnetic characteristics may become unstable. More preferably, it is in the range of 10 to 35 s.

なお、均熱過程を2以上の複数段に分けたときの最終段の均熱温度は、上記範囲内で調整することになるが、鋼板表層のインヒビターの抑制力を適度に低下させて磁気特性をより向上する観点からは、最終段直前の均熱温度より高くし、上記温度範囲内の高めの温度とする、具体的には、800〜950℃の範囲とするのが好ましい。逆に、ピックアップによる鋼板への押し疵を防止する観点からは、最終段の均熱温度は、その前段よりも低温とするのが好ましい。   The soaking temperature in the final stage when the soaking process is divided into two or more stages is adjusted within the above range, but the inhibitory power of the inhibitor on the steel sheet surface layer is moderately reduced to achieve magnetic properties. From the viewpoint of further improving the temperature, it is preferable that the temperature is higher than the soaking temperature immediately before the final stage and is set to a higher temperature within the above temperature range, specifically in the range of 800 to 950 ° C. Conversely, from the viewpoint of preventing the picking up of the steel sheet by the pickup, the soaking temperature in the final stage is preferably lower than that in the preceding stage.

また、上記脱炭焼鈍の均熱過程における炉内雰囲気は、湿水素雰囲気とし、均熱過程すべてにおける酸素ポテンシャルPH2O/PH2の平均を0.25〜0.50の範囲に制御するのが好ましい。PH2O/PH2の平均が0.25未満では、脱炭不良を起こすおそれがある。一方、0.50を超えると、鋼板表面にFeOを含む過酸化な被膜が形成されるため、フォルステライト被膜が劣化するという弊害を招く。より好ましいPH2O/PH2は、0.30〜0.48の範囲である。 Further, the atmosphere in the furnace in the soaking process of the decarburizing annealing is a wet hydrogen atmosphere, and the average of the oxygen potentials P H2O / P H2 in all the soaking processes is controlled in the range of 0.25 to 0.50. preferable. If the average of P H2O / PH2 is less than 0.25, there is a risk of decarburization failure. On the other hand, if it exceeds 0.50, a peroxide film containing FeO is formed on the surface of the steel sheet, which causes a detrimental effect that the forsterite film deteriorates. More preferred P H2O / P H2, is in the range of 0.30 to 0.48.

なお、均熱過程を2以上の複数段に分けたときの雰囲気は、均熱過程全体のPH2O/PH2の平均が上記範囲内であれば、各段を別々に制御してもよい。ただし、この場合、各段のPH2O/PH2は、最大でも0.58とする。0.58を超えると、鋼板表面にFeOが形成され、被膜特性の大きな劣化を招くからである。 Note that the atmosphere when the soaking process is divided into two or more stages may be controlled separately if the average P H2O / P H2 of the entire soaking process is within the above range. However, in this case, P H2O / P H2 of each stage is 0.58 at the maximum. This is because if it exceeds 0.58, FeO is formed on the surface of the steel sheet, resulting in significant deterioration of the coating properties.

また、均熱過程を2以上の複数段に分けたときは、最終段の雰囲気は、酸素ポテンシャルPH2O/PH2で0.20以下の還元性雰囲気とし、この雰囲気において、800〜950℃の温度で5〜40s間保持する還元処理を施してもよい。この還元処理により、鋼板表層部に形成される内部酸化層の形態が緻密化するため、磁気特性や被膜特性を改善するのに有利となる。この場合のより好ましいPH2O/PH2は0.15以下である。 In addition, when the soaking process is divided into two or more stages, the atmosphere of the final stage is a reducing atmosphere with an oxygen potential P H 2 O 2 / P H 2 of 0.20 or less, and in this atmosphere, 800 to 950 ° C. You may perform the reduction process hold | maintained for 5 to 40 seconds at temperature. By this reduction treatment, the form of the internal oxide layer formed on the surface layer portion of the steel sheet is densified, which is advantageous for improving magnetic characteristics and film characteristics. In this case, more preferable P H2O / P H2 is 0.15 or less.

上記の脱炭焼鈍を施した鋼板は、その後、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、仕上焼鈍を施して、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させる。
なお、上記焼鈍分離剤には、被膜特性や磁気特性を改善するため、公知の添加剤を含有させてもよい。
また、本発明では、上記MgOを主体とする焼鈍分離剤に添加剤として塩化物を添加したり、MgOを主体とする焼鈍分離剤に代えて、Alを主体とする焼鈍分離剤を用いたりして、フォルステライト被膜を形成させないようにしてもよい。
The steel sheet subjected to the above decarburization annealing is then applied with an annealing separator mainly composed of MgO on the surface of the steel sheet, dried, then subjected to finish annealing, and a secondary recrystallized structure highly accumulated in the Goss orientation. The forsterite film is formed.
In addition, in order to improve a film characteristic and a magnetic characteristic, you may contain a well-known additive in the said annealing separation agent.
Further, in the present invention, chloride is added as an additive to the above-mentioned annealing separator mainly composed of MgO, or an annealing separator mainly composed of Al 2 O 3 is used instead of the annealing separator mainly composed of MgO. Or the forsterite film may not be formed.

なお、上記仕上焼鈍は、常法に従って行えばよいが、鋼板表層部のインヒビターの抑制力を適度に低下させ、健全な二次再結晶粒を得るため、800〜950℃の温度域に5〜200hr保持する保定処理を行うことが好ましい。保定処理中に、MnやN,Sなどの元素が鋼中から系外に排出され、表層部の析出物の量が低下するため、インヒビターの抑制力が適度に低下するが、800℃より低温では、鋼中の上記元素の拡散速度が低下するため排出量が少なく、インヒビターの抑制力低減効果が小さい。一方、950℃を超えると、二次再結晶がすでに終了しているため保定処理の効果が得られない。より好ましい保定処理条件は、820〜930℃×10〜150hrの範囲である。   In addition, although the said finish annealing should just be performed according to a conventional method, in order to reduce the inhibitory power of the inhibitor of a steel plate surface layer moderately and to obtain a healthy secondary recrystallized grain, it is 5 to 800 to 950 degreeC temperature range. It is preferable to perform a holding process for holding for 200 hours. During the retention treatment, elements such as Mn, N, and S are discharged from the steel out of the system, and the amount of precipitates on the surface layer is reduced, so that the inhibitor's inhibitory power is moderately reduced, but the temperature is lower than 800 ° C. Then, since the diffusion rate of the above-mentioned elements in the steel is lowered, the discharge amount is small, and the inhibitor's inhibitory force reducing effect is small. On the other hand, if it exceeds 950 ° C., the effect of the retention treatment cannot be obtained because the secondary recrystallization has already been completed. More preferable holding treatment conditions are in the range of 820 to 930 ° C. × 10 to 150 hours.

上記二次再結晶させる保定処理後は、上記保定処理に引き続いて加熱し、あるいは、上記保定処理後、一旦、700℃以下の温度に降温した後、再加熱し、1120〜1250℃の温度で2〜50hr保持し、鋼中の不純物を排出させる純化とフォルステライト被膜の形成を行う純化処理を施すことが好ましい。純化処理の温度が1120℃より低かったり、保持時間が2hrより短かったりすると、純化が不十分となり、一方、純化処理の温度が1250℃を超えたり、保持時間が50hrより長かったりすると、コイル状に巻かれた鋼板が座屈し、形状不良を起こして、歩留まり低下を招く。より好ましい純化処理条件は、1150〜1230℃×3〜40hrの範囲である。   After the retention treatment for the secondary recrystallization, heating is performed following the retention treatment, or, after the retention treatment, the temperature is once lowered to a temperature of 700 ° C. or lower and then reheated at a temperature of 1120 to 1250 ° C. It is preferable to carry out a purification treatment for holding for 2 to 50 hours and for purifying the impurities in the steel and forming a forsterite film. When the temperature of the purification treatment is lower than 1120 ° C. or the holding time is shorter than 2 hours, the purification becomes insufficient. On the other hand, when the temperature of the purification treatment exceeds 1250 ° C. or the holding time is longer than 50 hours, the coil shape The steel sheet wound on the buckling buckles, causes a shape defect, and causes a decrease in yield. More preferable purification treatment conditions are in the range of 1150-1230 ° C. × 3-40 hr.

なお、純化処理温度までの昇温速度は特に限定しないが、上記保定処理を行う場合は、二次再結晶させる保定処理後の降温の有無に拘わらず、保定処理温度から純化処理温度までを、また、保定処理を行わない場合は、950℃から純化処理温度までを、5〜50℃/hrの平均昇温速度で加熱するのが好ましい。なお、より好ましい昇温速度は8〜30℃/hrの範囲である。   In addition, although the temperature increase rate to the purification treatment temperature is not particularly limited, when performing the retention treatment, from the retention treatment temperature to the purification treatment temperature, regardless of the presence or absence of the temperature reduction after the retention treatment to secondary recrystallization, Moreover, when not performing a retention process, it is preferable to heat from 950 degreeC to the purification process temperature with the average temperature increase rate of 5-50 degreeC / hr. A more preferable temperature increase rate is in the range of 8 to 30 ° C / hr.

上記仕上焼鈍後の鋼板は、その後、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行った後、平坦化焼鈍を施して形状矯正することが好ましい。これは、仕上焼鈍は一般にコイル状態で行うため、仕上焼鈍後の鋼板にはコイルの巻き癖が付いており、そのままでは製品板としたときの磁気特性が大きく劣化するのを防止するためである。   It is preferable that the steel sheet after the finish annealing is subjected to flattening annealing and then straightened after performing water washing, brushing, pickling, etc. to remove the unreacted annealing separator adhering to the steel sheet surface. . This is because finish annealing is generally performed in a coiled state, and the steel sheet after finish annealing has coil curling flaws, so as to prevent significant deterioration in magnetic properties when used as a product plate. .

さらに、本発明の鋼板(製品板)を積層して使用する場合には、上記平坦化焼鈍時あるいはその前または後の工程で、鋼板表面に絶縁被膜を被成することが好ましい。特に、鉄損特性を重視するときは、上記絶縁被膜として、鋼板に張力を付与する張力付与被膜を適用するのが好ましい。なお、張力付与被膜を被成する際には、バインダーを介したり、物理蒸着法や化学蒸着で無機物層を鋼板表層に成膜したりした後、張力付与被膜を被成すると、被膜密着性に優れ、かつ、鉄損低減効果が大きい絶縁被膜を形成することができる。   Furthermore, when the steel plate (product plate) of the present invention is laminated and used, it is preferable to deposit an insulating coating on the surface of the steel plate in the above-described flattening annealing or in the process before or after. In particular, when emphasizing iron loss characteristics, it is preferable to apply a tension-imparting coating that imparts tension to the steel sheet as the insulating coating. In addition, when depositing a tension-imparting film, after depositing an inorganic layer on the steel sheet surface layer through a binder or by physical vapor deposition or chemical vapor deposition, depositing a tension-imparting film results in improved film adhesion. An insulating film that is excellent and has a large iron loss reduction effect can be formed.

また、鉄損をより低減するためには、磁区細分化処理を施すことが好ましい。磁区細分化の方法としては、一般的に実施されている、最終製品板に溝を形成する方法、レーザー照射やプラズマ照射によって線状または点状の熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した以降の工程で、鋼板表面にエッチング加工を施して溝を形成する方法等を用いることができる。   Moreover, in order to further reduce the iron loss, it is preferable to perform a magnetic domain fragmentation process. As a method of subdividing the magnetic domain, a method of forming a groove in a final product plate, a method of introducing linear or point-like thermal strain or impact strain by laser irradiation or plasma irradiation, and a final plate are generally used. In a step after cold rolling to a thickness, a method of forming a groove by etching the steel plate surface can be used.

C:0.060mass%、Si:3.25mass%、Mn:0.07mass%、Al:0.026mass%、N:0.009mass%、Se:0.025mass%およびSb:0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを連続鋳造法で製造し、1410℃の温度に加熱した後、熱間圧延して板厚2.5mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延して1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板とした。
次いで、上記冷延板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、脱炭焼鈍の加熱過程は、室温から均熱温度までを、酸素ポテンシャルPH2O/PH2:0.40の湿水素雰囲気で、50℃/sの昇温速度で加熱し、均熱過程は、前段と後段の2段に分け、それぞれの均熱温度、均熱時間および雰囲気の酸素ポテンシャルPH2O/PH2を表1に示したように種々に変化させた。
次いで、上記脱炭焼鈍後の鋼板は、MgOを主体とした焼鈍分離剤を鋼板表面に塗布、乾燥し、その後、室温から1180℃までを20℃/hrの平均昇温速度で加熱し、即ち、加熱中で保定処理することなく連続して加熱して二次再結晶を完了させた後、1180℃×10hrの純化処理を行う仕上焼鈍を施した。なお、上記仕上焼鈍の雰囲気ガスは、純化処理する1180℃保定時はH、それ以外の昇温時、保定処理時および降温時はArとした。
C: 0.060 mass%, Si: 3.25 mass%, Mn: 0.07 mass%, Al: 0.026 mass%, N: 0.009 mass%, Se: 0.025 mass% and Sb: 0.05 mass% And a steel slab of the component composition of which the balance is Fe and unavoidable impurities is produced by continuous casting, heated to a temperature of 1410 ° C., and hot-rolled to form a hot-rolled sheet having a thickness of 2.5 mm, 1000 After hot-rolled sheet annealing at 50 ° C for 50 seconds, primary cold rolling to an intermediate thickness of 1.8 mm, intermediate annealing at 1100 ° C for 20 seconds, and secondary cold rolling to final A cold-rolled sheet having a thickness of 0.23 mm was used.
Next, the cold-rolled sheet was subjected to decarburization annealing that also served as primary recrystallization annealing. At this time, the heating process of the decarburization annealing is performed by heating from room temperature to a soaking temperature in a wet hydrogen atmosphere having an oxygen potential of P H2O / P H2 : 0.40 at a heating rate of 50 ° C./s. The process was divided into two stages, a front stage and a rear stage, and the soaking temperature, soaking time, and oxygen potential P H2O / P H2 of the atmosphere were variously changed as shown in Table 1.
Then, the steel sheet after decarburizing annealing applies an annealing separator mainly composed of MgO on the surface of the steel sheet and dries it, and then heats from room temperature to 1180 ° C. at an average temperature rising rate of 20 ° C./hr. Then, after the secondary recrystallization was completed by continuous heating without holding treatment in the heating, finishing annealing was performed to perform a purification treatment of 1180 ° C. × 10 hr. The atmosphere gas for the finish annealing was H 2 at the time of 1180 ° C. holding for the purification treatment, and Ar at the time of other temperature rise, at the time of the holding treatment and at the time of temperature drop.

上記のようにして得た仕上焼鈍後の鋼板から、鋼板の幅方向に幅100mmの試験片を各条件で10枚ずつ採取し、JIS C2556に記載の方法で磁束密度Bと鉄損W17/50を測定し、平均値を求めた。その結果を表1に併記した。同表から、脱炭焼鈍の均熱過程の後段(最終段)とその直前の段の炉内圧力差(最終段の炉内圧力−最終段直前の段の炉内圧力)を本発明の範囲(0mmHO超え7mmHO以下)に制御することで、磁気特性、特に鉄損特性が大きく改善されていることがわかる。さらに、その他の脱炭焼鈍の均熱条件を適正化することにより、より磁気特性に優れる方向性電磁鋼板が得られることがわかる。 Ten specimens each having a width of 100 mm in the width direction of the steel sheet were collected from the steel sheet after finish annealing obtained as described above under each condition, and the magnetic flux density B 8 and iron loss W 17 were measured by the method described in JIS C2556. / 50 was measured and the average value was obtained. The results are also shown in Table 1. From the table, the pressure difference in the furnace of the latter stage (final stage) of the soaking process of the decarburization annealing and the stage immediately before it (the pressure in the furnace of the final stage-the pressure in the furnace of the stage just before the final stage) It can be seen that by controlling to (over 0 mmH 2 O to 7 mmH 2 O or less), the magnetic characteristics, particularly the iron loss characteristics are greatly improved. Furthermore, it can be seen that a grain-oriented electrical steel sheet with more excellent magnetic properties can be obtained by optimizing other soaking conditions for decarburization annealing.

Figure 2019127616
Figure 2019127616

Figure 2019127616
Figure 2019127616

C:0.055mass%、Si:3.35mass%、Mn:0.07mass%、Al:0.021mass%、N:0.007mass%およびCu:0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを連続鋳造法で製造し、1390℃の温度に加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。
次いで、上記冷延板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、脱炭焼鈍の加熱過程は、室温から700℃までを80℃/sの昇温速度で加熱した。また、均熱過程は、均熱時間を120秒とし、それを前段の90秒と後段の30秒の2段に分け、前段は、均熱温度を850℃、雰囲気を酸素ポテンシャルPH2O/PH2が0.39の湿水素雰囲気とし、後段は、均熱温度を890℃、雰囲気を酸素ポテンシャルPH2O/PH2:0.15の乾燥雰囲気とし、さらに、後段の炉内圧力を前段よりも2mmHO高くなるよう調整した。
次いで、上記脱炭焼鈍後の鋼板は、MgOを主体とした焼鈍分離剤を鋼板表面に塗布した後、仕上焼鈍を施した。この際、上記仕上焼鈍は、表2に示した保定処理温度まで25℃/hrの平均昇温速度で加熱後、同じく表2に示した保定処理時間保持する保定処理して二次再結晶を完了させた後、引き続き、1230℃の温度まで25℃/hrの平均昇温速度で加熱し、該温度に3hr保持して純化処理する条件で行った。なお、雰囲気ガスは、保定処理終了まではN、保定処理から純化処理温度までは75vol%H+25vol%Nの混合ガス(保定処理を行わない場合は、室温から880℃までNとし、880℃で75vol%H+25vol%Nの混合ガスに切り替え)、純化処理時はH、冷却時は1100℃まではAr、その後はNとした。なお、一部の鋼板については、900℃の温度で保定処理後、一旦、700℃以下の温度に降温し、その後、1230℃の温度まで25℃/hrの平均昇温速度で加熱し、該温度に3hr保持して純化処理を行った。
C: 0.055 mass%, Si: 3.35 mass%, Mn: 0.07 mass%, Al: 0.021 mass%, N: 0.007 mass% and Cu: 0.05 mass%, the balance being Fe and unavoidable A steel slab of the component composition consisting of chemical impurities is manufactured by continuous casting, heated to a temperature of 1390 ° C., and then hot rolled to form a hot-rolled sheet with a thickness of 2.0 mm, hot-rolled at 1030 ° C. × 10 seconds After the plate annealing, it was cold-rolled to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm.
Next, the cold-rolled sheet was subjected to decarburization annealing that also served as primary recrystallization annealing. Under the present circumstances, the heating process of decarburization annealing heated from room temperature to 700 degreeC with the temperature increase rate of 80 degreeC / s. In the soaking process, the soaking time is 120 seconds, which is divided into two stages of 90 seconds in the former stage and 30 seconds in the latter stage. The former stage has a soaking temperature of 850 ° C. and the atmosphere is an oxygen potential P H2O / P. H2 is a wet hydrogen atmosphere of 0.39, the latter stage is a soaking temperature of 890 ° C., the atmosphere is a dry atmosphere of oxygen potential P H2O / P H2 : 0.15, and the furnace pressure in the latter stage is higher than that in the previous stage. It adjusted so that it might become 2 mmH2O high.
Next, the steel sheet after the decarburization annealing was subjected to finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface. At this time, after the above-mentioned finish annealing is heated at an average temperature rising rate of 25 ° C./hr to the holding treatment temperature shown in Table 2, the holding treatment for holding holding treatment time also shown in Table 2 is performed to carry out secondary recrystallization. After completion, heating was continued at an average temperature increase rate of 25 ° C./hr up to a temperature of 1230 ° C., and the temperature was maintained for 3 hrs for purification treatment. The atmosphere gas is a mixed gas of N 2 until the end of the holding process and 75 vol% H 2 + 25 vol% N 2 from the holding process to the purification process temperature (if not subjected to the holding process, N 2 from room temperature to 880 ° C.) , At 880 ° C., the gas was switched to a mixed gas of 75 vol% H 2 +25 vol% N 2 ), H 2 during the purification treatment, Ar up to 1100 ° C. during cooling, and N 2 thereafter. In addition, about a part of steel plate, after holding treatment at a temperature of 900 ° C., the temperature is temporarily lowered to a temperature of 700 ° C. or less, and then heated at a temperature rising rate of 25 ° C./hr to a temperature of 1230 ° C. The purification treatment was performed while maintaining the temperature for 3 hours.

上記のようにして得た仕上焼鈍後の鋼板から、鋼板の幅方向に幅100mmの試験片を各条件で10枚ずつ採取し、JIS C2556に記載の方法で磁束密度Bと鉄損W17/50を測定し、平均値を求めた。その結果を表2に併記した。同表から、脱炭焼鈍の均熱過程における炉内圧力差を適正範囲に制御した上で、仕上焼鈍の保定処理における温度、時間を適正範囲に制御することで、高磁束密度で低鉄損の優れた磁気特性を有する方向性電磁鋼板が得られることがわかる。また、保定処理後、一旦、降温し、その後、再加熱して純化処理した条件でも、上記と同様の優れた効果が得られることがわかる。 Ten specimens each having a width of 100 mm in the width direction of the steel sheet were collected from the steel sheet after finish annealing obtained as described above under each condition, and the magnetic flux density B 8 and iron loss W 17 were measured by the method described in JIS C2556. / 50 was measured and the average value was obtained. The results are also shown in Table 2. From the table, after controlling the pressure difference in the furnace in the soaking process in the decarburizing annealing to an appropriate range, the temperature and time in the holding treatment of the finish annealing are controlled in an appropriate range, thereby achieving high magnetic flux density and low iron loss. It can be seen that a grain-oriented electrical steel sheet having excellent magnetic properties is obtained. Moreover, it turns out that the same outstanding effect as the above is acquired also on the conditions which temperature-reduced once after a retention process, and was reheated and refine | purified after that.

Figure 2019127616
Figure 2019127616

表3に示した種々の成分組成を有する鋼スラブを連続鋳造法で製造し、1420℃の温度に加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1050℃×20秒の熱延板焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板に仕上げた後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
ここで、上記脱炭焼鈍は、加熱過程を、室温から600℃までを200℃/s、600から700℃までを60℃/sの平均昇温速度で加熱した。また、均熱過程は、均熱温度を800℃、均熱時間を100sとし、さらに、上記均熱時間を前段の60秒と後段の40秒とに分け、それらの雰囲気は、前段を酸素ポテンシャルPH2O/PH2が0.36の湿水素雰囲気とし、後段を酸素ポテンシャルPH2O/PH2が0.10の乾燥雰囲気とし、かつ、後段の炉内圧力を前段よりも3mmHO高くなるよう調整した。
次いで、上記脱炭焼鈍後の鋼板は、MgOを主体とした焼鈍分離剤を鋼板表面に塗布した後、仕上焼鈍を施した。この際、上記仕上焼鈍は、室温から900℃までAr雰囲気下で30℃/hrの昇温速度で加熱した後、Ar雰囲気下で900℃の温度に70hr保持する保定処理して二次再結晶を完了させた後、引き続き、900℃から1150℃まで、H雰囲気下で15℃/hrの昇温速度で加熱し、その後、H雰囲気下で1150℃の温度に8hr保持する純化処理を施した後、Ar雰囲気下で冷却した。
Steel slabs having various component compositions shown in Table 3 were manufactured by a continuous casting method, heated to a temperature of 1420 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.2 mm, 1050 ° C. × 20 After performing hot-rolled sheet annealing for 2 seconds, it was cold-rolled to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm, and then subjected to decarburization annealing that also served as primary recrystallization annealing.
Here, in the decarburization annealing, the heating process was performed from room temperature to 600 ° C. at an average temperature increase rate of 200 ° C./s and from 600 to 700 ° C. at an average temperature increase rate of 60 ° C./s. In the soaking process, the soaking temperature is set to 800 ° C., the soaking time is set to 100 s, and the above soaking time is divided into 60 seconds of the former stage and 40 seconds of the latter stage. a wet hydrogen atmosphere of P H2O / P H2 0.36, subsequent to a dry atmosphere having an oxygen potential P H2O / P H2 of 0.10, and, 3mmH 2 O is higher as than preceding the furnace pressure in the subsequent stage It was adjusted.
Next, the steel sheet after the decarburization annealing was subjected to finish annealing after applying an annealing separator mainly composed of MgO to the steel sheet surface. At this time, the above-mentioned finish annealing is carried out by heating from room temperature to 900 ° C. at a temperature rising rate of 30 ° C./hr in Ar atmosphere, and then holding for 70 hours at 900 ° C. in Ar atmosphere to perform secondary recrystallization. Is completed and then heated from 900 ° C. to 1150 ° C. under a H 2 atmosphere at a temperature rising rate of 15 ° C./hr, and then maintained for 8 hours at a temperature of 1150 ° C. under a H 2 atmosphere. After application, it was cooled in an Ar atmosphere.

上記のようにして得た仕上焼鈍後の鋼板から、鋼板の幅方向に幅100mmの試験片を各条件で10枚ずつ採取し、JIS C2556に記載の方法で磁束密度Bと鉄損W17/50を測定し、平均値を求めた。その結果を表3に併記した。同表から、本発明に適合する成分組成のスラブを素材とし、脱炭焼鈍の均熱過程の炉内圧力を適正化し、さらに仕上焼鈍条件を適正化することで、高磁束密度で低鉄損の優れた磁気特性を有する方向性電磁鋼板が得られることがわかる。 Ten specimens each having a width of 100 mm in the width direction of the steel sheet were collected from the steel sheet after finish annealing obtained as described above under each condition, and the magnetic flux density B 8 and iron loss W 17 were measured by the method described in JIS C2556. / 50 was measured and the average value was obtained. The results are also shown in Table 3. From the same table, using a slab with a composition suitable for the present invention as a raw material, optimizing the pressure in the furnace during the soaking process of decarburization annealing, and further optimizing the finish annealing conditions, high magnetic flux density and low iron loss It can be seen that a grain-oriented electrical steel sheet having excellent magnetic properties is obtained.

Figure 2019127616
Figure 2019127616

Claims (6)

C:0.010〜0.10mass%、Si:2.5〜4.5mass%、Mn:0.01〜0.50mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後あるいは熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、加熱過程、均熱過程および冷却過程からなる一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
上記脱炭焼鈍の均熱過程は、全領域の均熱温度を780〜950℃の範囲、かつ、全領域の雰囲気の平均酸素ポテンシャルPH2O/PH2を0.25〜0.50の範囲に制御するとともに、
上記均熱過程を2段以上に分け、均熱開始から最終段の前段までの全均熱時間を80〜200秒、最終段の均熱時間を5〜40秒の範囲、かつ、最終段の炉内圧力とその直前の段の炉内圧力との差(最終段の炉内圧力−最終段直前の段の炉内圧力)を0mmHO超え7mmHO以下の範囲に制御することを特徴とする方向性電磁鋼板の製造方法。
C: steel containing 0.010 to 0.10 mass%, Si: 2.5 to 4.5 mass%, Mn: 0.01 to 0.50 mass%, with the balance being composed of Fe and inevitable impurities The material is hot-rolled to form a hot-rolled sheet, and after the hot-rolled sheet is subjected to hot-rolled sheet annealing or without being subjected to hot-rolled sheet annealing, it is cold-rolled at least once with intermediate annealing. A series of cold-rolled sheets with the final sheet thickness, and after decarburization annealing also serving as primary recrystallization annealing consisting of heating process, soaking process and cooling process, and then applying annealing separator to the steel sheet surface and finishing annealing In the method for producing a grain-oriented electrical steel sheet comprising the steps of:
The soaking process of the above decarburization annealing is carried out so that the soaking temperature of the whole area is in the range of 780 to 950 ° C., and the average oxygen potential PH 2 O 2 / P H 2 of the atmosphere of the whole area is in the range of 0.25 to 0.50. As well as control
The soaking process is divided into two or more stages, the total soaking time from the start of soaking to the preceding stage of the last stage is 80 to 200 seconds, the soaking time of the last stage is in the range of 5 to 40 seconds, characterized by controlling the - (furnace pressure in the final stage immediately before the stage furnace pressure in the last stage) to 0 mm H 2 O than 7mmH 2 O the range difference furnace pressure and furnace pressure of the immediately preceding stage A method for producing a grain-oriented electrical steel sheet.
上記脱炭焼鈍の均熱過程の最終段において、酸素ポテンシャルPH2O/PH2が0.20以下の雰囲気下で、800〜950℃の温度に保持する還元処理を施すことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The final stage of the soaking process of the decarburizing annealing is characterized in that a reduction treatment is performed at a temperature of 800 to 950 ° C. in an atmosphere under an oxygen potential P H 2 O / P H 2 of 0.20 or less. A method for producing the grain-oriented electrical steel sheet according to 1. 上記仕上焼鈍において、800〜950℃の温度範囲で5〜200hr保持して二次再結晶させた後、引き続き加熱し、もしくは、一旦、700℃以下まで降温した後、再加熱し、1120℃以上の温度で2hr以上保持する純化処理を施すことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In the above-mentioned finish annealing, after holding for 5 to 200 hours in the temperature range of 800 to 950 ° C. and secondary recrystallization, it is continuously heated, or once cooled to 700 ° C. or less and then reheated, 1120 ° C. or more The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein a purification treatment is performed for 2 hours or more at a temperature of 3. 上記鋼素材は、上記成分組成に加えてさらに、Al:0.010〜0.04mass%およびN:0.003〜0.015mass%を含有する、あるいは、
Se:0.003〜0.030mass%および/またはS:0.002〜0.030mass%を含有する、あるいは、
Al:0.010〜0.04mass%、N:0.003〜0.015mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.030mass%を含有することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。
In addition to the above component composition, the steel material further contains Al: 0.010 to 0.04 mass% and N: 0.003 to 0.015 mass%, or
Contains Se: 0.003-0.030 mass% and / or S: 0.002-0.030 mass%, or
Al: 0.010 to 0.04 mass%, N: 0.003 to 0.015 mass%, Se: 0.003 to 0.030 mass% and / or S: 0.002 to 0.030 mass% The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3.
上記鋼素材は、上記成分組成に加えてさらに、Al:0.010mass%未満、N:0.005mass%未満、S:0.005mass%未満およびSe:0.005mass%未満を含有することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 The steel material further contains Al: less than 0.010 mass%, N: less than 0.005 mass%, S: less than 0.005 mass%, and Se: less than 0.005 mass% in addition to the above component composition. The manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 1 to 3. 上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜0.5mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%、Ti:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。
In addition to the above component composition, the steel material further includes Ni: 0.010 to 0.5 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.00. 005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.100 mass% , B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.0100 mass%, Nb: 0.0010 to 0.0100 mass%, V: 0.001 to 0.010 mass%, Ti: 0.001 It contains 1 type or 2 types or more chosen from -0.010mass% and Ta: 0.001-0.010mass% of Claims 1-5 characterized by the above-mentioned. Method for producing a grain-oriented electrical steel sheet according to item 1 Zureka.
JP2018009432A 2018-01-24 2018-01-24 Manufacturing method of grain-oriented electromagnetic steel sheet Pending JP2019127616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009432A JP2019127616A (en) 2018-01-24 2018-01-24 Manufacturing method of grain-oriented electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009432A JP2019127616A (en) 2018-01-24 2018-01-24 Manufacturing method of grain-oriented electromagnetic steel sheet

Publications (1)

Publication Number Publication Date
JP2019127616A true JP2019127616A (en) 2019-08-01

Family

ID=67471839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009432A Pending JP2019127616A (en) 2018-01-24 2018-01-24 Manufacturing method of grain-oriented electromagnetic steel sheet

Country Status (1)

Country Link
JP (1) JP2019127616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021185137A (en) * 2013-11-04 2021-12-09 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Synthetic single domain antibodies
JPWO2022158541A1 (en) * 2021-01-21 2022-07-28
JP2022542380A (en) * 2019-08-13 2022-10-03 バオシャン アイアン アンド スティール カンパニー リミテッド Highly magnetically inductive oriented silicon steel and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021185137A (en) * 2013-11-04 2021-12-09 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Synthetic single domain antibodies
JP2022542380A (en) * 2019-08-13 2022-10-03 バオシャン アイアン アンド スティール カンパニー リミテッド Highly magnetically inductive oriented silicon steel and its manufacturing method
JP7454646B2 (en) 2019-08-13 2024-03-22 バオシャン アイアン アンド スティール カンパニー リミテッド High magnetic induction grain-oriented silicon steel and its manufacturing method
JPWO2022158541A1 (en) * 2021-01-21 2022-07-28
WO2022158541A1 (en) * 2021-01-21 2022-07-28 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP7459939B2 (en) 2021-01-21 2024-04-02 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
EP2644716B1 (en) Method for producing directional electromagnetic steel sheet
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
US10294543B2 (en) Method for producing grain-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JPWO2014132930A1 (en) Method for producing grain-oriented electrical steel sheet
WO2015174362A1 (en) Method for producing oriented electromagnetic steel sheet
WO2016199423A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP2016089194A (en) Manufacturing method of oriented electromagnetic steel sheet
JP2000355717A (en) Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP2019127616A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
JP6888603B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2014167147A (en) Method for producing grain-oriented electromagnetic steel sheets
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP7110642B2 (en) Method for manufacturing grain-oriented electrical steel sheet
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JP6859935B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020070477A (en) Production method of oriented electromagnetic steel sheet
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP2021155833A (en) Manufacturing method of grain-oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet