JP2004292834A - Method for producing grain-oriented silicon steel sheet excellent in coating characteristics - Google Patents
Method for producing grain-oriented silicon steel sheet excellent in coating characteristics Download PDFInfo
- Publication number
- JP2004292834A JP2004292834A JP2003082930A JP2003082930A JP2004292834A JP 2004292834 A JP2004292834 A JP 2004292834A JP 2003082930 A JP2003082930 A JP 2003082930A JP 2003082930 A JP2003082930 A JP 2003082930A JP 2004292834 A JP2004292834 A JP 2004292834A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- mass
- sio
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は、変圧器や、その他電気機器の鉄心等の用途に供して好適な方向性電磁鋼板の製造方法に関し、脱炭焼鈍におけるサブスケールの生成状態を適切に制御することによって、特に被膜特性の有利な向上を図ろうとするものである。
【0002】
【従来の技術】
方向性電磁鋼板は、主として変圧器あるいは回転機器等の鉄心材科として使用され、磁気特性として、磁束密度が高くかつ鉄損および磁気歪が小さいことが要求される。
とくに、最近では、省エネルギーや省資源の観点から、磁気特性に優れた方向性電磁鋼板に対するニーズはますます高くなっている。
【0003】
磁気特性に優れる方向性電磁鋼板を得るには、(110)[001]方位、いわゆるゴス方位に高度に集積した2次再結晶組織を得ることが肝要である。
かかる方向性電磁鋼板は、二次再結晶に必要なインヒビター、例えばMnS, MnSe,AlN, BN等を含む鋼スラブを、加熱後に熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、ついで脱炭焼鈍後、鋼板にMgOを主成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を行うことによって、製造される。
【0004】
そして、この方向性電磁鋼板の表面には、特殊な場合を除いて、フォルステライト(Mg2SiO4)を主体とする絶縁被膜(以下、単にフォルステライト被膜という)が形成されているのが、一般的である。このフォルステライト被膜は、表面の電気的絶縁だけでなく、その低熱膨張性に起因して生じる引張応力を鋼板に付与することにより、鉄損さらには磁気歪の改善に貢献する。
【0005】
また、一般に方向性電磁鋼板には、フォルステライト被膜の上にガラス質のコーティングが施されるが、このコーティングは非常に薄く透明であるため、フォルステライト被膜が製品の最終的な外観を決定する。従って、その外観の良否は製品価値を大きく左右し、例えば地鉄が一部露出したような被膜を持つものは製品として不適当とされるなど、被膜性状が製品歩留りに及ぼす影響は極めて大きい。
【0006】
従って、形成されたフォルステライト被膜は、外観が均一で欠陥のないこと、またせん断、打ち抜きおよび曲げ加工等において被膜のはく難が生じないように密着性に優れること、が要求される。さらに、その表面は平滑で、鉄心として積層した場合に高い占積率を有することも必要とされる。
【0007】
フォルステライト被膜は、最終仕上焼鈍において形成されるが、その被膜形成挙動は鋼中のMnS, MnSe, AlN等によるインヒビター効果に影響することから、優れた磁気特性を得るために必須の過程である、二次再結晶そのものにも影響を及ぼす。
また、形成されたフォルステライト被膜は、二次再結晶が完了したあとには不要となるインヒビター成分を吸い上げて鋼を純化することによっても、鋼板の磁気特性の向上に貢献している。
従って、このフォルステライト被膜の形成過程を制御して被膜を均一に生成させることは、優れた磁気特性を有する方向性電磁鋼板を得る上で極めて重要である。
【0008】
このように製品品質に多大な影響を及ぼすフォルステライト被膜は、一般に以下のような工程で形成される。
まず、所望の最終板厚に冷間圧延された方向性電磁鋼板用の最終冷延板を、湿水素中にて700〜900℃の温度で連続焼鈍する。この焼鈍(脱炭焼鈍)により、冷間圧延後の組織を最終仕上焼鈍において適正な二次再結晶が生じるように一次再結晶させると共に、製品の磁気特性が時効劣化するのを防止するため、鋼中に0.01〜0.10mass%程度含まれる炭素を0.003mass%程度以下まで減少させる。
また、同時に鋼中Siの酸化によって、SiO2を含むサブスケールを鋼板表層に生成させる。
【0009】
その後、MgOを主体とする焼鈍分離剤を鋼板上に塗布してから、コイル状に巻取り、還元性あるいは非酸化性雰囲気中において、二次再結晶焼鈍と純化焼鈍を兼ねた最終仕上焼鈍とを、最高1200℃程度の温度で行うことにより、主として以下の反応式で示される固相反応に従ってフォルステライト被膜を形成させる。
2MgO+SiO2→Mg2SiO4
【0010】
このフォルステライト被膜は、径が1μm前後の微細結晶が緻密に集積したセラミックス被膜であり、上述したように、脱炭焼鈍において鋼板表層に生成したSiO2を含有するサブスケールを一方の原料として、その鋼板上に生成させるものであるから、このサブスケールの種類、量、そして分布等は、フォルステライトの核生成や粒成長挙動に関与すると共に、被膜結晶粒の粒界や粒そのものの強度にも影響を及ぼし、従って、仕上焼鈍後の被膜品質に多大な影響を及ぼす。
【0011】
また、フォルステライト被膜の他方の原料物質である、MgOを主体とする焼鈍分離剤は、水に懸濁したスラリーとして鋼板に塗布されるため、乾燥させた後も物理的に吸着したH2Oを保有するほか、一部が水和してMg(OH)2に変化している。そのため、仕上焼鈍中、800℃付近までは少量ながらH2Oを放出し続ける。このH2Oにより仕上焼鈍中に鋼板表面は酸化される。この酸化もフォルステライトの生成挙動に影響を及ぼすと共にインヒビター効果にも影響を与え、この追加酸化量が多いと磁気特性が劣化する原因となる。このマグネシアが放出するH20による酸化のし易さも、脱炭焼鈍で形成されたサブスケールの物性に大きく影響される。特に、板厚が薄くなると、表面の影響が相対的に強まるため、脱炭焼鈍時に形成されるサブスケールの品質を制御することは、優れた磁気特性を得る上で極めて重要である。
【0012】
以上述べたように、脱炭焼鈍において鋼板表層に形成されるサブスケールの品質を制御することは、優れたフォルステライト被膜を適切な温度で均一に形成させるために、また二次再結晶を正常に発現させるために、欠かせない技術であり、方向性電磁鋼板を製造する際の重要な制御項目の一つである。
【0013】
さて、方向性電磁鋼板の脱炭焼鈍に関しては、例えば、特許文献1に開示されているような、脱炭焼鈍後の鋼板の酸素含有量を制御する方法、特許文献2に開示されているような、雰囲気の酸化度を脱炭焼鈍の前部領域では0.15以上とし、引き続く後部領域では酸化度を0.75以下でかつ前部領域よりも低くする方法、特許文献3や特許文献4に示されているような、脱炭焼鈍後に非酸化性雰囲気中で860〜1050℃の熱処理を行う方法、特許文献5に開示されているような、脱炭焼鈍後の冷却を750℃以下の温度域では酸化度を0.008以下として冷却する方法、また特許文献6に開示されているような、均熱過程における雰囲気酸化度(P[H2O]/P[H2])を0.70未満に、かつ昇温過程における雰囲気酸化度(P[H2O]/P[H2])を均熱過程よりも低い値にする方法、さらに特許文献7に開示されているような、昇温速度と焼鈍雰囲気を規定する方法、等が知られている。
【0014】
【特許文献1】
特開昭59−185725号公報
【特許文献2】
特公昭57−1575号公報
【特許文献3】
特開平2−240215号公報
【特許文献4】
特公昭54−24686号公報
【特許文献5】
特公平3−57167号公報
【特許文献6】
特開平6−336616号公報
【特許文献7】
特開平7−278668号公報
【0015】
【発明が解決しようとする課題】
しかしながら、上述した方法はいずれも、一定の効果は認められるとはいえ、必ずしも十分なものではなく、脱炭焼鈍時に形成されるサブスケールの品質には依然としてばらつきがあり、結果として得られる磁気特性が安定しない場合があった。すなわち、優れた品質を有する製品を安定して生産し、一層の歩留り向上を図るためには、いまだ改善の余地が残されていた。
【0016】
この発明は、上記の実状に鑑み開発されたものであり、脱炭焼鈍時に形成されるサブスケールの品質を均一に制御して、コイル全幅および全長にわたって欠陥のない均一かつ密着性に優れたフォルステライト被膜を得ることができ、ひいては優れた磁気特性をも得ることのできる、方向性電磁鋼板の新規な製造方法について提案することを目的とする。
【0017】
【課題を解決するための手段】
発明者らは、上記の目的を達成すべく、脱炭焼鈍後に形成されるサブスケールの品質を評価し、仕上焼鈍後に形成されるフォルステライト被膜の品質に与える影響について綿密に検討した。
その結果、脱炭焼鈍後の鋼板表面におけるSiO2生成比率が仕上焼鈍後のフォルステライト被膜の外観に与える影響が大きいことを究明し、この発明を完成するに到った。
【0018】
すなわち、この発明は、含けい素鋼スラブを、熱間圧延したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施し、ついで脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を施す一連の工程によって方向性電磁鋼板を製造するに際し、
脱炭焼鈍での均熱過程における雰囲気酸化度(P[H2O]/P[H2])を0.40〜0.60の範囲とし、さらに脱炭焼鈍後の鋼板表面について、表層に生成した酸化物におけるSiO2生成比率を60%以下とすることを特徴とする被膜特性に優れる方向性電磁鋼板の製造方法である。
【0019】
【発明の実施の形態】
以下、この発明の解明経緯について説明する。
さて、発明者らは、磁気特性が劣化した製品に対応する、脱炭焼鈍板におけるサブスケールの品質について、種々の測定手段を用いて調査を行った。この調査過程において、最終製品のフォルステライト被膜の外観が劣化した試料では、脱炭焼鈍後の鋼板表面を、表面反射赤外吸収スペクトル法(Fourie Transform Infra Red:FT−IR法)で判定することにより、最終製品のフォルステライト被膜外観の劣化を精度よく判定できることが明らかになった。
【0020】
すなわち、このFT−IR法によれば、鋼板の最表層における物質の存在状態を評価することができ、例えば図1に示すように、鋼板の最表層にSiO2およびその他の酸化物(Fe2SiO4:ファイアライト等)が存在する場合、SiO2のピークをa、その他酸化物のピークをbとすれば、
a/(a+b)×100(%)
によってSiO2の生成比率を求めることができる。
【0021】
このようにして求めたSiO2の生成比率について、最終製品の被膜外観合格率を表したのが図2である。ここで、被膜外観合格率とは、コイル全長での被膜外観不良部分がコイル全長の10%以下とする。
図2に示す結果から、FT−IR法による判定結果から被膜外観を精度良く予測可能であることがわかり、とりわけSiO2の生成比率を60%以下とすることにより、被膜外観の合格率が飛躍的に向上することがわかる。
【0022】
次に、このSiO2生成比率に影響を与える因子を調査したところ、脱炭焼鈍時の昇温過程における雰囲気酸化度(P[H2O]/P[H2])、すなわち、雰囲気における水素分圧に対する水蒸気分圧の比の影響が大きいことがわかった。
【0023】
以下、この知見を得るに至った実験について説明する。
C:0.045mass%、Si:3.05mass%、Mn:0.068mass%およびSe:0.019mass%を含有し、残部はFeおよび不可避的不純物の組成になる含けい素鋼スラブを、熱間圧延し、ついで中間焼鈍を挟む2回の冷間圧延によって板厚0.23mmの冷延板とした。ついで、脱炭焼鈍を施すに際し、昇温過程の雰囲気酸化度(P[H2O]/P[H2])を種々に変化させた。なお、均熱過程における雰囲気酸化度は0.5とした。
【0024】
かくして得られた脱炭焼鈍板において、SiO2生成比率と昇温過程での雰囲気酸化度(P[H2O]/P[H2])との関係を調査した結果について、図3に示す。この図3から、SiO2生成比率をS、昇温過程での雰囲気酸化度(P[H2O]/P[H2])をyとすると、
S≒−109.1y+96.1
という相関関係があることが判明した。
従って、昇温過程での雰囲気酸化度によって、SiO2生成比率を制御することが可能である。なお、上記の関係式、特に係数は、鋼板の素材成分や工程履歴により変化するが、必要に応じてその都度、関係式を決定すればよい。
【0025】
以上のように、SiO2生成比率を60%以下に制御して、被膜外観の格段の改善が図られたが、一部の製品に被膜外観が劣化する場合が散見された。
そこで、さらに脱炭焼鈍について調査したところ、均熱過程の雰囲気酸化度が影響していることが明らかになった。すなわち、図4に、SiO2生成比率および均熱過程の雰囲気酸化度が被膜外観に及ぼす影響を示すように、SiO2生成比率を60%以下とした上で、さらに均熱過程の雰囲気酸化度(P[H2O]/P[H2])を0.40〜0.60の範囲に規制することにより、製品板での被膜劣化を防止できることが明らかになった。
なお、この図4に示した被膜外観の合格率は、図2に示したものと同様に評価している。
【0026】
ここで、均熱過程の雰囲気酸化度(P[H2O]/P[H2])に関しては、その高低がSiO2生成比率に影響を与えることは特になかった。
これに対して、上記した昇温過程での雰囲気酸化度は、初期に形成される酸化物に影響を与えるものであり、この制御によりSiO2生成比率が低くなると、酸化物形成の表面への過度な集中と内部の酸化物欠乏が抑えられて、均一かつ緻密な酸化物が形成されるため、この酸化物により仕上焼鈍時の窒化や酸化が抑えられる結果、製品板での被膜特性が改善されたものと思われる。すなわち、昇温過程での雰囲気酸化度は酸化物の分布形態について支配的となっているのである。
【0027】
この点、均熱過程での雰囲気酸化度は、形成された酸化物の量に対して支配的であり、雰囲気酸化度が低すぎると被膜形成に必要なサブスケールが不足して被膜形成不良となり、高すぎると過度にサブスケールが形成されて、仕上焼鈍時のフォルステライト形成反応が局所的に進行して、点状の被膜欠焔が発生してしまうのである。
【0028】
次に、この発明で対象とする方向性電磁鋼板の好適成分組成について述べる。素材である含けい素鋼としては、従来公知の成分組成のものいずれもが適合するが、代表組成を掲げると次のとおりである。
C:0.02〜0.10mass%
Cは、熱間圧延時のα−γ変態を利用して結晶組織の改善を行うために有用な成分であるが、含有量が0.02mass%に満たないと良好な一次再結晶組織が得られず、一方0.10mass%を超えると脱炭が難しくなって脱炭不良となり、磁気特性の劣化を招くため、0.02〜0.10mass%程度とすることが好ましい。
【0029】
Si:2.0〜4.5mass%
Siは、製品の電気抵抗を高め、渦電流損を低減させる上で重要な成分である。しかしながら、含有量が2.0mass%に満たないと最終仕上焼鈍中にα−γ変態によって結晶方位が損なわれ、一方4.5mass%を超えると冷延性に問題が生じるため、2.0〜4.5mass%程度とすることが好ましい。
【0030】
Mn:0.05〜0.2mass%、Seおよび/またはS:0.01〜0.04mass%
MnとSeおよびSとは、インヒビターMnSeおよびMnSとして機能するものであるが、Mn量が0.05mass%未満、またSeやS量が0.01mass%未満ではインヒビター機能が不十分となり、一方Mn量が0.2mass%を超え、またSeやS量が0.04mass%を超えると、スラブ加熱の際に必要とする温度が高くなりすぎて実用的でないため、Mnは0.05〜0.2mass%、またSeおよびSは単独または併用いずれの場合においても0.01〜0.04mass%程度とすることが好ましい。
【0031】
Sb:0.005〜0.05mass%
Sbは、補助インヒビターとして機能し、磁気特性の向上に有用な元素である。しかしながら、含有量が0.005mass%に満たないとその添加効果に乏しく、一方0.05mass%を超えると脱炭性が悪くなるため、0.005〜0.05mass%程度とすることが好ましい。
【0032】
以上、基本成分について説明したが、この発明では、その他にも以下の元素を適宜含有させることができる。
Cu:0.05〜0.20mass%
Cuは、磁気特性の向上および安定化に有効な元素であり、Cuを添加するとインヒビターはMnSeあるいはMnSからCuSeあるいはCuSに変化する。しかしながら、含有量が0.05mass%に満たないとインヒビターとして十分に機能せず、一方0.20mass%を超えると酸洗性や熱間圧延時の脆性が悪化するため、0.05〜0.20mass%程度とすることが好ましい。
【0033】
Cr:0.05〜0.30mass%
Crは、含有量が0.05mass%未満ではその添加効果に乏しく、一方0.30mass%を超えると良好な一次再結晶組織が得られないため、0.05〜0.30mass%程度で含有させるのが好ましい。
【0034】
Sn:0.03〜0.30mass%、Ge:0.03〜0.30mass%
SnおよびGeは、それぞれ含有量が0.03mass%未満ではその添加効果に乏しく、一方0.30mass%を超えると良好な一次再結晶組織が得られないので、それぞれ0.02〜0.30mass%程度で含有させることが好ましい。
【0035】
Ni:0.03〜0.50mass%
Niは、含有量が0.03mass%未満ではその添加効果に乏しく、一方0.50mass%を超えると熱間強度が低下するため、0.03〜0.50mass%程度とするのが好ましい。
【0036】
P:0.002〜0.30mass%
Pは、含有量が0.002mass%未満では添加効果に乏しく、一方0.30mass%超えると良好な一次再結晶組織が得られないため、0.002〜0.30mass%程度とすることが好ましい。
【0037】
Nb:0.003〜0.10mass%、V:0.003〜0.10mass%
NbおよびVはいずれも、含有量が0.003mass%に満たないとその添加効果に乏しく、一方0.10mass%を超えると脱炭性が悪化するため、それぞれ0.003〜0.10mass%程度で含有させることが好ましい。
【0038】
Mo:0.005〜0.10mass%
さらに、表面性状を改善するためにMoを添加することができる。しかしながら、含有量が0.005mass%に満たないとその添加効果に乏しく、一方0.10mass%を超えると脱炭性が悪化するので、0.05〜0.10%程度とすることが好ましい。
【0039】
次に、この発明の好適製造条件について具体的に説明する。
まず、従来用いられている製鋼法に従って上記の好適成分組成に調整した溶鋼を、連続鋳造法あるいは造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブとし、その後1250〜1450℃の温度範囲でスラブ加熱を行ったのち、熱間圧延を施す。ついで、必要に応じて熱延板焼鈍を行ったのち、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。
【0040】
次に、脱炭焼鈍を行うが、この発明では、まず脱炭焼鈍後における鋼板の表面部におけるSiO2生成比率を60%以下となるようにする。このSiO2生成比率は前述した実験のとおり、脱炭焼鈍での昇温過程での雰囲気酸化度(P[H2O]/P[H2])と相関が高く、SiO2生成比率が60%以下となるように、昇温過程での雰囲気酸化度を調整することが好ましい。
【0041】
なお、前述のようにSiO2生成比率と昇温過程での雰囲気酸化度との相関関係を予め関係式として求めておくことは、SiO2生成比率を60%以下とするために簡便である。その際、素材の成分組成や脱炭焼鈍前の工程履歴によって関係式は変化するため、鋼種および工程条件に応じてそれぞれ関係式を求めておくことが好ましい。
【0042】
また、この脱炭焼鈍では、その均熱過程における雰囲気酸化度(P[H2O]/P[H2])について、その上下限は、0.40〜0.60の範囲に制限する必要がある。
というのは、均熱過程における雰囲気酸化度が0.40に満たないと、サブスケール量が減少してフォルステライト被膜の形成量が不足し、薄膜等の被膜形成不良が生じてしまう。一方、0.60を超えると、過度にサブスケールが形成されて、仕上焼鈍時のフォルステライト形成反応が局所的に進行して、点状の被膜欠陥が発生してしまう。
【0043】
上記のような脱炭焼鈍を施した鋼板表面に、マグネシアを主成分とする焼鈍分離剤をスラリー状にして塗布した後、乾燥する。
さらに、被膜特性および磁気特性の一層の均一向上を目的として、焼鈍分離剤中にTiO2、SnO2、Fe2O2、CaOのような酸化物、MgSO4やSnSO4のような硫化物あるいはSrSO4、Sr(OH)2・8H2OのようなSr化合物のうちから選んだ1種または2種以上を、それぞれ単独または複合して添加してもよい。
【0044】
その後、二次再結晶焼鈍および純化焼鈍を兼ねた最終仕上焼鈍を施したのち、りん酸塩系の絶縁コーティング好ましくは張力を有する絶縁コーティングを施して製品とする。二次再結晶焼鈍は、焼鈍中750〜900℃の範囲内のある温度で20〜70時間の保定焼鈍を行ってから昇温する方法、あるいは保定を行わずに焼鈍する方法のいずれでも良い。
また、最終冷延後あるいは最終仕上焼鈍後または絶縁コーティング後に既知の磁区細分化処理を行うこともでき、より一層の鉄損の低減に有効である。
【0045】
【実施例】
C:0.038mass%,Si:3.25mass%, Mn:0.071mass%, Se:0.020mass%およびSb:0.023mass%を含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、1400℃で20分間加熱後、熱間圧延により2.2mm厚の熱延板とした。その後、950℃,1分間の熱延板焼鈍後、冷間圧延によって0.23mmの最終板厚に仕上げた。
【0046】
ついで、脱炭焼鈍を施す際に、昇温過程の雰囲気酸化度を種々の条件とし、脱炭焼鈍後のSiO2生成比率を変化させた。また、均熱過程の雰囲気酸化度についても0.20〜0.80の範囲で変化させた。なお、SiO2生成比率は、FT−IR法を用いた前記方法にて求めた。
さらに、マグネシアを主成分とする焼鈍分離剤をスラリー状にして、脱炭焼鈍板コイルに塗布し、乾燥させたのち、窒素雰囲気中にて850℃,50時間の二次再結晶焼鈍を施し、ついで窒素:20%、水素:80%の雰囲気中にて30℃/hの速度で1180℃まで昇温したのち、水素雰囲気中にて1180℃,5時間の鈍化焼鈍を施した。しかるのち、りん酸マグネシウムとコロイダルシリカを主成分とする絶縁コーティングを施した。
【0047】
かくして得られた各製品コイルの磁気特性(磁束密度B8)と被膜の曲げ密着性および被膜外観とを調査した。
なお、被膜の曲げ密着性は、5mm間隔で種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
得られた結果を、表1に併記する。
【0048】
【表1】
【0049】
同表から明らかなように、この発明に従う条件にて製造した発明例はいずれも、良好な被膜特性および磁気特性を示している。
【0050】
【発明の効果】
この発明によれば、脱炭焼鈍後の鋼板表面におけるSiO2生成比率を所定の値以下とし、さらに脱炭焼鈍の均熱過程における雰囲気酸化度(P[H2O]/P[H2])を適切に制御することによって、被膜特性に優れた方向性電磁鋼板を安定して得ることができる。
【図面の簡単な説明】
【図1】FT−IR法によるSiO2生成比率の算出要領を示した図である。
【図2】被膜外観とSiO2生成比率との関係を示す図である。
【図3】脱炭焼鈍昇温過程の雰囲気酸化度とSiO2生成比率との関係を示した図である。
【図4】SiO2生成比率および均熱過程の雰囲気酸化度が被膜外観に及ぼす影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for use in applications such as transformers and iron cores of other electrical equipment, and particularly by controlling the generation state of subscales in decarburization annealing, in particular, coating properties. It is intended to improve the above.
[0002]
[Prior art]
The grain-oriented electrical steel sheet is mainly used as a core material for transformers or rotating equipment, and as magnetic properties, it is required to have a high magnetic flux density and a small iron loss and magnetostriction.
In particular, recently, there is an increasing need for grain-oriented electrical steel sheets with excellent magnetic properties from the viewpoints of energy saving and resource saving.
[0003]
In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is important to obtain a secondary recrystallized structure highly integrated in the (110) [001] orientation, so-called Goth orientation.
This grain-oriented electrical steel sheet is obtained by hot rolling a steel slab containing an inhibitor necessary for secondary recrystallization, such as MnS, MnSe, AlN, BN, etc. after heating and, if necessary, performing hot-rolled sheet annealing. The final sheet thickness is obtained by cold rolling at least once with intermediate or intermediate annealing, and after decarburization annealing, an annealing separator mainly composed of MgO is applied to the steel sheet, followed by final finish annealing. Manufactured by.
[0004]
And, on the surface of this grain-oriented electrical steel sheet, except for special cases, an insulating film mainly composed of forsterite (Mg 2 SiO 4 ) (hereinafter simply referred to as forsterite film) is formed. It is common. This forsterite film contributes not only to electrical insulation of the surface but also to improvement of iron loss and magnetostriction by imparting tensile stress generated due to its low thermal expansion property to the steel sheet.
[0005]
In general, grain oriented electrical steel sheets have a glassy coating on the forsterite coating, which is very thin and transparent, so the forsterite coating determines the final appearance of the product. . Therefore, the quality of the appearance greatly affects the product value. For example, a film having a film in which part of the iron is partially exposed is regarded as inappropriate as a product, and the effect of the film properties on the product yield is extremely large.
[0006]
Accordingly, the formed forsterite coating is required to have a uniform appearance and no defects, and to have excellent adhesion so that the coating is not difficult to peel in shearing, punching, bending, or the like. Furthermore, the surface is smooth, and it is required to have a high space factor when laminated as an iron core.
[0007]
The forsterite film is formed in the final finish annealing, but the film formation behavior affects the inhibitor effect by MnS, MnSe, AlN, etc. in the steel, and is an essential process for obtaining excellent magnetic properties. It also affects the secondary recrystallization itself.
In addition, the formed forsterite film contributes to the improvement of the magnetic properties of the steel sheet by sucking up an inhibitor component that becomes unnecessary after the secondary recrystallization is completed and purifying the steel.
Therefore, controlling the formation process of this forsterite film to produce the film uniformly is extremely important in obtaining a grain-oriented electrical steel sheet having excellent magnetic properties.
[0008]
A forsterite film having a great influence on product quality is generally formed by the following process.
First, a final cold-rolled sheet for grain-oriented electrical steel sheets that has been cold-rolled to a desired final sheet thickness is continuously annealed at a temperature of 700 to 900 ° C. in wet hydrogen. By this annealing (decarburization annealing), the structure after cold rolling is primary recrystallized so that proper secondary recrystallization occurs in the final finish annealing, and the magnetic properties of the product are prevented from aging deterioration. Carbon contained in the steel in an amount of about 0.01 to 0.10 mass% is reduced to about 0.003 mass% or less.
At the same time, a subscale containing SiO 2 is generated on the steel sheet surface layer by oxidation of Si in the steel.
[0009]
Then, after applying an annealing separator mainly composed of MgO on the steel sheet, it is wound in a coil shape, and in a reducing or non-oxidizing atmosphere, a final finish annealing that combines secondary recrystallization annealing and purification annealing Is performed at a temperature of about 1200 ° C. at maximum, thereby forming a forsterite film mainly according to a solid phase reaction represented by the following reaction formula.
2MgO + SiO 2 → Mg 2 SiO 4
[0010]
This forsterite coating is a ceramic coating in which fine crystals with a diameter of around 1 μm are densely accumulated. As described above, the subscale containing SiO 2 formed on the steel sheet surface in decarburization annealing is used as one raw material. Since it is generated on the steel sheet, the type, amount, and distribution of this subscale are related to the nucleation and grain growth behavior of forsterite, and also to the grain boundaries of the coated crystal grains and the strength of the grains themselves. Also affects the coating quality after finish annealing.
[0011]
Further, as the other raw material of forsterite coating, the annealing separator composed mainly of MgO is to be applied to the steel sheet as a slurry suspended in water, after drying was also physically adsorbed H 2 O Is partly hydrated and changed to Mg (OH) 2 . For this reason, during the finish annealing, H 2 O continues to be released in a small amount up to about 800 ° C. The surface of the steel sheet is oxidized during finish annealing by this H 2 O. This oxidation also affects the formation behavior of forsterite and also affects the inhibitor effect. If this additional oxidation amount is large, it causes deterioration of magnetic properties. The ease of oxidation by H 2 O released by magnesia is also greatly influenced by the physical properties of the subscale formed by decarburization annealing. In particular, when the plate thickness is reduced, the influence of the surface is relatively increased. Therefore, controlling the quality of the subscale formed during decarburization annealing is extremely important for obtaining excellent magnetic properties.
[0012]
As described above, controlling the quality of the subscale formed on the steel sheet surface layer during decarburization annealing makes it possible to form an excellent forsterite film uniformly at an appropriate temperature, and normal secondary recrystallization. Therefore, it is an indispensable technique for producing a grain-oriented electrical steel sheet, and is one of the important control items when producing grain-oriented electrical steel sheets.
[0013]
Now, regarding decarburization annealing of grain-oriented electrical steel sheets, for example, as disclosed in Patent Document 1, a method for controlling the oxygen content of a steel sheet after decarburization annealing, as disclosed in Patent Document 2 Further, a method in which the oxidation degree of the atmosphere is 0.15 or more in the front region of the decarburization annealing and the oxidation degree is 0.75 or less and lower than that in the front region in the subsequent rear region, Patent Document 3 and Patent Document 4 The method of performing heat treatment at 860 to 1050 ° C. in a non-oxidizing atmosphere after decarburization annealing as shown in FIG. 5, cooling after decarburization annealing as disclosed in Patent Document 5 is 750 ° C. or less. In the temperature region, the cooling is performed with the degree of oxidation being 0.008 or less, and the atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) in the soaking process as disclosed in Patent Document 6 is 0. Less than 70 and atmospheric oxidation in the temperature rising process A method of setting the temperature (P [H 2 O] / P [H 2 ]) to a value lower than that of the soaking process, and a method of defining the heating rate and the annealing atmosphere as disclosed in Patent Document 7, Etc. are known.
[0014]
[Patent Document 1]
JP 59-185725 A [Patent Document 2]
Japanese Patent Publication No.57-1575 [Patent Document 3]
JP-A-2-240215 [Patent Document 4]
Japanese Patent Publication No.54-24686 [Patent Document 5]
Japanese Patent Publication No. 3-57167 [Patent Document 6]
JP-A-6-336616 [Patent Document 7]
JP-A-7-278668 [0015]
[Problems to be solved by the invention]
However, although all of the above-mentioned methods are recognized to have certain effects, they are not always sufficient, and the quality of the subscale formed during decarburization annealing still varies, and the resulting magnetic properties May not be stable. In other words, there is still room for improvement in order to stably produce products having excellent quality and further improve yield.
[0016]
The present invention has been developed in view of the above-mentioned actual situation, and the quality of the subscale formed at the time of decarburization annealing is uniformly controlled to provide a uniform and excellent adhesiveness with no defects over the entire width and length of the coil. It is an object of the present invention to propose a novel method for producing a grain-oriented electrical steel sheet capable of obtaining a stellite film and thus obtaining excellent magnetic properties.
[0017]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors evaluated the quality of the subscale formed after decarburization annealing, and examined the influence on the quality of the forsterite film formed after finish annealing.
As a result, it was investigated that the SiO 2 production ratio on the steel sheet surface after decarburization annealing has a great influence on the appearance of the forsterite film after finish annealing, and the present invention has been completed.
[0018]
That is, in the present invention, after hot-rolling a silicon-containing steel slab, it is subjected to one or more cold rollings sandwiching intermediate annealing, and after decarburization annealing, an annealing separator is applied to the steel sheet surface. Then, when producing a grain-oriented electrical steel sheet through a series of processes for final finishing annealing,
The atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) in the soaking process in the decarburization annealing is set to a range of 0.40 to 0.60, and the steel sheet surface after the decarburization annealing is formed on the surface layer. A method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized in that the SiO 2 production ratio in the produced oxide is 60% or less.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The elucidation process of the present invention will be described below.
Now, the inventors have investigated the quality of the subscale in the decarburized annealed plate corresponding to the product having deteriorated magnetic properties using various measuring means. In this investigation process, for samples with a deteriorated appearance of the final product forsterite film, the steel plate surface after decarburization annealing is determined by the surface reflection infrared absorption spectrum method (Fourier Transform Infra Red: FT-IR method). Thus, it became clear that the deterioration of the appearance of the forsterite film of the final product can be accurately determined.
[0020]
That is, according to this FT-IR method, it is possible to evaluate the existence state of substances in the outermost layer of the steel sheet. For example, as shown in FIG. 1, SiO 2 and other oxides (Fe 2 SiO 4 : Firelite, etc.), if the SiO 2 peak is a and the other oxide peak is b,
a / (a + b) × 100 (%)
Thus, the production ratio of SiO 2 can be obtained.
[0021]
FIG. 2 shows the film appearance pass rate of the final product with respect to the SiO 2 production ratio thus obtained. Here, the coating film appearance pass rate means that the coating film appearance defect portion in the entire coil length is 10% or less of the entire coil length.
From the results shown in FIG. 2, it can be seen that the coating appearance can be accurately predicted from the determination result by the FT-IR method. In particular, the pass rate of the coating appearance jumps dramatically by setting the generation ratio of SiO 2 to 60% or less. It can be seen that this is improved.
[0022]
Next, the factors affecting the SiO 2 production ratio were investigated. As a result, the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the temperature rising process during decarburization annealing, that is, hydrogen in the atmosphere It was found that the influence of the partial pressure of water vapor on the partial pressure was large.
[0023]
Hereinafter, the experiment that has led to this finding will be described.
C: 0.045 mass%, Si: 3.05 mass%, Mn: 0.068 mass% and Se: 0.019 mass%, with the balance being a silicon steel slab having a composition of Fe and inevitable impurities, A cold-rolled sheet having a thickness of 0.23 mm was obtained by cold rolling and then cold-rolling twice with intermediate annealing. Next, when performing decarburization annealing, the atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) in the temperature raising process was changed variously. The atmosphere oxidation degree in the soaking process was set to 0.5.
[0024]
FIG. 3 shows the results of investigating the relationship between the SiO 2 production ratio and the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the temperature raising process in the decarburized annealed plate thus obtained. . From FIG. 3, when the SiO 2 production ratio is S and the atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) in the temperature rising process is y,
S≈−109.1y + 96.1
It was found that there is a correlation.
Therefore, the SiO 2 production ratio can be controlled by the degree of atmospheric oxidation during the temperature raising process. In addition, although said relational expression, especially a coefficient change with the raw material components and process history of a steel plate, what is necessary is just to determine a relational expression each time as needed.
[0025]
As described above, the SiO 2 production ratio was controlled to 60% or less, and the coating appearance was remarkably improved. However, there were some cases where the coating appearance deteriorated in some products.
Thus, further investigation on decarburization annealing revealed that the degree of atmospheric oxidation during the soaking process had an effect. That is, FIG. 4 shows the effect of the SiO 2 production ratio and the atmospheric oxidation degree in the soaking process on the appearance of the coating film, with the SiO 2 production ratio being 60% or less and further the atmospheric oxidation degree in the soaking process. It has been clarified that the film deterioration on the product plate can be prevented by regulating (P [H 2 O] / P [H 2 ]) in the range of 0.40 to 0.60.
In addition, the pass rate of the coating | film | coat external appearance shown in this FIG. 4 is evaluated similarly to what was shown in FIG.
[0026]
Here, regarding the degree of atmospheric oxidation in the soaking process (P [H 2 O] / P [H 2 ]), the height did not particularly affect the SiO 2 production ratio.
On the other hand, the degree of atmospheric oxidation in the temperature rising process described above affects the oxide formed in the initial stage. When the SiO 2 production ratio is lowered by this control, Excessive concentration and internal oxide deficiency are suppressed, and a uniform and dense oxide is formed. This oxide suppresses nitriding and oxidation during finish annealing, resulting in improved coating characteristics on the product plate. It seems that it was done. That is, the degree of atmospheric oxidation during the temperature rising process is dominant in the oxide distribution form.
[0027]
In this respect, the degree of atmospheric oxidation in the soaking process is dominant with respect to the amount of oxide formed. If the degree of atmospheric oxidation is too low, the subscale necessary for film formation is insufficient, resulting in poor film formation. If it is too high, a subscale is excessively formed, and the forsterite formation reaction at the time of finish annealing proceeds locally to cause a point-like film defect.
[0028]
Next, the preferred component composition of the grain-oriented electrical steel sheet targeted by the present invention will be described. As the raw material silicon-containing steel, any conventionally known component composition can be used, but the representative composition is as follows.
C: 0.02-0.10 mass%
C is a useful component for improving the crystal structure by utilizing the α-γ transformation during hot rolling, but a good primary recrystallized structure is obtained if the content is less than 0.02 mass%. On the other hand, if it exceeds 0.10 mass%, decarburization becomes difficult and poor decarburization is caused, leading to deterioration of magnetic properties. Therefore, it is preferable to be about 0.02 to 0.10 mass%.
[0029]
Si: 2.0 to 4.5 mass%
Si is an important component for increasing the electrical resistance of the product and reducing eddy current loss. However, if the content is less than 2.0 mass%, the crystal orientation is impaired by the α-γ transformation during the final finish annealing. On the other hand, if it exceeds 4.5 mass%, a problem occurs in the cold rolling property. About 0.5 mass% is preferable.
[0030]
Mn: 0.05 to 0.2 mass%, Se and / or S: 0.01 to 0.04 mass%
Mn and Se and S function as inhibitors MnSe and MnS, but if the amount of Mn is less than 0.05 mass% and the amount of Se or S is less than 0.01 mass%, the inhibitor function is insufficient, while Mn If the amount exceeds 0.2 mass% and the amount of Se or S exceeds 0.04 mass%, the temperature required for slab heating becomes too high to be practical, so Mn is 0.05 to 0.00. 2 mass%, and Se and S are preferably about 0.01 to 0.04 mass%, either alone or in combination.
[0031]
Sb: 0.005 to 0.05 mass%
Sb functions as an auxiliary inhibitor and is an element useful for improving magnetic properties. However, if the content is less than 0.005 mass%, the effect of addition is poor. On the other hand, if the content exceeds 0.05 mass%, the decarburization property is deteriorated, and therefore it is preferable to be about 0.005 to 0.05 mass%.
[0032]
The basic components have been described above. However, in the present invention, the following elements can be appropriately contained.
Cu: 0.05-0.20 mass%
Cu is an element effective for improving and stabilizing the magnetic properties. When Cu is added, the inhibitor changes from MnSe or MnS to CuSe or CuS. However, if the content is less than 0.05 mass%, it will not function sufficiently as an inhibitor. On the other hand, if it exceeds 0.20 mass%, pickling and brittleness during hot rolling deteriorate, so 0.05-0. It is preferable to be about 20 mass%.
[0033]
Cr: 0.05-0.30 mass%
When Cr content is less than 0.05 mass%, the effect of addition is poor. On the other hand, when it exceeds 0.30 mass%, a good primary recrystallized structure cannot be obtained. Therefore, Cr is contained at about 0.05 to 0.30 mass%. Is preferred.
[0034]
Sn: 0.03-0.30 mass%, Ge: 0.03-0.30 mass%
When Sn and Ge content is less than 0.03 mass%, the effect of addition is poor. On the other hand, when the content exceeds 0.30 mass%, a good primary recrystallized structure cannot be obtained, so 0.02 to 0.30 mass%, respectively. It is preferable to make it contain in a grade.
[0035]
Ni: 0.03-0.50 mass%
When the content of Ni is less than 0.03 mass%, the effect of addition is poor. On the other hand, when the Ni content exceeds 0.50 mass%, the hot strength decreases. Therefore, it is preferable that Ni be about 0.03 to 0.50 mass%.
[0036]
P: 0.002 to 0.30 mass%
When P is less than 0.002 mass%, the effect of addition is poor. On the other hand, when it exceeds 0.30 mass%, a good primary recrystallized structure cannot be obtained. Therefore, P is preferably about 0.002 to 0.30 mass%. .
[0037]
Nb: 0.003-0.10 mass%, V: 0.003-0.10 mass%
If Nb and V are both less than 0.003 mass%, the effect of addition is poor. On the other hand, if the content exceeds 0.10 mass%, decarburization deteriorates. It is preferable to contain.
[0038]
Mo: 0.005-0.10 mass%
Furthermore, Mo can be added to improve surface properties. However, if the content is less than 0.005 mass%, the effect of addition is poor. On the other hand, if the content exceeds 0.10 mass%, the decarburization property deteriorates, so it is preferable to set the content to about 0.05 to 0.10%.
[0039]
Next, preferred production conditions of the present invention will be specifically described.
First, the molten steel adjusted to the above-mentioned suitable component composition according to a conventionally used steelmaking method is cast by a continuous casting method or an ingot-making method, and a slab is sandwiched between pieces as necessary, and then 1250 to 1450 ° C. After performing the slab heating in the temperature range, hot rolling is performed. Next, after performing hot-rolled sheet annealing as necessary, a cold-rolled sheet having a final thickness is obtained by cold rolling at least once with one or intermediate sandwiches interposed therebetween.
[0040]
Next, decarburization annealing is performed. In this invention, first, the SiO 2 generation ratio in the surface portion of the steel sheet after decarburization annealing is set to 60% or less. This SiO 2 production ratio has a high correlation with the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the temperature rising process in the decarburization annealing as described above, and the SiO 2 production ratio is 60 It is preferable to adjust the degree of atmospheric oxidation during the temperature raising process so that the ratio is not more than%.
[0041]
In addition, as described above, obtaining the correlation between the SiO 2 production ratio and the atmospheric oxidation degree in the temperature rising process as a relational expression in advance is simple in order to make the SiO 2 production ratio 60% or less. At that time, since the relational expression varies depending on the component composition of the material and the process history before decarburization annealing, it is preferable to obtain the relational expression according to the steel type and the process conditions.
[0042]
In this decarburization annealing, the upper and lower limits of the atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) in the soaking process must be limited to the range of 0.40 to 0.60. There is.
This is because if the degree of atmospheric oxidation in the soaking process is less than 0.40, the amount of subscale decreases, the amount of forsterite film formed becomes insufficient, and film formation defects such as thin films occur. On the other hand, if it exceeds 0.60, a subscale is excessively formed, the forsterite formation reaction at the time of finish annealing proceeds locally, and a point-like film defect occurs.
[0043]
The steel sheet surface that has been subjected to decarburization annealing as described above is coated with an annealing separator mainly composed of magnesia in a slurry state, and then dried.
Further, for the purpose of further improving the coating properties and magnetic properties, an oxide such as TiO 2 , SnO 2 , Fe 2 O 2 and CaO, a sulfide such as MgSO 4 and SnSO 4 in the annealing separator, or One or two or more selected from Sr compounds such as SrSO 4 and Sr (OH) 2 .8H 2 O may be added alone or in combination.
[0044]
Then, after the final finish annealing which also serves as secondary recrystallization annealing and purification annealing, a phosphate-based insulating coating, preferably an insulating coating having a tension, is applied to obtain a product. The secondary recrystallization annealing may be either a method in which the temperature is raised after performing a holding annealing for 20 to 70 hours at a certain temperature within a range of 750 to 900 ° C. during annealing, or a method in which annealing is performed without holding.
Further, it is possible to perform a known magnetic domain refinement treatment after the final cold rolling, the final finish annealing, or the insulating coating, which is effective in further reducing the iron loss.
[0045]
【Example】
A steel slab containing C: 0.038 mass%, Si: 3.25 mass%, Mn: 0.071 mass%, Se: 0.020 mass% and Sb: 0.023 mass%, with the balance being Fe and inevitable impurities. After heating at 1400 ° C. for 20 minutes, a hot-rolled sheet having a thickness of 2.2 mm was formed by hot rolling. Then, after hot-rolled sheet annealing at 950 ° C. for 1 minute, a final sheet thickness of 0.23 mm was finished by cold rolling.
[0046]
Next, when performing decarburization annealing, the degree of atmospheric oxidation in the temperature raising process was set under various conditions, and the SiO 2 generation ratio after decarburization annealing was changed. The atmosphere oxidation degree during the soaking process was also changed in the range of 0.20 to 0.80. Incidentally, SiO 2 generation ratio was determined by the method using a FT-IR method.
Furthermore, an annealing separator mainly composed of magnesia is made into a slurry, applied to a decarburized annealing plate coil, dried, and then subjected to secondary recrystallization annealing at 850 ° C. for 50 hours in a nitrogen atmosphere, Next, the temperature was raised to 1180 ° C. at a rate of 30 ° C./h in an atmosphere of nitrogen: 20% and hydrogen: 80%, and then annealed at 1180 ° C. for 5 hours in a hydrogen atmosphere. Thereafter, an insulating coating composed mainly of magnesium phosphate and colloidal silica was applied.
[0047]
The magnetic characteristics (magnetic flux density B 8 ) of each product coil thus obtained, the bending adhesion of the coating, and the coating appearance were investigated.
In addition, the bending adhesiveness of the film was evaluated by the minimum diameter at which the test piece was wound around a round bar having various diameters at intervals of 5 mm and the film did not peel off.
The obtained results are also shown in Table 1.
[0048]
[Table 1]
[0049]
As is apparent from the table, all of the inventive examples manufactured under the conditions according to the present invention show good film properties and magnetic properties.
[0050]
【The invention's effect】
According to this invention, the SiO 2 production ratio on the steel sheet surface after decarburization annealing is set to a predetermined value or less, and the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the soaking process of decarburization annealing. ) Is appropriately controlled, a grain-oriented electrical steel sheet having excellent coating properties can be stably obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a calculation procedure of a SiO 2 production ratio by an FT-IR method.
FIG. 2 is a diagram showing the relationship between the appearance of a film and the SiO 2 production ratio.
FIG. 3 is a diagram showing the relationship between the degree of atmospheric oxidation and the SiO 2 generation ratio in the decarburization annealing temperature raising process.
FIG. 4 is a graph showing the influence of the SiO 2 production ratio and the degree of atmospheric oxidation in the soaking process on the appearance of the film.
Claims (1)
脱炭焼鈍での均熱過程における雰囲気酸化度(P[H2O]/P[H2])を0.40〜0.60の範囲とし、さらに脱炭焼鈍後の鋼板表面について、表層に生成した酸化物におけるSiO2生成比率を60%以下とすることを特徴とする被膜特性に優れる方向性電磁鋼板の製造方法。After hot rolling the silicon-containing steel slab, it is cold-rolled once or two times with intermediate annealing, and after decarburization annealing, an annealing separator is applied to the steel sheet surface, and then the final finish When manufacturing grain-oriented electrical steel sheets through a series of annealing processes,
The atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) in the soaking process in the decarburization annealing is set to a range of 0.40 to 0.60, and the steel sheet surface after the decarburization annealing is formed on the surface layer. method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized in that the SiO 2 generation ratio thereof in the resulting oxide and 60% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003082930A JP4241126B2 (en) | 2003-03-25 | 2003-03-25 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003082930A JP4241126B2 (en) | 2003-03-25 | 2003-03-25 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004292834A true JP2004292834A (en) | 2004-10-21 |
JP4241126B2 JP4241126B2 (en) | 2009-03-18 |
Family
ID=33398553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003082930A Expired - Lifetime JP4241126B2 (en) | 2003-03-25 | 2003-03-25 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4241126B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129291A1 (en) * | 2015-02-13 | 2016-08-18 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
WO2022186357A1 (en) * | 2021-03-03 | 2022-09-09 | Jfeスチール株式会社 | Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method |
CN115478145A (en) * | 2022-09-24 | 2022-12-16 | 新万鑫(福建)精密薄板有限公司 | Method for improving magnetic uniformity and production efficiency of oriented silicon steel |
-
2003
- 2003-03-25 JP JP2003082930A patent/JP4241126B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016129291A1 (en) * | 2015-02-13 | 2016-08-18 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
JPWO2016129291A1 (en) * | 2015-02-13 | 2017-06-22 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
RU2677561C1 (en) * | 2015-02-13 | 2019-01-17 | ДжФЕ СТИЛ КОРПОРЕЙШН | Sheet from textured electrotechnical steel and method of its manufacture |
KR20190121416A (en) * | 2015-02-13 | 2019-10-25 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for manufacturing same |
KR102062182B1 (en) | 2015-02-13 | 2020-01-03 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for manufacturing same |
US10988822B2 (en) | 2015-02-13 | 2021-04-27 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing same |
WO2022186357A1 (en) * | 2021-03-03 | 2022-09-09 | Jfeスチール株式会社 | Method for determining finish annealing conditions for oriented electromagnetic steel sheet, and method for manufacturing oriented electromagnetic steel sheet using said determination method |
JP7168134B1 (en) * | 2021-03-03 | 2022-11-09 | Jfeスチール株式会社 | METHOD FOR DETERMINING FINISH ANNEALING CONDITIONS FOR GRAIN-EDUCED ELECTRICAL STEEL AND METHOD FOR MANUFACTURING GRAY-ORIENTED ELECTRICAL STEEL USING THE DETERMINATION METHOD |
CN115478145A (en) * | 2022-09-24 | 2022-12-16 | 新万鑫(福建)精密薄板有限公司 | Method for improving magnetic uniformity and production efficiency of oriented silicon steel |
CN115478145B (en) * | 2022-09-24 | 2024-05-24 | 新万鑫(福建)精密薄板有限公司 | Method for improving magnetic uniformity and production efficiency of oriented silicon steel |
Also Published As
Publication number | Publication date |
---|---|
JP4241126B2 (en) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5854233B2 (en) | Method for producing grain-oriented electrical steel sheet | |
RU2580776C1 (en) | Method of making sheet of textured electrical steel | |
US20090126832A1 (en) | Method of production of grain-oriented electrical steel sheet having a high magnetic flux density | |
JP3537339B2 (en) | Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same | |
JP6436316B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3386751B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties | |
JP2000144249A (en) | Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property | |
JP5434524B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4427226B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2002060843A (en) | Method for producing mirror finished grain oriented silicon steel sheet having high magnetic flux density | |
JP2001032021A (en) | Manufacture of grain oriented silicon steel sheet | |
JP4241126B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3562433B2 (en) | Grain-oriented silicon steel sheet with excellent magnetic and coating properties | |
JP3893766B2 (en) | Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating | |
JP3312000B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties | |
JP2021155833A (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP3716608B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3896786B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2001123229A (en) | Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic | |
JPH09291313A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic | |
JPH06336616A (en) | Production of grain-oriented silicon steel sheet | |
JP2003201518A (en) | Method of producing grain oriented silicon steel sheet having excellent magnetic property | |
JP4119614B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2735929B2 (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties | |
JP2002275534A (en) | Method for manufacturing grain-oriented silicon steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070614 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4241126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |