JP2021155833A - Manufacturing method of grain-oriented electrical steel sheet - Google Patents

Manufacturing method of grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP2021155833A
JP2021155833A JP2020059990A JP2020059990A JP2021155833A JP 2021155833 A JP2021155833 A JP 2021155833A JP 2020059990 A JP2020059990 A JP 2020059990A JP 2020059990 A JP2020059990 A JP 2020059990A JP 2021155833 A JP2021155833 A JP 2021155833A
Authority
JP
Japan
Prior art keywords
mass
steel sheet
annealing
rolled
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020059990A
Other languages
Japanese (ja)
Other versions
JP7231888B2 (en
Inventor
拓弥 山田
Takuya Yamada
拓弥 山田
誠 渡邉
Makoto Watanabe
誠 渡邉
敬 寺島
Takashi Terajima
敬 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020059990A priority Critical patent/JP7231888B2/en
Publication of JP2021155833A publication Critical patent/JP2021155833A/en
Application granted granted Critical
Publication of JP7231888B2 publication Critical patent/JP7231888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a manufacturing method of grain-oriented electrical steel sheet that can stably obtain excellent coating characteristics.SOLUTION: The manufacturing method of grain-oriented electrical steel sheet includes hot-rolling of a slab containing C of 0.01 to 0.10%, Si of 2.0 to 5.0%, Mn of 0.01 to 1.0% and Cr of 0.01 to 0.2% and further containing an inhibitor-forming component, cold-rolling, decarburization annealing that also serves as primary recrystallization annealing, coating of an annealing separator on a surface of the steel sheet, and finish annealing thereafter. A method of generating at a frequency of 80% or more grain boundaries having a misorientation angle of 15 to 45° on an outermost layer of the steel sheet after decarburization annealing, is to apply, for example, any one or more means consisting of a work roll with a diameter of 600 mm or less used in finishing hot rolling, a friction coefficient in the finishing hot rolling of 0.40 or more, and oxygen potential of an atmosphere of intermediate annealing PH2O/PH2 set to be range of 0.10 to 0.25.SELECTED DRAWING: Figure 1

Description

本発明は、主に変圧器や回転機器の鉄心等に用いられる方向性電磁鋼板の製造方法に関し、特に被膜特性に優れた方向性電磁鋼板を製造する方法に関するものである。 The present invention relates mainly to a method for manufacturing grain-oriented electrical steel sheets used for iron cores of transformers and rotating equipment, and particularly to a method for manufacturing grain-oriented electrical steel sheets having excellent coating characteristics.

方向性電磁鋼板は、主に変圧器や回転機器の鉄心等に用いられる軟磁性材料であり、磁気特性として、磁束密度が高く、鉄損が低いことが求められる。かかる方向性電磁鋼板は、二次再結晶を起こさせるのに必要なインヒビター、例えば、MnS、MnSeやAlN等を形成する成分を含む鋼スラブを熱間圧延し、必要に応じて熱延板焼鈍し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とした後、脱炭焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、二次再結晶させる仕上焼鈍を施すことによって製造される。 Electrical steel sheets are soft magnetic materials mainly used for iron cores of transformers and rotating equipment, and are required to have high magnetic flux density and low iron loss as magnetic characteristics. In such a directional electromagnetic steel plate, a steel slab containing an inhibitor necessary for causing secondary recrystallization, for example, a component forming MnS, MnSe, AlN, etc., is hot-rolled, and if necessary, hot-rolled sheet is annealed. Then, it is cold-rolled once or cold-rolled two or more times with intermediate annealing in between to obtain a cold-rolled plate with the final plate thickness, then decarburized and annealed, annealed separator is applied to the surface of the steel plate, and then secondary. Manufactured by subjecting finish annealing to recrystallize.

ところで、方向性電磁鋼板の表面には、鏡面化する等の特殊な場合を除いて、フォルステライト(MgSiO)を主体とする被膜を形成するのが一般的である。このフォルステライト被膜は、鋼板表面に電気絶縁性を付与するだけでなく、その低熱膨張性により鋼板表面に引張応力を付与することで鉄損低減に寄与することが知られている。また、フォルステライト被膜は、仕上焼鈍において形成されるが、その形成挙動は、MnS、MnSeやAlN等のインヒビターの生成、すなわち、二次再結晶に多大な影響を及ぼす。さらに、フォルステライト被膜は、二次再結晶が完了した後、不要となったインヒビター形成成分を吸収し、鋼板を純化することでも磁気特性の改善に寄与している。 By the way, except for special cases such as mirroring, a film mainly composed of forsterite (Mg 2 SiO 4) is generally formed on the surface of the grain-oriented electrical steel sheet. It is known that this forsterite coating not only imparts electrical insulation to the surface of the steel sheet, but also contributes to reduction of iron loss by applying tensile stress to the surface of the steel sheet due to its low thermal expansion. Further, the forsterite film is formed by finish annealing, and its forming behavior has a great influence on the production of inhibitors such as MnS, MnSe and AlN, that is, secondary recrystallization. Furthermore, the forsterite film absorbs unnecessary inhibitor-forming components after the completion of secondary recrystallization and purifies the steel sheet, thereby contributing to the improvement of magnetic properties.

従って、欠陥のない、均一で密着性に優れたフォルステライト被膜を形成させることは、磁気特性に優れた方向性電磁鋼板を製造する上で極めて重要である。一般に、フォルステライト被膜は、以下の工程によって形成される。まず、冷間圧延によって最終板厚とした冷延板を、湿潤水素雰囲気中で、700〜900℃の温度で一次再結晶焼鈍を兼ねた脱炭焼鈍する。この工程で、後の仕上焼鈍の際、適切な二次再結晶組織が得られるような一次再結晶組織を形成させると同時に、製品板の磁気時効を防ぐため、Cを0.003mass%以下になるまで脱炭し、鋼板表層にSiOを主体とする酸化膜を形成させる。その後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、仕上焼鈍において、還元性または非酸化性雰囲気中で、1000〜1200℃の温度で焼鈍することによって、下記の反応によりフォルステライト被膜が形成される。
2MgO+SiO→MgSiO
Therefore, forming a defect-free, uniform, and excellently adherent forsterite film is extremely important in producing a grain-oriented electrical steel sheet having excellent magnetic properties. Generally, the forsterite film is formed by the following steps. First, a cold-rolled sheet whose final thickness is obtained by cold rolling is decarburized and annealed at a temperature of 700 to 900 ° C., which also serves as primary recrystallization annealing, in a wet hydrogen atmosphere. In this step, during the subsequent finish annealing, a primary recrystallized structure is formed so that an appropriate secondary recrystallized structure can be obtained, and at the same time, C is reduced to 0.003 mass% or less in order to prevent magnetic aging of the product plate. It is decarburized until it becomes, and an oxide film mainly composed of SiO 2 is formed on the surface layer of the steel sheet. Then, after applying an annealing separator mainly composed of MgO to the surface of the steel sheet, it is annealed at a temperature of 1000 to 1200 ° C. in a reducing or non-oxidizing atmosphere in the finish annealing, and forsterite is subjected to the following reaction. A film is formed.
2MgO + SiO 2 → Mg 2 SiO 4

このフォルステライト被膜は、粒径が1〜2μmの微細なフォルステライトの結晶が集積したセラミックス被膜であって、前述したように、脱炭焼鈍の際に形成される酸化膜を一方の原料として形成される。従って、この酸化膜の種類、量および分布等は、フォルステライトの核生成や粒成長挙動、ひいては、フォルステライト被膜の均一性や密着性に多大な影響を及ぼす。そのため、脱炭焼鈍の際、鋼板表層に形成される酸化膜の物性を適正化することは、被膜特性に優れたフォルステライト被膜を形成させる上で極めて重要である。 This forsterite film is a ceramic film in which fine forsterite crystals having a particle size of 1 to 2 μm are accumulated, and as described above, an oxide film formed during decarburization annealing is formed as one of the raw materials. Will be done. Therefore, the type, amount, distribution, etc. of this oxide film have a great influence on the nucleation and grain growth behavior of forsterite, and by extension, the uniformity and adhesion of the forsterite film. Therefore, it is extremely important to optimize the physical properties of the oxide film formed on the surface layer of the steel sheet during decarburization annealing in order to form a forsterite film having excellent film characteristics.

従来、フォルステライト被膜の均一性や密着性を改善する技術として、例えば、特許文献1には、脱炭焼鈍の際、鋼板最表層に方位差角が15°未満または45°以上の粒界を、その頻度にして40%以上生成させる方法が提案されている。また、特許文献2には、鋼スラブ中に、Crを0.1〜1.0mass%添加し、脱炭焼鈍の際、鋼板表層に形成される酸化膜中にスピネル型のCr酸化物を生成させる方法が提案されている。このスピネル型のCr酸化物は、仕上焼鈍の際、以下の式に従ってMgOと反応する。
MgO+FeCr→Mg1−xFeO+Mg1−xFeCr
特許文献2によれば、このMg1−xFeOはフォルステライトの生成を促進させる。また、上記スピネル型のCr酸化物は、鋼板表面よりもやや内側に生成され、この位置でのフォルステライトの生成を促進することによって、被膜特性を改善する効果もある。
Conventionally, as a technique for improving the uniformity and adhesion of a forsterite film, for example, Patent Document 1 states that during decarburization annealing, grain boundaries having an orientation difference angle of less than 15 ° or 45 ° or more are formed on the outermost layer of a steel sheet. , A method of generating 40% or more at that frequency has been proposed. Further, in Patent Document 2, 0.1 to 1.0 mass% of Cr is added to the steel slab, and spinel-type Cr oxide is generated in the oxide film formed on the surface layer of the steel sheet during decarburization annealing. A method has been proposed to make it. This spinel-type Cr oxide reacts with MgO according to the following formula during finish annealing.
MgO + FeCr 2 O 4 → Mg 1-x Fe x O + Mg 1-x Fe x Cr 2 O 4
According to Patent Document 2, this Mg 1-x Fe x O promotes the formation of forsterite. Further, the spinel-type Cr oxide is formed slightly inside the surface of the steel sheet, and has the effect of improving the coating properties by promoting the formation of forsterite at this position.

特開2001−200317号公報Japanese Unexamined Patent Publication No. 2001-200317 特開2000−355717号公報Japanese Unexamined Patent Publication No. 2000-355717

しかしながら、上記従来技術に記載の技術では、一定の被膜特性改善効果は認められるものの、依然として被膜特性にバラつきがあり、磁気特性が改善されない事例が散見されるという問題があった。 However, in the technique described in the above-mentioned prior art, although a certain effect of improving the film characteristics is recognized, there is a problem that there are still some cases in which the film characteristics are not improved and the magnetic characteristics are not improved.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、優れた被膜特性を安定して得ることができる方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to propose a method for manufacturing a grain-oriented electrical steel sheet capable of stably obtaining excellent coating properties. ..

発明者らは、上記の課題を解決するべく、特に脱炭焼鈍後の鋼板最表層の粒界の方位差角が酸化膜の生成、ひいては、フォルステライト被膜の特性に及ぼす影響に着目して鋭意検討を重ねた。その結果、上記方位差角を有する粒界頻度が範囲にある場合に粒界酸化が促進され、鋼板表面よりもやや内側にスピネル型のCr酸化物が生成され、その結果、被膜特性が著しく改善されることを見出し、本発明を完成させた。 In order to solve the above problems, the inventors are keenly paying attention to the influence of the directional difference angle of the grain boundary of the outermost layer of the steel sheet after decarburization annealing on the formation of the oxide film and, by extension, on the characteristics of the forsterite film. After repeated examinations. As a result, when the intergranular frequency having the above-mentioned directional difference angle is in the range, the intergranular oxidation is promoted, and a spinel-type Cr oxide is generated slightly inside the surface of the steel sheet, and as a result, the coating characteristics are remarkably improved. The present invention has been completed.

上記知見に基づく本発明は、C:0.01〜0.10mass%、Si:2.0〜5.0mass%、Mn:0.01〜1.0mass%およびCr:0.01〜0.2mass%を含有し、さらに、インヒビター形成成分として下記A〜C群のうちから選ばれるいずれか1群の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させることを特徴とする方向性電磁鋼板の製造方法を提案する。

・A群;S:0.002〜0.03mass%およびSe:0.002〜0.003mass%の内から選ばれる少なくとも1種
・B群;Al:0.005〜0.04mass%およびN:0.003〜0.012mass%
・C群;S:0.002〜0.03mass%およびSe:0.002〜0.003mass%の内から選ばれる少なくとも1種、Al:0.005〜0.04mass%およびN:0.003〜0.012mass%
Based on the above findings, the present invention has C: 0.01 to 0.10 mass%, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 1.0 mass% and Cr: 0.01 to 0.2 mass. A steel slab containing%, further containing any one of the following groups A to C as an inhibitor-forming component, and having a component composition in which the balance is Fe and unavoidable impurities, is hot-rolled. Then, it is cold-rolled once or cold-rolled two or more times with an intermediate annealing in between to obtain a cold-rolled plate with the final plate thickness, decarburized and annealed, which also serves as primary recrystallization annealing, and an annealing separator is applied to the surface of the steel plate. In the method for producing a directional electromagnetic steel sheet, which consists of a series of steps of coating and then finish annealing, grain boundaries having an orientation difference angle of 15 to 45 ° are formed at a frequency of 80% or more on the outermost surface layer of the steel sheet after decarburization annealing. We propose a method for manufacturing a directional electromagnetic steel sheet, which is characterized in that it is produced.
Description-Group A; At least one selected from S: 0.002 to 0.03 mass% and Se: 0.002 to 0.003 mass%-Group B: Al: 0.005 to 0.04 mass% and N : 0.003 to 0.012 mass%
Group C; at least one selected from S: 0.002 to 0.03 mass% and Se: 0.002 to 0.003 mass%, Al: 0.005 to 0.04 mass% and N: 0.003. ~ 0.012 mass%

本発明の方向性電磁鋼板の製造方法は、上記脱炭焼鈍後の鋼板最表層に方位差角が15〜45°の粒界を80%以上の頻度で生成させる方法が、上記熱間圧延の仕上圧延におけるワークロール径を600mm以下とする、上記熱間圧延の仕上圧延における摩擦係数を0.40以上とする、および、上記中間焼鈍における雰囲気の酸素ポテンシャルPH2O/PH2を0.10〜0.25の範囲とする、のうちのいずれか1以上の手段であることを特徴とする。 In the method for producing a directional electromagnetic steel sheet of the present invention, the method of forming grain boundaries having an orientation difference angle of 15 to 45 ° on the outermost layer of the steel sheet after decarburization annealing at a frequency of 80% or more is the method of hot rolling. and 600mm below the work roll diameter in the finishing rolling, and 0.40 or more friction coefficient in finish rolling of the hot rolling, and, 0.10 to oxygen potential P H2O / P H2 atmosphere in the intermediate annealing It is characterized in that it is a means of any one or more of the range of 0.25.

また、本発明の方向性電磁鋼板の製造に用いる上記鋼スラブは、上記成分組成に加えてさらに、B:0.0002〜0.0025mass%、P:0.005〜0.08mass%、Ti:0.001〜0.01mass%、Ni:0.01〜1.5mass%、Cu:0.01〜0.5mass%、Nb:0.002〜0.08mass%、Mo:0.005〜0.1mass%、Sn:0.005〜0.5mass%、Sb:0.005〜0.5mass%およびBi:0.002〜0.08mass%のうちから選ばれる少なくとも1種を含有することを特徴とする。 Further, in the steel slab used for producing the directional electromagnetic steel plate of the present invention, in addition to the above component composition, B: 0.0002 to 0.0025 mass%, P: 0.005 to 0.08 mass%, Ti: 0.001 to 0.01 mass%, Ni: 0.01 to 1.5 mass%, Cu: 0.01 to 0.5 mass%, Nb: 0.002 to 0.08 mass%, Mo: 0.005 to 0. It is characterized by containing at least one selected from 1 mass%, Sn: 0.005 to 0.5 mass%, Sb: 0.005 to 0.5 mass% and Bi: 0.002 to 0.08 mass%. do.

本発明によれば、脱炭焼鈍の際、鋼板最表層に特定の方位差角を有する粒界を所定の頻度以上に形成させることによって、鋼板表面よりもやや内側にスピネル型のCr酸化物を生成させるので、被膜特性に優れた方向性電磁鋼板をより安定して製造することが可能となる。 According to the present invention, during decarburization annealing, a spinel-type Cr oxide is formed slightly inside the surface of the steel sheet by forming grain boundaries having a specific orientation difference angle on the outermost layer of the steel sheet at a predetermined frequency or more. Since it is generated, it becomes possible to more stably manufacture a directional electromagnetic steel sheet having excellent coating characteristics.

鋼板最表層における方位差角が15〜45°の粒界頻度が、脱炭焼鈍後の鋼板板厚方向のCr濃度分布に及ぼす影響を示すグラフである。It is a graph which shows the influence which the grain boundary frequency of the orientation difference angle of 15 to 45 ° in the outermost layer of a steel sheet has on the Cr concentration distribution in the thickness direction of a steel sheet after decarburization annealing.

まず、本発明を開発する契機となった実験について説明する。
C:0.03mass%、Si:3.2mass%、Mn:0.06mass%、Cr:0.05mass%を含有し、さらに、インヒビター形成成分としてS:0.003mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1380℃の温度に30min間加熱した後、熱間圧延して熱延板とした。この際、仕上圧延の最終スタンドのワークロール径を種々に変更し、上記スタンドのワークロールと鋼板間の摩擦係数を0.35とした。次いで、上記熱延板を1回目の冷間圧延して中間板厚1.7mmの冷延板とし、雰囲気のPH2O/PH2が0.30の湿潤水素雰囲気下で、1050℃×1minの中間焼鈍した後、2回目の冷間圧延して最終板厚0.23mmの冷延板とし、その後、PH2O/PH2が0.30の湿潤水素雰囲気下で840℃×2minの一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
First, the experiment that triggered the development of the present invention will be described.
It contains C: 0.03 mass%, Si: 3.2 mass%, Mn: 0.06 mass%, Cr: 0.05 mass%, and further contains S: 0.003 mass% as an inhibitor-forming component, and the balance is Fe. A steel slab having a component composition composed of unavoidable impurities was heated to a temperature of 1380 ° C. for 30 minutes and then hot-rolled to obtain a hot-rolled plate. At this time, the work roll diameter of the final stand for finish rolling was variously changed, and the coefficient of friction between the work roll of the stand and the steel plate was set to 0.35. Then, the hot-rolled sheet th one cold rolled to a cold-rolled sheet of the intermediate plate thickness 1.7 mm, under a humid hydrogen atmosphere at P H2O / P H2 atmosphere 0.30, of 1050 ° C. × 1min After intermediate annealing, it is cold-rolled for the second time to obtain a cold-rolled plate with a final plate thickness of 0.23 mm, and then primary recrystallization at 840 ° C. × 2 min under a wet hydrogen atmosphere with PH2O / PH2 of 0.30. Decarburization annealing was performed, which also served as annealing.

次いで、上記のようにして得た脱炭焼鈍後の鋼板最表層の各粒界の方位差角を、電子後方散乱回折(EBSP)によって測定した。ここで、上記鋼板最表層とは鋼板表面から5μmまでの範囲のことをいい、また、上記粒界の方位差角とは、その粒界を挟んで隣り合う粒の方位を重ね合わせるのに必要な最小回転角のことをいう。 Next, the directional difference angle of each grain boundary of the outermost layer of the steel sheet after decarburization annealing obtained as described above was measured by electron backscatter diffraction (EBSP). Here, the outermost layer of the steel sheet means a range from the surface of the steel sheet to 5 μm, and the angle of rotation of the grain boundaries is necessary for superimposing the directions of adjacent grains across the grain boundaries. The minimum rotation angle.

次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主体とし、TiOを2.0mass%添加した焼鈍分離剤を塗布した後、850℃の温度に50hr保持して二次再結晶させた後、水素雰囲気下で、1200℃の温度に5hr保持して純化処理する仕上焼鈍を施した後、上記仕上焼鈍後の鋼板表面に、りん酸マグネシウムとコロイダルシリカを主体とする絶縁コーティングを施した。 Next, an annealing separator containing MgO as the main component and 2.0 mass% of TiO 2 was applied to the surface of the steel sheet after decarburization and annealing, and then held at a temperature of 850 ° C. for 50 hours for secondary recrystallization. After performing finish annealing in a hydrogen atmosphere at a temperature of 1200 ° C. for 5 hours for purification treatment, the surface of the steel sheet after finish annealing was coated with an insulating coating mainly composed of magnesium phosphate and colloidal silica.

斯くして得た製品板の磁気特性および被膜特性(均一性および密着性)について調査した。なお、上記被膜の均一性は、被膜外観を目視観察することにより、また、被膜の密着性は、仕上焼鈍後の鋼板を直径が異なる丸棒に巻き付けて、被膜が剥離を起こさない最小の直径(以下、上記直径を「曲げ剥離径」とも称する)で評価した。 The magnetic properties and coating properties (uniformity and adhesion) of the product board thus obtained were investigated. The uniformity of the coating film is determined by visually observing the appearance of the coating film, and the adhesion of the coating film is the minimum diameter at which the coating film does not peel off when the steel plate after finish annealing is wound around a round bar having a different diameter. (Hereinafter, the above diameter is also referred to as "bending peeling diameter").

上記測定の結果を表1に示した。この表から、方位差角が15〜45°の粒界の頻度が80%以上である場合に、光沢のある、均一で、密着性に優れたフォルステライト被膜が得られることがわかった。一方、上記粒界の頻度が80%に満たない場合は、光沢の少ない、不均一で、密着性に劣った被膜しか得られなかった。 The results of the above measurements are shown in Table 1. From this table, it was found that a glossy, uniform, and excellently adherent forsterite film can be obtained when the frequency of grain boundaries having an orientation difference angle of 15 to 45 ° is 80% or more. On the other hand, when the frequency of the grain boundaries was less than 80%, only a film having low gloss, non-uniformity, and poor adhesion was obtained.

Figure 2021155833
Figure 2021155833

上記の結果は、特許文献1の結果と相反するように見えるが、本実験では、鋼スラブ中にCrを添加しているため、このCr添加によって粒界の方位差角の被膜特性に及ぼす影響が変化したものと考えられる。しかし、Crを添加しても、特許文献2に記載の方法では、一定の被膜特性改善効果は認められるものの、依然として特性にバラつきがあり、磁気特性が改善されない事態が散見されている。 The above result seems to contradict the result of Patent Document 1, but in this experiment, since Cr is added to the steel slab, the effect of adding Cr on the coating characteristics of the orientation difference angle of the grain boundaries is exerted. Is considered to have changed. However, even if Cr is added, the method described in Patent Document 2 shows a certain effect of improving the film characteristics, but the characteristics still vary, and there are some cases where the magnetic characteristics are not improved.

次に、上記Cr添加の影響について調査するため、鋼板最表層の方位差角15〜45°の粒界頻度と鋼板表面から板厚方向のCr濃度分布との関係を、グロー放電発光分析装置(GDS)を用いて測定し、その結果を図1に示した。この図から、上記方位差角が15〜45°の粒界頻度が80%以上の場合には、鋼板表面よりやや内側に、Crのピークが観測された。すなわち、前記粒界の頻度が80%以上の場合には、鋼板表面よりもやや内側にスピネル型のCr酸化物が多く生成されることがわかった。 Next, in order to investigate the effect of the addition of Cr, the relationship between the grain boundary frequency of the directional difference angle of 15 to 45 ° on the outermost layer of the steel sheet and the Cr concentration distribution in the thickness direction from the surface of the steel sheet was investigated by a glow discharge emission analyzer ( The measurement was performed using GDS), and the result is shown in FIG. From this figure, when the grain boundary frequency of the orientation difference angle of 15 to 45 ° was 80% or more, a Cr peak was observed slightly inside the surface of the steel sheet. That is, it was found that when the frequency of the grain boundaries was 80% or more, a large amount of spinel-type Cr oxide was generated slightly inside the surface of the steel sheet.

この原因について、発明者らは以下のように考える。
方位差角が15〜45°の粒界は、高エネルギー粒界であり、元素の高速拡散経路となる。従って、この粒界頻度が高い場合には、体拡散ではなく、粒界拡散が支配的になる。また、一般的な脱炭焼鈍雰囲気下では、Crは内部酸化を起こす。従って、上記粒界の頻度が80%以上の場合は、酸素の粒界拡散によってCrの内部酸化が促進される結果、鋼板表面よりもやや内側に、スピネル型のCr酸化物が生成されたと推察される。
The inventors consider the cause as follows.
Grain boundaries with an orientation difference angle of 15 to 45 ° are high-energy grain boundaries and serve as a high-speed diffusion path for elements. Therefore, when the frequency of grain boundaries is high, grain boundary diffusion becomes dominant rather than body diffusion. Further, in a general decarburized annealing atmosphere, Cr causes internal oxidation. Therefore, when the frequency of the grain boundaries is 80% or more, it is presumed that as a result of the internal oxidation of Cr being promoted by the diffusion of oxygen grain boundaries, spinel-type Cr oxide was generated slightly inside the surface of the steel sheet. Will be done.

また、鋼板最表層の方位差角が15〜45°の粒界頻度が80%以上の場合に、被膜特性に優れたフォルステライト被膜が得られたことについては、特許文献2と同様、鋼板表面よりもやや内側に、スピネル型のCr酸化物が生成される結果、この位置でフォルステライトの生成が促進されたためであると考えられる。ただし、本実験結果によれば、上記効果は、脱炭焼鈍の際、鋼板最表層に方位差角が15〜45°の粒界頻度を80%以上形成させることによって、初めて、鋼板表面よりもやや内側にスピネル型のCr酸化物を形成させることができ、安定して得ることができる。なお、脱炭焼鈍後の鋼板再表層の方位差角が15〜45°の粒界頻度は、好ましくは85%以上、より好ましくは90%以上である。
本発明は、上記の新規な知見に基づき開発したものである。
Further, as in Patent Document 2, the fact that a forsterite film having excellent coating characteristics was obtained when the grain boundary frequency of the outermost layer of the steel sheet was 15 to 45 ° and the grain boundary frequency was 80% or more was obtained on the surface of the steel sheet. It is considered that this is because the formation of spinel-type Cr oxide was slightly inward, and as a result, the formation of forsterite was promoted at this position. However, according to the results of this experiment, the above effect is obtained only by forming a grain boundary frequency of 15 to 45 ° with an orientation difference angle of 80% or more on the outermost layer of the steel sheet during decarburization annealing, as compared with the surface of the steel sheet. A spinel-type Cr oxide can be formed slightly inside, and a stable can be obtained. The grain boundary frequency at which the orientation difference angle of the steel sheet resurface layer after decarburization annealing is 15 to 45 ° is preferably 85% or more, more preferably 90% or more.
The present invention has been developed based on the above-mentioned novel findings.

次に、本発明の方向性電磁鋼板の製造方法について説明する。まず、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.01〜0.1mass%
Cは、一次再結晶集合組織を改善するために重要な成分であるが、含有量が0.01mass%に満たないと上記効果が十分に得られない。一方、0.1mass%超えると、脱炭焼鈍で磁気時効を起こさない0.003mass%以下までCを低減するのが難しくなる。また、脱炭に酸素が消費される分、酸素目付量が少なくなり、被膜特性の劣化を招くおそれもある。よって、Cは0.01〜0.1mass%の範囲に限定する。好ましくは0.02〜0.08mass%の範囲である。
Next, the method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described. First, the component composition of the steel material (slab) used for producing the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.01-0.1 mass%
C is an important component for improving the primary recrystallization texture, but the above effect cannot be sufficiently obtained unless the content is less than 0.01 mass%. On the other hand, if it exceeds 0.1 mass%, it becomes difficult to reduce C to 0.003 mass% or less, which does not cause magnetic aging due to decarburization annealing. In addition, since oxygen is consumed for decarburization, the amount of oxygen is reduced, which may lead to deterioration of film characteristics. Therefore, C is limited to the range of 0.01 to 0.1 mass%. It is preferably in the range of 0.02 to 0.08 mass%.

Si:2.0〜5.0mass%
Siは、鋼の比抵抗を高め、渦電流損を低減するために必須の成分であるが、含有量が2.0mass%に満たないと上記効果が十分に得られない。一方、5.0mass%を超えると、冷延性を著しく損なう。よって、Siは2.0〜5.0mass%の範囲に限定する。好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0-5.0 mass%
Si is an essential component for increasing the specific resistance of steel and reducing eddy current loss, but the above effect cannot be sufficiently obtained unless the content is less than 2.0 mass%. On the other hand, if it exceeds 5.0 mass%, the cold ductility is significantly impaired. Therefore, Si is limited to the range of 2.0 to 5.0 mass%. It is preferably in the range of 2.5 to 4.5 mass%.

Mn:0.01〜1.0mass%
Mnは、Siと同様、鋼の比抵抗を高めて、渦電流損を低減する効果がある。また、熱延性を改善するのに重要な成分であるが、含有量が0.01mass%に満たないと、上記効果が十分に得られない。一方、1.0mass%を超えると、γ変態を誘起し、磁気特性の劣化を招く。よって、Mnは0.01〜1.0mass%の範囲とする。好ましくは0.01〜0.50mass%の範囲である。
Mn: 0.01 to 1.0 mass%
Like Si, Mn has the effect of increasing the specific resistance of steel and reducing eddy current loss. Further, although it is an important component for improving heat ductility, the above effect cannot be sufficiently obtained unless the content is less than 0.01 mass%. On the other hand, if it exceeds 1.0 mass%, γ transformation is induced and the magnetic properties are deteriorated. Therefore, Mn is set in the range of 0.01 to 1.0 mass%. It is preferably in the range of 0.01 to 0.50 mass%.

Cr:0.01〜0.2mass%
Crは本発明において重要な成分であり、鋼スラブ中に添加することによって、脱炭焼鈍の際、鋼板表層に形成される酸化膜にスピネル型のCr酸化物を生成させることができる。しかしながら、含有量が0.01mass%未満では、上記効果が十分に得られず、一方、0.2mass%を超えると、不均一酸化を促し、かえって被膜特性が劣化する。よって、Crは0.01〜0.2mass%の範囲とする。好ましくは0.01〜0.1mass%の範囲である。
Cr: 0.01-0.2 mass%
Cr is an important component in the present invention, and by adding it to a steel slab, spinel-type Cr oxide can be generated in an oxide film formed on the surface layer of a steel sheet during decarburization annealing. However, if the content is less than 0.01 mass%, the above effect cannot be sufficiently obtained, while if it exceeds 0.2 mass%, heterogeneous oxidation is promoted and the film characteristics are rather deteriorated. Therefore, Cr is set in the range of 0.01 to 0.2 mass%. It is preferably in the range of 0.01 to 0.1 mass%.

また、本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分に加えて、二次再結晶を発現させるためのインヒビターを形成する成分を含有していることが必要である。
上記インヒビター形成成分としては、インヒビターの種類によって異なり、例えば、インヒビターとしてMnSおよび/またはMnSeを用いる場合には、上述したMnに加えて、S:0.002〜0.03mass%およびSe:0.002〜0.003mass%の内から選ばれる少なくとも1種を含有する必要がある。また、インヒビターとしてAlNを用いる場合には、Al:0.005〜0.04mass%およびN:0.003〜0.012mass%を含有することが必要である。なお、インヒビターは、MnSおよび/またはMnSeとともにAlNを用いてもよく、その場合は、S:0.002〜0.03mass%およびSe:0.002〜0.003mass%の内から選ばれる少なくとも1種と、Al:0.005〜0.04mass%およびN:0.003〜0.012mass%を含有することが必要である。
Further, the steel material used for producing the grain-oriented electrical steel sheet of the present invention needs to contain a component forming an inhibitor for expressing secondary recrystallization in addition to the above components.
The inhibitor-forming component varies depending on the type of inhibitor. For example, when MnS and / or MnSe is used as the inhibitor, in addition to the above-mentioned Mn, S: 0.002 to 0.03 mass% and Se: 0. It is necessary to contain at least one selected from 002 to 0.003 mass%. When AlN is used as an inhibitor, it is necessary to contain Al: 0.005 to 0.04 mass% and N: 0.003 to 0.012 mass%. As the inhibitor, AlN may be used together with MnS and / or MnSe. In that case, at least 1 selected from S: 0.002 to 0.03 mass% and Se: 0.002 to 0.003 mass%. It is necessary to contain the seed and Al: 0.005 to 0.04 mass% and N: 0.003 to 0.012 mass%.

また、本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部は、実質的にFeおよび不可避的不純物であるが、磁気特性の改善を目的として、上記成分に加えてさらに、B:0.0002〜0.0025mass%、P:0.005〜0.08mass%、Ti:0.001〜0.01mass%、Ni:0.01〜1.5mass%、Cu:0.01〜0.5mass%、Nb:0.002〜0.08mass%、Mo:0.005〜0.1mass%、Sn:0.005〜0.5mass%、Sb:0.005〜0.5mass%、およびBi:0.002〜0.08mass%の内から選ばれる少なくとも1種を適宜含有してもよい。 Further, in the steel material used for producing the directional electromagnetic steel plate of the present invention, the balance other than the above components is substantially Fe and unavoidable impurities, but for the purpose of improving the magnetic properties, in addition to the above components, further , B: 0.0002 to 0.0025 mass%, P: 0.005 to 0.08 mass%, Ti: 0.001 to 0.01 mass%, Ni: 0.01 to 1.5 mass%, Cu: 0.01 ~ 0.5 mass%, Nb: 0.002 to 0.08 mass%, Mo: 0.005 to 0.1 mass%, Sn: 0.005 to 0.5 mass%, Sb: 0.005 to 0.5 mass%, And Bi: at least one selected from 0.002 to 0.08 mass% may be appropriately contained.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
まず、本発明の方向性電磁鋼板の鋼素材(スラブ)は、通常公知の精錬プロセスで、上述した本発明に適合する成分組成を有する鋼を溶製した後、常法の連続鋳造法あるいは造塊−分塊圧延法で製造することができる。
Next, the method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
First, the steel material (slab) of the grain-oriented electrical steel sheet of the present invention is formed by a conventional continuous casting method or a conventional method after melting a steel having a component composition suitable for the present invention by a commonly known refining process. It can be produced by the ingot-lump rolling method.

次いで、上記鋼素材(スラブ)は、1250℃以上の温度に再加熱した後、熱間圧延して所定の板厚の熱延板とする。スラブの再加熱温度が1250℃未満では、添加したインヒビター形成成分が鋼中に十分に固溶しない。好ましいスラブ加熱温度は1300℃以上である。スラブを加熱する手段は、ガス炉、誘導加熱炉、通電炉などの通常公知の手段を用いることができる。 Next, the steel material (slab) is reheated to a temperature of 1250 ° C. or higher and then hot-rolled to obtain a hot-rolled plate having a predetermined plate thickness. If the reheating temperature of the slab is less than 1250 ° C., the added inhibitor-forming component does not sufficiently dissolve in the steel. The preferred slab heating temperature is 1300 ° C. or higher. As a means for heating the slab, a commonly known means such as a gas furnace, an induction heating furnace, and an energizing furnace can be used.

次いで、上記再加熱したスラブを熱間圧延に供する。熱間圧延における圧延温度は、通常公知の条件で行えばよく、特別な制限はない。ただし、本発明の特徴である脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させるためには、熱間圧延の際のワークロール径および/または摩擦係数を変えて、鋼板に掛かる剪断応力を制御することが重要である。 The reheated slab is then subjected to hot rolling. The rolling temperature in hot rolling may be carried out under generally known conditions, and there is no particular limitation. However, in order to generate grain boundaries with an orientation difference angle of 15 to 45 ° at a frequency of 80% or more on the outermost layer of the steel sheet after decarburization annealing, which is a feature of the present invention, a work roll during hot rolling is used. It is important to control the shear stress on the steel sheet by varying the diameter and / or coefficient of friction.

具体的には、熱間仕上圧延の最終スタンドにおけるワークロールを600mm以下とする、および/または、熱間仕上圧延の最終スタンドにおけるワークロールと鋼板間の摩擦係数を0.40以上とすることが重要である。上記条件を満たすことで、熱延板の鋼板表層に微細な組織が形成され、脱炭焼鈍における再結晶核が増加するので、脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させることが可能となる。 Specifically, the work roll at the final stand of hot finish rolling may be 600 mm or less, and / or the friction coefficient between the work roll and the steel plate at the final stand of hot finish rolling may be 0.40 or more. is important. By satisfying the above conditions, a fine structure is formed on the surface layer of the steel sheet of the hot-rolled sheet, and the number of recrystallized nuclei in the decarburization annealing increases. It is possible to generate a grain boundary of ° with a frequency of 80% or more.

次いで、上記熱間圧延後の熱延板は、必要に応じて、熱延組織を完全に再結晶させるため、熱延板焼鈍を施す。この熱延板焼鈍の温度は、950〜1200℃の範囲とするのが好ましい。950℃未満では、熱延組織を完全に再結晶できないおそれがある。一方、1200℃を超えると熱延板焼鈍後の結晶粒径が粗大化し、整粒の一次再結晶組織を得ることが難しくなる。より好ましくは1000〜1100℃の範囲である。 Next, the hot-rolled plate after the hot-rolling is annealed by hot-rolling plate in order to completely recrystallize the hot-rolled structure, if necessary. The temperature of this hot-rolled plate annealing is preferably in the range of 950 to 1200 ° C. Below 950 ° C, the hot-rolled structure may not be completely recrystallized. On the other hand, if the temperature exceeds 1200 ° C., the crystal grain size after annealing on the hot-rolled plate becomes coarse, and it becomes difficult to obtain a sized primary recrystallized structure. More preferably, it is in the range of 1000 to 1100 ° C.

次いで、上記熱間圧延後または熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。この冷間圧延条件については、常法に従って行えばよく、特に制限はない。 Next, the hot-rolled plate after the hot-rolling or hot-rolling plate annealing is made into a cold-rolled plate having a final plate thickness by one cold rolling or two or more cold rollings sandwiching intermediate annealing. The cold rolling conditions may be carried out according to a conventional method, and there is no particular limitation.

ただし、2回以上の冷間圧延を行う場合、脱炭焼鈍後の鋼板最表層に、位差角が15〜45°の粒界をより高い頻度で生成させるためには、冷間圧延間で行う中間焼鈍における雰囲気の酸化ポテンシャルPH2O/PH2を制御することが重要である。 However, when cold rolling is performed two or more times, in order to generate grain boundaries with a displacement angle of 15 to 45 ° more frequently on the outermost layer of the steel sheet after decarburization annealing, it is necessary to perform cold rolling. it is important to control the oxidation potential P H2O / P H2 atmosphere in the intermediate annealing carried out.

具体的には、中間焼鈍における雰囲気の酸素ポテンシャルPH2O/PH2を0.10〜0.25の範囲とすることが重要である。上記条件を満たすことで、中間焼鈍にける表層脱炭を抑制する、すなわち、炭化物の析出を促進し、これによって、脱炭焼鈍における再結晶核が増加するので、脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させることが可能となる。 Specifically, the oxygen potential P H2O / P H2 atmosphere in the intermediate annealing in the range of 0.10 to 0.25 is important. By satisfying the above conditions, surface decarburization during intermediate annealing is suppressed, that is, precipitation of carbides is promoted, which increases recrystallization nuclei during decarburization annealing. Therefore, the outermost layer of the steel sheet after decarburization annealing. In addition, it is possible to generate grain boundaries having an orientation difference angle of 15 to 45 ° at a frequency of 80% or more.

次いで、上記最終板厚とした冷延板は、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。この脱炭焼鈍は、脱炭性を確保する観点から、焼鈍雰囲気の酸素ポテンシャルPH2O/PH2が0.25〜0.55の範囲の湿潤雰囲気下で、800〜900℃の温度範囲で行うことが望ましい。この焼鈍により、鋼板中のCは0.003mass%以下まで低減されると同時に、脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させることができる。 Next, the cold-rolled plate having the final plate thickness is subjected to decarburization annealing that also serves as primary recrystallization annealing. The decarburization annealing, in order to ensure the decarburizing oxygen potential P H2O / P H2 annealing atmosphere under a humid atmosphere in the range of 0.25 to 0.55, carried out in a temperature range of 800 to 900 ° C. Is desirable. By this annealing, C in the steel sheet is reduced to 0.003 mass% or less, and at the same time, grain boundaries with an orientation difference angle of 15 to 45 ° are generated at a frequency of 80% or more on the outermost layer of the steel sheet after decarburization annealing. Can be made to.

次いで、上記一次再結晶焼鈍後の鋼板は、MgOを主体とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、二次再結晶を発現させるとともに純化処理する仕上焼鈍を施す。この仕上焼鈍により、鋼板中のAl、N,SおよびSeは、不純物レベル、具体的には、Al:0.004mass%以下、N:0.003mass%以下、S:0.002mass%以下およびSe:0.002mass%以下まで低減される。 Next, the steel sheet after the primary recrystallization annealing is subjected to finish annealing for expressing secondary recrystallization and purification treatment after applying an annealing separator mainly containing MgO to the surface of the steel sheet and drying it. By this finish annealing, Al, N, S and Se in the steel sheet are at the impurity level, specifically, Al: 0.004 mass% or less, N: 0.003 mass% or less, S: 0.002 mass% or less and Se. : Reduced to 0.002 mass% or less.

次いで、上記仕上焼鈍後の鋼板は、鋼板表面に残留した未反応の焼鈍分離剤を除去するため、水洗やブラッシング、酸洗等を行った後、形状矯正と鉄損特性改善のための平坦化焼鈍を施すことが好ましい。 Next, the steel sheet after finish annealing is subjected to washing with water, brushing, pickling, etc. in order to remove the unreacted annealing separator remaining on the surface of the steel sheet, and then flattened for shape correction and improvement of iron loss characteristics. It is preferable to perform annealing.

なお、鋼板(製品板)を積層して使用する場合には、鋼板間の絶縁性を確保するため、上記平坦化焼鈍において、または、その前後において、鋼板表面に絶縁被膜を被成することが好ましい。また、より鉄損を低減するためには、上記絶縁被膜は、鋼板に引張張力を付与する張力付与型の絶縁被膜を適用するのが望ましい。また、上記鉄損低減効果をより高めるためには、バインダーを介して絶縁被膜を被成したり、物理蒸着法や化学蒸着法で無機物層を鋼板表面に形成した後、絶縁被膜を被成したりし、被膜の密着性を向上させるのが好ましい。 When steel sheets (product plates) are laminated and used, an insulating film may be applied to the surface of the steel sheets during or before and after the flattening annealing in order to ensure the insulating property between the steel sheets. preferable. Further, in order to further reduce the iron loss, it is desirable to apply a tension-applying type insulating film that applies tensile tension to the steel sheet. Further, in order to further enhance the iron loss reduction effect, an insulating film is formed via a binder, or an inorganic layer is formed on the surface of the steel sheet by a physical vapor deposition method or a chemical vapor deposition method, and then the insulating film is formed. It is preferable to improve the adhesion of the film.

さらに、より鉄損を低減するため、上記冷間圧延後のいずれかの工程において鋼板表面に溝を形成したり、仕上焼鈍後の鋼板表面に電子ビームやレーザビームを照射したり、鋼板表面に機械的に歪領域を導入することで磁区細分化処理を施してもよい。 Further, in order to further reduce iron loss, grooves are formed on the surface of the steel sheet in any of the steps after the cold rolling, the surface of the steel sheet after finish annealing is irradiated with an electron beam or a laser beam, or the surface of the steel sheet is subjected to. Magnetic domain subdivision processing may be performed by mechanically introducing a strain region.

表2に示した各種成分組成を有する鋼スラブを1380℃の温度に30min間加熱した後、熱間圧延して板厚2.4mmの熱延板とした。この際、仕上圧延の最終スタンドのワークロール径、および、上記スタンドのワークロールと鋼板間の摩擦係数を種々に変化させた。次いで、上記熱延板を1回目の冷間圧延し、中間板厚1.7mmの冷延板とし、酸化ポテンシャルPH2O/PH2を0.30に調整した湿潤雰囲気下で、1050℃×60sの中間焼鈍した後、1回目の冷間圧延して最終板厚0.23mmの冷延板とした。次いで、上記冷延板を、PH2O/PH2が0.30の湿潤水素雰囲気下で840℃×120sの一次再結晶焼鈍を兼ねた脱炭焼鈍した後、上記脱炭焼鈍後の鋼板最表層の各粒界の方位差角を電子後方散乱回折(EBSP)で測定した。
次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主体とし、TiOを2.0mass%添加した焼鈍分離剤を塗布、乾燥した後、850℃の温度に50hr保持する条件で二次再結晶を発現させた後、水素雰囲気下で1150℃の温度に5hr保持して純化処理する仕上焼鈍を施した後、上記仕上焼鈍後の鋼板表面に、りん酸マグネシウムとコロイダルシリカを主体とする絶縁コーティングを施した。
A steel slab having various component compositions shown in Table 2 was heated to a temperature of 1380 ° C. for 30 minutes and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.4 mm. At this time, the diameter of the work roll of the final stand for finish rolling and the coefficient of friction between the work roll of the stand and the steel plate were variously changed. Then, the hot rolled plate rolled first cold, the cold-rolled sheet of the intermediate plate thickness 1.7 mm, in a humidified atmosphere with an adjusted oxidation potential P H2O / P H2 in 0.30, 1050 ° C. × 60s After intermediate annealing, the first cold rolling was performed to obtain a cold rolled plate having a final plate thickness of 0.23 mm. Next, the cold-rolled sheet is decarburized and annealed in a wet hydrogen atmosphere having a PH2O / PH2 of 0.30, which also serves as a primary recrystallization annealing at 840 ° C. × 120 s, and then the outermost surface layer of the steel sheet after the decarburization annealing. The orientation difference angle of each grain boundary was measured by electron backscatter diffraction (EBSP).
Next, an annealing separator containing MgO as a main component and TiO 2 added in an amount of 2.0 mass% was applied to the surface of the steel sheet after decarburization and annealing, dried, and then secondary recrystallized under the condition of holding at a temperature of 850 ° C. for 50 hr. After the above-mentioned finish annealing, the surface of the steel sheet after finish annealing is subjected to finish annealing by holding it at a temperature of 1150 ° C. for 5 hours in a hydrogen atmosphere for 5 hours, and then an insulating coating mainly composed of magnesium phosphate and colloidal silica is applied to the surface of the steel sheet after finish annealing. Was given.

斯くして得た製品板の磁気特性、および被膜特性(均一性および密着性)について調査し、その結果を表2に併記した。なお、均一性は、被膜外観を目視観察することで、また、被膜密着性は、曲げ剥離径で評価した。表2から、本発明を適用することで、被膜特性に優れたフォルステライト被膜が得られることがわかる。 The magnetic properties and coating properties (uniformity and adhesion) of the product board thus obtained were investigated, and the results are also shown in Table 2. The uniformity was evaluated by visually observing the appearance of the film, and the film adhesion was evaluated by the bending peel diameter. From Table 2, it can be seen that by applying the present invention, a forsterite coating having excellent coating characteristics can be obtained.

Figure 2021155833
Figure 2021155833

表3に示した各種成分組成を有する鋼スラブを1380℃の温度に30min間加熱した後、熱間圧延して板厚2.4mmの熱延板とした。この際、仕上圧延の最終スタンドのワークロール径を650mmとし、上記スタンドのワークロールと鋼板間の摩擦係数を0.35とした。次いで、上記熱延板を1回目の冷間圧延し、中間板厚1.7mmの冷延板とした後、表3に示した種々の酸素ポテンシャルを有する湿潤雰囲気下で、1050℃×60sの中間焼鈍した後、1回目の冷間圧延して最終板厚0.23mmの冷延板とした。次いで、上記冷延板を、酸素ポテンシャルPH2O/PH2が0.30の湿潤水素雰囲気下で840℃×120sの一次再結晶焼鈍を兼ねた脱炭焼鈍した後、上記脱炭焼鈍後の鋼板最表層の各粒界の方位差角を電子後方散乱回折(EBSP)で測定した。
次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主体とし、TiOを2.0mass%添加した焼鈍分離剤を塗布、乾燥した後、850℃の温度に50hr保持する条件で二次再結晶を発現させた後、水素雰囲気下で1150℃の温度に5hr保持して純化処理する仕上焼鈍を施し後、上記仕上焼鈍後の鋼板表面に、りん酸マグネシウムとコロイダルシリカを主体とする絶縁コーティングを施した。
A steel slab having various component compositions shown in Table 3 was heated to a temperature of 1380 ° C. for 30 minutes and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.4 mm. At this time, the work roll diameter of the final stand for finish rolling was set to 650 mm, and the friction coefficient between the work roll of the stand and the steel plate was set to 0.35. Next, the hot-rolled plate was cold-rolled for the first time to obtain a cold-rolled plate having an intermediate plate thickness of 1.7 mm, and then in a moist atmosphere having various oxygen potentials shown in Table 3, the temperature was 1050 ° C. × 60 s. After intermediate annealing, the first cold rolling was performed to obtain a cold rolled plate having a final plate thickness of 0.23 mm. Next, the cold-rolled sheet is decarburized and annealed in a moist hydrogen atmosphere having an oxygen potential PH2O / PH2 of 0.30, which also serves as primary recrystallization annealing at 840 ° C. × 120 s, and then the steel sheet after decarburization annealing. The orientation difference angle of each grain boundary on the outermost layer was measured by electron backscatter diffraction (EBSP).
Next, an annealing separator containing MgO as a main component and TiO 2 added in an amount of 2.0 mass% was applied to the surface of the steel sheet after decarburization and annealing, dried, and then secondary recrystallized under the condition of holding at a temperature of 850 ° C. for 50 hr. After the finish annealing is performed by maintaining the temperature at 1150 ° C. for 5 hours in a hydrogen atmosphere for purification treatment, the surface of the steel sheet after the finish annealing is coated with an insulating coating mainly composed of magnesium phosphate and colloidal silica. provided.

斯くして得た製品板の磁気特性、および被膜特性(均一性および密着性)について調査し、その結果を表3に併記した。なお、均一性は、被膜外観を目視観察することで、また、被膜密着性は、曲げ剥離径で評価した。表3から、本発明を適用することで、被膜特性に優れたフォルステライト被膜が得られることがわかる。 The magnetic properties and coating properties (uniformity and adhesion) of the product board thus obtained were investigated, and the results are also shown in Table 3. The uniformity was evaluated by visually observing the appearance of the film, and the film adhesion was evaluated by the bending peel diameter. From Table 3, it can be seen that by applying the present invention, a forsterite coating having excellent coating characteristics can be obtained.

Figure 2021155833
Figure 2021155833

Claims (3)

C:0.01〜0.10mass%、Si:2.0〜5.0mass%、Mn:0.01〜1.0mass%およびCr:0.01〜0.2mass%を含有し、さらに、インヒビター形成成分として下記A〜C群のうちから選ばれるいずれか1群の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延し、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させることを特徴とする方向性電磁鋼板の製造方法。

・A群;S:0.002〜0.03mass%およびSe:0.002〜0.003mass%の内から選ばれる少なくとも1種
・B群;Al:0.005〜0.04mass%およびN:0.003〜0.012mass%
・C群;S:0.002〜0.03mass%およびSe:0.002〜0.003mass%の内から選ばれる少なくとも1種、Al:0.005〜0.04mass%およびN:0.003〜0.012mass%
It contains C: 0.01 to 0.10 mass%, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 1.0 mass% and Cr: 0.01 to 0.2 mass%, and further contains an inhibitor. A steel slab containing any one of the following groups A to C as a forming component and having a component composition in which the balance is Fe and unavoidable impurities is hot-rolled and then cold-rolled once. Alternatively, cold-rolled two or more times with intermediate annealing in between to obtain a cold-rolled plate with the final thickness, decarburization annealing that also serves as primary recrystallization annealing, applying an annealing separator to the surface of the steel plate, and then finishing annealing. In the method for producing a directional electromagnetic steel sheet comprising the above steps, a grain boundary having an orientation difference angle of 15 to 45 ° is generated at a frequency of 80% or more on the outermost surface layer of the steel sheet after decarburization annealing. Manufacturing method of sex electromagnetic steel sheet.
Description-Group A; At least one selected from S: 0.002 to 0.03 mass% and Se: 0.002 to 0.003 mass%-Group B: Al: 0.005 to 0.04 mass% and N : 0.003 to 0.012 mass%
Group C; at least one selected from S: 0.002 to 0.03 mass% and Se: 0.002 to 0.003 mass%, Al: 0.005 to 0.04 mass% and N: 0.003. ~ 0.012 mass%
上記脱炭焼鈍後の鋼板最表層に、方位差角が15〜45°の粒界を80%以上の頻度で生成させる方法が、上記熱間圧延の仕上圧延におけるワークロール径を600mm以下とする、上記熱間圧延の仕上圧延における摩擦係数を0.40以上とする、および、上記中間焼鈍における雰囲気の酸素ポテンシャルPH2O/PH2を0.10〜0.25の範囲とする、のうちのいずれか1以上の手段であることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method of forming grain boundaries with an orientation difference angle of 15 to 45 ° on the outermost layer of the steel sheet after decarburization annealing at a frequency of 80% or more is to set the work roll diameter in the finish rolling of the hot rolling to 600 mm or less. the coefficient of friction at finish rolling in the hot rolling to 0.40 or more, and, the oxygen potential P H2O / P H2 atmosphere in the intermediate annealing in the range of 0.10 to 0.25, of The method for manufacturing a directional electromagnetic steel sheet according to claim 1, wherein the means is any one or more. 上記鋼スラブは、上記成分組成に加えてさらに、B:0.0002〜0.0025mass%、P:0.005〜0.08mass%、Ti:0.001〜0.01mass%、Ni:0.01〜1.5mass%、Cu:0.01〜0.5mass%、Nb:0.002〜0.08mass%、Mo:0.005〜0.1mass%、Sn:0.005〜0.5mass%、Sb:0.005〜0.5mass%およびBi:0.002〜0.08mass%のうちから選ばれる少なくとも1種を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel slab further contains B: 0.0002 to 0.0025 mass%, P: 0.005 to 0.08 mass%, Ti: 0.001 to 0.01 mass%, Ni: 0. 01 to 1.5 mass%, Cu: 0.01 to 0.5 mass%, Nb: 0.002 to 0.08 mass%, Mo: 0.005 to 0.1 mass%, Sn: 0.005 to 0.5 mass% , Sb: 0.005 to 0.5 mass% and Bi: 0.002 to 0.08 mass%. Manufacturing method.
JP2020059990A 2020-03-30 2020-03-30 Manufacturing method of grain-oriented electrical steel sheet Active JP7231888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059990A JP7231888B2 (en) 2020-03-30 2020-03-30 Manufacturing method of grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059990A JP7231888B2 (en) 2020-03-30 2020-03-30 Manufacturing method of grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2021155833A true JP2021155833A (en) 2021-10-07
JP7231888B2 JP7231888B2 (en) 2023-03-02

Family

ID=77917448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059990A Active JP7231888B2 (en) 2020-03-30 2020-03-30 Manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7231888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4156127A1 (en) 2021-09-24 2023-03-29 Canon Kabushiki Kaisha Image processing system, mobile object, image processing method, and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270334A (en) * 1985-05-23 1986-11-29 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP2000355717A (en) * 1999-06-15 2000-12-26 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP2001200317A (en) * 2000-01-21 2001-07-24 Kawasaki Steel Corp Method for producing low core loss grain oriented silicon steel sheet having good film
JP2003193134A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2006241503A (en) * 2005-03-02 2006-09-14 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2013032583A (en) * 2011-06-27 2013-02-14 Jfe Steel Corp Method for producing low iron-loss grain-oriented magnetic steel sheet
JP2017122247A (en) * 2016-01-05 2017-07-13 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet
JP2019151935A (en) * 2016-07-29 2019-09-12 Jfeスチール株式会社 Hot rolled steel sheet for oriented electromagnetic steel sheet and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270334A (en) * 1985-05-23 1986-11-29 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP2000355717A (en) * 1999-06-15 2000-12-26 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
JP2001200317A (en) * 2000-01-21 2001-07-24 Kawasaki Steel Corp Method for producing low core loss grain oriented silicon steel sheet having good film
JP2003193134A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2006241503A (en) * 2005-03-02 2006-09-14 Nippon Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2013032583A (en) * 2011-06-27 2013-02-14 Jfe Steel Corp Method for producing low iron-loss grain-oriented magnetic steel sheet
JP2017122247A (en) * 2016-01-05 2017-07-13 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet
JP2019151935A (en) * 2016-07-29 2019-09-12 Jfeスチール株式会社 Hot rolled steel sheet for oriented electromagnetic steel sheet and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4156127A1 (en) 2021-09-24 2023-03-29 Canon Kabushiki Kaisha Image processing system, mobile object, image processing method, and storage medium

Also Published As

Publication number Publication date
JP7231888B2 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
JP6119959B2 (en) Method for producing grain-oriented electrical steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5854234B2 (en) Method for producing grain-oriented electrical steel sheet
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6859935B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020070477A (en) Production method of oriented electromagnetic steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3896786B2 (en) Method for producing grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7312255B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP6866901B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3952601B2 (en) Method for producing grain-oriented silicon steel sheets with excellent magnetic properties
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
WO2023068236A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230131

R150 Certificate of patent or registration of utility model

Ref document number: 7231888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150