JP2002266029A - Method for manufacturing grain-oriented silicon steel sheet - Google Patents

Method for manufacturing grain-oriented silicon steel sheet

Info

Publication number
JP2002266029A
JP2002266029A JP2001066798A JP2001066798A JP2002266029A JP 2002266029 A JP2002266029 A JP 2002266029A JP 2001066798 A JP2001066798 A JP 2001066798A JP 2001066798 A JP2001066798 A JP 2001066798A JP 2002266029 A JP2002266029 A JP 2002266029A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
mass
grain
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001066798A
Other languages
Japanese (ja)
Inventor
Takahiro Ueda
貴弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001066798A priority Critical patent/JP2002266029A/en
Publication of JP2002266029A publication Critical patent/JP2002266029A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably manufacture a grain-oriented silicon steel sheet which has a uniform defect-free forsterite film with superior adhesion over the overall width and overall length of a coil and also has excellent magnetic properties. SOLUTION: In manufacturing the grain-oriented silicon steel sheet, according to the ratio of the Mn concentration in the vicinity of the surface to that in the ferrite part of the steel sheet in the course after final cold rolling and before decarburizing annealing, the ambient oxidizability (P[H2 O]/P[H2 ]) in the course of temperature raise at decarburizing annealing is controlled so that it satisfies 0.30<=y<=0.60 and y>=0.67x-0.17 (wherein, (y) is ambient oxidizability (P[H2 O]/ P[H2 ]); and (x) is the ratio of the Mn concentration in the vicinity of the surface of that in the ferrite part of the steel sheet).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器その他の
電気機器の鉄心等の用途に供して好適な方向性電磁鋼板
の製造方法に関し、特に脱炭焼鈍前の鋼板表面近傍にお
ける脱Mn量に応じて脱炭焼鈍の雰囲気を適正に制御する
ことによって、磁気特性および被膜特性の有利な向上を
図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for use as an iron core of a transformer or other electric equipment, and more particularly to a method for reducing the amount of Mn removal near the steel sheet surface before decarburization annealing. By appropriately controlling the atmosphere of the decarburizing annealing in accordance therewith, the magnetic properties and the coating properties are advantageously improved.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器ある
いは回転機器等の鉄心材料として使用され、磁気特性と
して磁束密度が高く、鉄損および磁気歪が小さいことが
要求される。とくに最近では、省エネルギー、省資源の
観点から磁気特性に優れた方向性電磁鋼板に対するニー
ズはますます高くなっている。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers or rotating equipment, and are required to have high magnetic flux density, small iron loss and small magnetostriction as magnetic characteristics. Particularly in recent years, there has been an increasing need for grain-oriented electrical steel sheets having excellent magnetic properties from the viewpoint of energy saving and resource saving.

【0003】磁気特性に優れる方向性電磁鋼板を得るに
は、(110)〔001〕方位、いわゆるゴス方位に高
度に集積した2次再結晶組織を得ることが肝要である。
かかる方向性電磁鋼板は、二次再結晶に必要なインヒビ
ター、例えばMnS,MnSe,AlN,BN等を含む鋼スラブ
を、加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施
したのち、1回または中間焼鈍を挟む2回以上の冷間圧
延によって最終板厚とし、ついで脱炭焼鈍後、鋼板にMg
Oを主成分とする焼鈍分離剤を塗布してから、最終仕上
焼鈍を行うことによって製造される。
In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is important to obtain a secondary recrystallized structure highly integrated in the (110) [001] orientation, so-called Goss orientation.
Such a grain-oriented electrical steel sheet was prepared by heating a steel slab containing an inhibitor required for secondary recrystallization, for example, a slab containing MnS, MnSe, AlN, BN, etc., followed by hot rolling and, if necessary, hot-rolled sheet annealing. After that, the final thickness is obtained by cold rolling one time or two or more times with intermediate annealing, and after decarburizing annealing,
It is manufactured by applying an annealing separator containing O as a main component and then performing final finish annealing.

【0004】そして、この方向性電磁鋼板の表面には、
特殊な場合を除いて、フォルステライト (Mg2SiO4)を主
体とする絶縁被膜(以下、単にフォルステライト被膜と
いう)が形成されているのが一般的である。この被膜
は、表面の電気的絶縁だけでなく、その低熱膨張性に起
因する引張応力を鋼板に付与することにより、鉄損さら
には磁気歪の改善に貢献する。
[0004] Then, on the surface of the grain-oriented electrical steel sheet,
Except for special cases, an insulating coating mainly composed of forsterite (Mg 2 SiO 4 ) (hereinafter simply referred to as forsterite coating) is generally formed. This coating contributes not only to the electrical insulation of the surface but also to the improvement of iron loss and magnetostriction by applying a tensile stress to the steel sheet due to its low thermal expansion property.

【0005】また、一般に方向性電磁鋼板は、フォルス
テライト被膜の上にガラス質のコーティングが施される
が、このコーティングは非常に薄く透明であるため、フ
ォルステライト被膜が製品の最終的な外観を決定する。
従って、その外観の良否は製品価値を大きく左右し、例
えば地鉄が一部露出したような被膜をもつものは製品と
して不適当とされるなど、被膜性状が製品歩留りに及ぼ
す影響は極めて大きい。従って、形成されたフォルステ
ライト被膜は、外観が均一で欠陥のないこと、またせん
断、打ち抜きおよび曲げ加工等において被膜のはく離が
生じないように密着性に優れることが要求される。さら
に、その表面は平滑で、鉄心として積層した場合に高い
占積率を有することが必要とされる。
[0005] Generally, grain-oriented electrical steel sheets are coated with a vitreous coating on the forsterite film. This coating is very thin and transparent, so that the forsterite film gives the final appearance of the product. decide.
Therefore, the quality of the appearance greatly affects the product value. For example, a coating having a partially exposed base iron is unsuitable as a product, and the influence of the coating properties on the product yield is extremely large. Therefore, the formed forsterite film is required to have a uniform appearance and no defects, and to be excellent in adhesion so that the film does not peel off in shearing, punching, bending and the like. Furthermore, the surface is required to be smooth and have a high space factor when laminated as an iron core.

【0006】このようなフォルステライト被膜は、最終
仕上焼鈍において形成されるが、その被膜形成挙動は鋼
中のMnS,MnSe,AlN等のインヒビター効果に影響する
ため、優れた磁気特性を得るために必須の過程である二
次再結晶そのものにも影響を及ばす。また、形成された
フォルステライト被膜は、二次再結晶が完了したあとに
は不要となるインヒビター成分を被膜中に吸い上げて鋼
を純化することによっても、鋼板の磁気特性の向上に貢
献している。従って、このフォルステライト被膜の形成
過程を制御して被膜を均一に生成させることは、優れた
磁気特性を有する方向性電磁鋼板を得る上で極めて重要
である。
[0006] Such a forsterite film is formed in the final finish annealing, and since the film forming behavior affects the inhibitory effect of MnS, MnSe, AlN, etc. in steel, it is necessary to obtain excellent magnetic properties. It also affects secondary recrystallization itself, which is an essential process. In addition, the formed forsterite film contributes to the improvement of the magnetic properties of the steel sheet by purifying the steel by sucking up an inhibitor component unnecessary after the secondary recrystallization is completed into the film. . Therefore, it is extremely important to control the process of forming the forsterite film and to form the film uniformly to obtain a grain-oriented electrical steel sheet having excellent magnetic properties.

【0007】このように製品品質に多大な影響を及ぼす
フォルステライト被膜は、一般に以下のような工程で形
成される。まず、所望の最終板厚に冷間圧延された方向
性電磁鋼板用の最終冷延板を、湿水素中にて 700〜900
℃の温度で連続焼鈍する。この焼鈍(脱炭焼鈍)によ
り、冷間圧延後の組織を最終仕上焼鈍において適正な二
次再結晶が生じるように一次再結晶させると共に、製品
の磁気特性が時効劣化するのを防止するため、鋼中に0.
01〜0.10mass%程度含まれる炭素を 0.003mass%程度以
下までに減少させる。また、同時に鋼中Siの酸化によっ
て、SiO2を含むサブスケールを鋼板表層に生成させる。
その後、MgOを主体とする焼鈍分離剤を鋼板上に塗布し
てから、コイル状に巻取り、還元性あるいは非酸化性雰
囲気中において二次再結晶焼鈍と純化焼鈍を兼ねた最終
仕上焼鈍を最高1200℃程度の温度で行うことにより、主
として以下の反応式で示される固相反応によってフォル
ステライト被膜を形成させる。 2MgO+SiO2→Mg2SiO4
The forsterite film which greatly affects the product quality as described above is generally formed by the following steps. First, a final cold-rolled sheet for grain-oriented electrical steel sheet cold-rolled to a desired final sheet thickness is 700 to 900 in wet hydrogen.
Anneal continuously at a temperature of ° C. By performing this annealing (decarburizing annealing), the structure after cold rolling is primarily recrystallized so that appropriate secondary recrystallization occurs in the final finish annealing, and the magnetic properties of the product are prevented from being aged and deteriorated. 0 in steel.
Reduce the carbon content of about 01-0.10 mass% to about 0.003 mass% or less. At the same time, a sub-scale containing SiO 2 is generated on the surface of the steel sheet by oxidation of Si in the steel.
Then, apply an annealing separator mainly composed of MgO onto the steel sheet, wind it up in a coil shape, and perform the final finish annealing that combines secondary recrystallization annealing and purification annealing in a reducing or non-oxidizing atmosphere. By performing at a temperature of about 1200 ° C., a forsterite film is formed mainly by a solid phase reaction represented by the following reaction formula. 2MgO + SiO 2 → Mg 2 SiO 4

【0008】このフォルステライト被膜は、1μm 前後
の微細結晶が緻密に集積したセラミックス被膜であり、
上述したように、脱炭焼鈍において鋼板表層に生成した
SiO2を含有するサブスケールを一方の原料として、その
鋼板上に生成させるものであるから、このサブスケール
の種類、量、分布等はフォルステライトの核生成や粒成
長挙動に関与すると共に、被膜結晶粒の粒界や粒そのも
のの強度にも影響を及ぼし、従って仕上焼鈍後の被膜品
質に多大な影響を及ぼす。
The forsterite film is a ceramic film in which fine crystals of about 1 μm are densely integrated.
As described above, it was formed on the steel sheet surface layer during decarburization annealing.
Since the subscale containing SiO 2 is formed on the steel sheet as one raw material, the type, amount, distribution, etc. of this subscale contribute to the nucleation and grain growth behavior of forsterite, and It also affects the grain boundaries of the crystal grains and the strength of the grains themselves, and thus has a great effect on the coating quality after finish annealing.

【0009】また、他方の原料物質であるMgOを主体と
する焼鈍分離剤は、水に懸濁したスラリーとして鋼板に
塗布されるため、乾燥させた後も物理的に吸着したH2
を保有するほか、一部が水和してMg(OH)2 に変化してい
る。そのため、仕上焼鈍中、800℃付近までは少量なが
らH2Oを放出し続ける。このH2Oにより仕上焼鈍中に鋼
板表面は酸化される。この酸化もフォルステライトの生
成挙動に影響を及ぼすと共にインヒビター効果にも影響
を与え、この追加酸化量が多いと磁気特性が劣化する原
因となる。このマグネシアが放出するH2Oによる酸化の
し易さも、脱炭焼鈍で形成されたサブスケールの物性に
大きく影響される。特に板厚が薄くなると、表面の影響
が相対的に強まるため、脱炭焼鈍時に形成されるサブス
ケール品質の制御は、優れた磁気特性を得る上で極めて
重要である。
Further, annealing separator consisting mainly of MgO which is the other raw materials, to be applied to the steel sheet as a slurry suspended in water, after drying was also physically adsorbed H 2 O
In addition, some have hydrated and changed to Mg (OH) 2 . Therefore, during the finish annealing, H 2 O is continuously released in a small amount until around 800 ° C. This H 2 O oxidizes the steel sheet surface during the finish annealing. This oxidation also affects the formation behavior of forsterite and also affects the inhibitor effect. If the amount of additional oxidation is large, this causes deterioration of magnetic properties. The easiness of oxidation by H 2 O released from magnesia is also greatly affected by the physical properties of the sub-scale formed by decarburizing annealing. In particular, when the sheet thickness is reduced, the influence of the surface becomes relatively strong. Therefore, control of the quality of the sub-scale formed during decarburization annealing is extremely important for obtaining excellent magnetic properties.

【0010】以上述べたように、脱炭焼鈍において鋼板
表層に形成されるサブスケールの品質を制御すること
は、優れたフォルステライト被膜を適切な温度で均一に
形成させるために、また二次再結晶を正常に発現させる
ために欠かせない技術であり、方向性電磁鋼板を製造す
る際の重要な制御項目の一つである。
As described above, controlling the quality of the subscale formed on the surface of the steel sheet in the decarburization annealing is necessary to uniformly form an excellent forsterite film at an appropriate temperature and to improve the quality of the secondary scale. This is an indispensable technology for the normal development of crystals and is one of the important control items when manufacturing grain-oriented electrical steel sheets.

【0011】これまで方向性電磁鋼板の脱炭焼鈍に関し
ては、例えば特開昭59−185725号公報に開示されている
ような、脱炭焼鈍後の鋼板の酸素含有量を制御する方
法、特公昭57−1575号公報に開示されているような、雰
囲気の酸化度を脱炭焼鈍の前部領域では0.15以上とし、
引き続く後部領域では酸化度を0.75以下でかつ前部領域
よりも低くする方法、特開平2−240215号公報や特公昭
54−24686 号公報に示されているような、脱炭焼鈍後に
非酸化性雰囲気中で 850〜1050℃の熱処理を行う方法、
特公平3−57167 号公報に開示されているような、脱炭
焼鈍後の冷却を750 ℃以下の温度域では酸化度を 0.008
以下として冷却する方法、また特開平6−336616号公報
に開示されているような、均熱過程における雰囲気酸化
度(P[H2O]/P[H2])を0.70未満に、かつ昇温過程にお
ける雰囲気酸化度(P[H2O]/P[H2])を均熱過程よりも
低い値にする方法、さらに特開平7−278668号公報に開
示されているような、昇温速度と焼鈍雰囲気を規定する
方法等が知られている。
A method of controlling the oxygen content of a steel sheet after decarburization annealing, as disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 59-185725, is disclosed in Japanese Patent Publication No. Sho 59-185725. As disclosed in No. 57-1575, the oxidation degree of the atmosphere is set to 0.15 or more in the front region of the decarburizing annealing,
A method in which the degree of oxidation in the subsequent rear region is 0.75 or less and lower than that in the front region, is disclosed in JP-A-2-240215 and
No. 54-24686, a method of performing a heat treatment at 850 to 50 ° C. in a non-oxidizing atmosphere after decarburizing annealing,
As disclosed in Japanese Patent Publication No. 3-57167, cooling after decarburization annealing is performed at a temperature range of 750 ° C or less by an oxidation degree of 0.008.
The cooling method is as follows, and the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the soaking process is reduced to less than 0.70 and increased as disclosed in JP-A-6-336616. A method in which the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the temperature process is set to a value lower than that in the soaking process, and further, as disclosed in JP-A-7-278668. Methods for defining the speed and the annealing atmosphere are known.

【0012】上述した技術はいずれも、雰囲気、温度等
の脱炭焼鈍条件を調整してサブスケールの品質を制御す
る方法であるが、脱炭焼鈍前の鋼板の表面状態に応じて
サブスケール品質を制御する方法として、特公昭58−46
547 号公報には、脱炭焼鈍前にSi, OあるいはSi, O,
Hを含有するSi化合物を付着させる技術が、また特開平
7−188757号公報には、脱炭焼鈍前の地鉄表面Siと鋼中
Si濃度の差(ΔSi)が鋼中Si濃度の20%を超える材料に
対し、ΔSiに応じたSi化合物を塗布する技術が開示され
ている。さらに、これらを発展させた技術として、特開
平10−195536号公報には、中間焼鈍板の表面酸化層中に
おけるSi, O量を制御する方法が、また特開平11−1405
46号公報には、中間焼鈍板の表面酸化物のSi濃度と地鉄
のSi濃度との比率に応じて、脱炭焼鈍前の鋼板表面への
Si化合物の付着量を制御する方法が開示されている。
[0012] All of the above-mentioned techniques are methods for controlling the quality of the sub-scale by adjusting the decarburizing annealing conditions such as atmosphere and temperature. However, the sub-scale quality is controlled according to the surface condition of the steel sheet before the decarburizing annealing. As a method of controlling the
No. 547 states that Si, O or Si, O,
A technique for adhering a Si compound containing H is disclosed in Japanese Patent Application Laid-Open No. 7-188757.
A technique of applying a Si compound according to ΔSi to a material having a difference in Si concentration (ΔSi) exceeding 20% of the Si concentration in steel is disclosed. Further, as a technique developed from these, JP-A-10-195536 discloses a method of controlling the amounts of Si and O in a surface oxide layer of an intermediate annealed plate.
According to No. 46, according to the ratio between the Si concentration of the surface oxide of the intermediate annealed sheet and the Si concentration of the ground iron,
A method for controlling the amount of Si compound attached has been disclosed.

【0013】[0013]

【発明が解決しようとする課題】上述した方法はいずれ
も、一定の効果は認められるとはいえ、必ずしも十分な
ものではなく、脱炭焼鈍時に形成されるサブスケール品
質には依然としてばらつきがあり、結果として得られる
磁気特性が安定しない場合があった。すなわち、優れた
品質を有する製品を安定して生産し、一層の歩留り向上
を図るためには、いまだ改善の余地が残されていた。こ
の発明は、上記の実状に鑑み開発されたもので、コイル
全幅および全長にわたって欠陥のない均一で密着性に優
れたフォルステライト被膜を有し、かつ磁気特性にも優
れた方向性電磁鋼板を安定して製造することができる方
法を提案することを目的とする。
Although all of the above-mentioned methods have a certain effect, they are not always sufficient, and the quality of the sub-scale formed during the decarburization annealing still varies. In some cases, the resulting magnetic properties were not stable. In other words, there is still room for improvement in order to stably produce products having excellent quality and further improve the yield. The present invention has been developed in view of the above-mentioned circumstances, and has a forelite coating film with no defects and excellent adhesion over the entire width and length of the coil, and a grain-oriented electrical steel sheet having excellent magnetic properties. It is intended to propose a method that can be manufactured by using the method.

【0014】[0014]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく、脱炭焼鈍後に形成されるサブスケ
ールの品質および仕上焼鈍後に形成されるフォルステラ
イト被膜の品質のみならず、脱炭焼鈍前における鋼板の
表面状態について綿密な検討を行った。その結果、脱炭
焼鈍前の鋼板表面近傍の脱Mn量が製品品質と強い相関関
係にあることが判明した。
Means for Solving the Problems In order to achieve the above object, the present inventors have developed not only the quality of the subscale formed after decarburizing annealing and the quality of the forsterite film formed after finishing annealing, but also The surface condition of the steel sheet before the decarburizing annealing was carefully studied. As a result, it was found that the amount of Mn removal near the steel sheet surface before decarburization annealing had a strong correlation with product quality.

【0015】すなわち、脱炭焼鈍前の鋼板表面近傍の脱
Mn量が少ない、すなわち表面近傍のMn濃度が大きいと、
脱炭焼鈍時に形成されるサブスケール中のMn酸化物が多
くなるために、仕上焼鈍中の被膜形成過程が変化し、そ
れに起因して磁気特性が劣化することが新たに見出され
た。従って、脱炭焼鈍前の鋼板表面近傍の脱Mn量を的確
に測定し、その結果を脱炭焼鈍条件に反映して、サブス
ケール中におけるMn酸化物の生成量を低減することがで
きれば、サブスケール品質ひいてはフォルステライト被
膜品質を一定に制御することが可能となるわけである。
この発明は、上記の知見に立脚するものである。
[0015] That is, the degassing near the steel sheet surface before the decarburization annealing.
If the Mn content is small, that is, the Mn concentration near the surface is large,
It was newly found that the amount of Mn oxide in the subscale formed during decarburization annealing increased, and the film formation process during finish annealing changed, resulting in deterioration of magnetic properties. Therefore, if the amount of Mn removal near the steel sheet surface before decarburization annealing is accurately measured, and the result is reflected in the decarburization annealing conditions, if the amount of Mn oxide generation in the subscale can be reduced, This makes it possible to control the scale quality and, consequently, the quality of the forsterite film.
The present invention is based on the above findings.

【0016】すなわち、この発明は、含けい素鋼スラブ
を、熱間圧延し、必要に応じて熱延板焼鈍を施したの
ち、1回または中間焼鈍を挟む2回以上の冷間圧延を施
し、ついで脱炭焼鈍後、鋼板表面に焼鈍分離剤を塗布し
てから、最終仕上焼鈍を施す一連の工程によって方向性
電磁鋼板を製造するに際し、最終冷延後、脱炭焼鈍前に
おける鋼板の地鉄部に対する表面近傍のMn濃度比に応じ
て、脱炭焼鈍の昇温過程における雰囲気酸化度(P[H
2O]/P[H2])を下記式を満足する範囲に制御することを
特徴とする方向性電磁鋼板の製造方法である。 記 0.30 ≦y≦ 0.60 y≧0.67x−0.17 ここで、y:雰囲気酸化度(P[H2O]/P[H2]) x:鋼板の地鉄部に対する表面近傍のMn濃度比
That is, according to the present invention, a silicon-containing steel slab is hot-rolled and, if necessary, subjected to hot-rolled sheet annealing, and then subjected to one or two or more cold-rolling steps including intermediate annealing. Then, after the decarburizing annealing, the annealing separator is applied to the steel sheet surface, and then a series of steps of final finishing annealing are performed to produce a grain-oriented electrical steel sheet.After the final cold rolling, the steel sheet before decarburizing annealing is manufactured. Depending on the Mn concentration ratio near the surface to the iron part, the degree of atmospheric oxidation (P [H
2 O] / P [H 2 ]) is controlled within a range satisfying the following expression. Note 0.30 ≦ y ≦ 0.60 y ≧ 0.67x−0.17 where, y: Atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) x: Ratio of Mn concentration in the vicinity of the surface of the steel plate to the base iron

【0017】[0017]

【発明の実施の形態】以下、この発明の解明経緯につい
て説明する。さて、発明者らは、磁気特性が劣化した製
品に対応する脱炭焼鈍板のサブスケール品質について種
々の調査を行ったところ、最終製品の磁気特性が劣化し
た脱炭焼鈍板サブスケールでは、サブスケール表層部で
のMn酸化物生成量が多いことが判明した。その原因を調
べるため、0.22mm厚の最終冷延板を多数用意し、同一条
件で脱炭焼鈍を行った結果、最終製品の磁気特性が劣化
した最終冷延板を用いた場合には、やはりサブスケール
表層部でのMn酸化物生成量が多いことが確認された。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the invention will be described below. By the way, the present inventors have conducted various investigations on the sub-scale quality of the decarburized annealed sheet corresponding to the product having deteriorated magnetic properties. It was found that the amount of Mn oxide generated in the scale surface layer was large. To investigate the cause, many final cold-rolled sheets of 0.22 mm thickness were prepared, and decarburization annealing was performed under the same conditions.As a result, when the final cold-rolled sheets with deteriorated magnetic properties of the final product were used, It was confirmed that the amount of generated Mn oxide in the subscale surface layer was large.

【0018】そこで、発明者らは、上記のような磁気特
性の劣化原因は、脱炭焼鈍前の鋼板表層部のMn濃度と関
係があると考え、脱炭焼鈍前の鋼板表層部におけるMn濃
度について調査を行った。ここに、鋼板表層部の成分の
濃度プロファイルを迅速に求める方法としては、グロー
放電分光法(GDS)が適している。すなわち、このグ
ロー放電分光法によれば、1回の測定で鋼板の最表面か
ら地鉄内部までの所定成分の濃度を測定することができ
る。図1に、このグロー放電分光法を用いて、Mnの表層
部における濃度プロファイルを測定した例を示すが、同
図に示したとおり、Mn濃度は、表面から 1.0μm の深さ
から最表面に向かって次第に減少していることが分か
る。また、この方法によれば、表面近傍と地鉄内部との
成分濃度比(測定強度比)を求めることも容易である。
Therefore, the present inventors consider that the cause of the deterioration of the magnetic properties as described above is related to the Mn concentration in the surface layer portion of the steel sheet before decarburizing annealing, and the Mn concentration in the surface layer portion of the steel sheet before decarburizing annealing is considered. Was investigated. Here, glow discharge spectroscopy (GDS) is suitable as a method for quickly obtaining the concentration profile of the component of the surface layer portion of the steel sheet. That is, according to the glow discharge spectroscopy, it is possible to measure the concentration of the predetermined component from the outermost surface of the steel sheet to the inside of the base iron by one measurement. FIG. 1 shows an example in which the concentration profile of Mn in the surface layer portion is measured by using the glow discharge spectroscopy. As shown in FIG. 1, the Mn concentration increases from a depth of 1.0 μm from the surface to the outermost surface. It can be seen that the number gradually decreases. Further, according to this method, it is easy to determine the component concentration ratio (measurement intensity ratio) between the vicinity of the surface and the inside of the base iron.

【0019】そこで、この発明では、鋼板の表面近傍に
おけるMn濃度を、極表層部のMn強度と地鉄内部のMn強度
との比で表すものとし、極表層部として表面から 0.2μ
m 深さ位置を、一方地鉄内部として表面から 5.0μm 深
さ位置を採用した。そして、このグロー放電分光法を利
用して、最終冷延後、脱炭焼鈍前の種々の鋼板につい
て、その表面のMn濃度比を測定したところ、このMn濃度
比は素材によってバラツキがあることが判明した。
Therefore, in the present invention, the Mn concentration in the vicinity of the surface of the steel sheet is represented by the ratio between the Mn intensity in the extreme surface layer portion and the Mn intensity in the inner portion of the base steel, and 0.2 μm from the surface as the extreme surface layer portion.
The depth position of 5.0 m from the surface was adopted as the inside of the base steel. Then, using this glow discharge spectroscopy, when the Mn concentration ratio of the surface of various steel sheets after final cold rolling and before decarburizing annealing was measured, the Mn concentration ratio may vary depending on the material. found.

【0020】そこで、次に、上記したようにして求めた
Mn濃度比(表層 0.2μm 強度/5.0μm 強度)と、最終
製品の磁気特性との関係について調査を行った。図2
に、脱炭焼鈍前の鋼板の表面近傍のMn濃度比と最終製品
の磁束密度B8 との関係について調べた結果を示す。同
図に示したとおり、脱炭焼鈍前の鋼板の表面近傍のMn濃
度比が大きくなるほど磁束密度は低下し、特にMn濃度比
が0.70を超えるとB8 が急激に低下することが判明し
た。この理由は、表面近傍のMn濃度比が大きくなったこ
とによって、脱炭焼鈍板の被膜品質が劣化し、仕上焼鈍
中に追加酸化が促進され、インヒビターが酸化、分解さ
れることによって、二次再結晶不良が生じたものと考え
られる。
Then, next, it was determined as described above.
The relationship between the Mn concentration ratio (0.2 μm intensity on the surface layer / 5.0 μm intensity) and the magnetic properties of the final product was investigated. FIG.
To show the results of examining the relationship between the magnetic flux density B 8 of Mn concentration ratio and the final product in the vicinity of the surface of the decarburization annealing before the steel sheet. As shown in the drawing, the magnetic flux density as the Mn concentration ratio in the vicinity of the surface of the decarburization annealing before the steel sheet is increased is reduced, particularly Mn concentration ratio was found that the B 8 exceeds 0.70 drops sharply. The reason for this is that the Mn concentration ratio near the surface is increased, the coating quality of the decarburized annealed sheet is degraded, additional oxidation is promoted during finish annealing, and the inhibitor is oxidized and decomposed. It is considered that recrystallization failure occurred.

【0021】上記の結果を考慮すると、最終的に優れた
磁気特性の方向性電磁鋼板を得るためには、脱炭焼鈍前
の鋼板の表面近傍のMn濃度比をある値以下まで低減する
ことが有効であるとが考えられるが、脱炭焼鈍前の鋼板
の表面近傍のMn濃度比が上限値を超えていた場合に、脱
炭焼鈍に先立って、このMn濃度比を低減するためには、
新たな処理工程や処理設備を必要とするため、生産性が
著しく阻害される。
In view of the above results, in order to finally obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is necessary to reduce the Mn concentration ratio near the surface of the steel sheet before decarburizing annealing to a certain value or less. Although it is considered effective, if the Mn concentration ratio near the surface of the steel sheet before the decarburizing annealing had exceeded the upper limit, prior to decarburizing annealing, to reduce this Mn concentration ratio,
Since new processing steps and processing equipment are required, productivity is significantly impaired.

【0022】そこで、発明者らは、脱炭焼鈍前の鋼板の
表面近傍のMn濃度比が高い場合であっても、最終製品に
実害を及ぼさない脱炭焼鈍条件について検討を行った。
その結果、脱炭焼鈍の昇温過程における雰囲気酸化度
(P[H2O]/P[H2])を、鋼板表面近傍のMn濃度比に応じ
て適切に制御すれば、このMn濃度比が高い場合であって
もその悪影響なしに、最終的に良好な磁気特性、被膜特
性の製品板が得られることが判明した。
Therefore, the present inventors have studied decarburizing annealing conditions that do not harm the final product even when the Mn concentration ratio near the surface of the steel sheet before the decarburizing annealing is high.
As a result, if the degree of oxidation of the atmosphere (P [H 2 O] / P [H 2 ]) in the temperature rise process of decarburization annealing is appropriately controlled according to the Mn concentration ratio near the steel sheet surface, this Mn concentration ratio It was found that a product plate having good magnetic properties and coating properties could be finally obtained without the adverse effect even when the value was high.

【0023】図3に、表面近傍のMn濃度比が種々に異な
る鋼板に脱炭焼鈍を施すに際し、その昇温過程の雰囲気
酸化度(P[H2O]/P[H2])を種々に変更した場合におけ
る、最終仕上焼鈍後の製品品質に与える影響について調
べた結果を示す。この実験において、製品品質は最終製
品の磁気特性および被膜外観によって判断するものと
し、磁束密度B ≧1.885 Tでかつ地鉄が露出する被膜
欠陥が認められない場合は○、一方いずれかの劣化が認
められる場合は×で評価した。図3に示したとおり、表
面近傍のMn濃度比が0.70を超えると、製品品質は劣化し
始めるが、この時昇温過程の雰囲気酸化度(P[H2O]/P
[H2])を上げる、具体的には、表面近傍のMn濃度比を
x、昇温過程の雰囲気酸化度をyとした場合、雰囲気酸
化度yが、次式 y≧0.67x−0.17 の関係を満足する範囲に制御することによって、かよう
な製品品質の劣化を効果的に防止することができた。
FIG. 3 shows that the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) during the heating process was varied when decarburizing annealing was performed on steel sheets having various Mn concentration ratios in the vicinity of the surface. The results obtained by examining the effect on the product quality after final finish annealing when changing to? In this experiment, the product quality shall be judged by the magnetic properties of the final product and the appearance of the coating. If the magnetic flux density is B ≧ 1.885 T and there is no coating defect exposing the base iron, then ○, When it was recognized, it was evaluated with x. As shown in FIG. 3, when the Mn concentration ratio near the surface exceeds 0.70, the product quality starts to deteriorate, but at this time, the degree of oxidation of the atmosphere (P [H 2 O] / P
[H 2 ]), specifically, when the Mn concentration ratio in the vicinity of the surface is x and the atmosphere oxidation degree during the temperature raising process is y, the atmosphere oxidation degree y is expressed by the following equation: y ≧ 0.67x−0.17 By controlling the relationship to a range that satisfies the relationship, it was possible to effectively prevent such deterioration in product quality.

【0024】次に、この発明で対象とする方向性電磁鋼
板の好適成分組成について述べる。素材である含けい素
鋼としては、従来公知の成分組成のものいずれもが適合
するが、代表組成を掲げると次のとおりである。 C:0.02〜0.10mass% Cは、熱間圧延時のα−γ変態を利用して結晶組織の改
善を行うために有用な成分であるが、含有量が0.02mass
%に満たないと良好な一次再結晶組織が得られず、一方
0.10mass%を超えると脱炭が難しくなって脱炭不良とな
り、磁気特性の劣化を招くので、C量は0.02〜0.10mass
%程度とすることが好ましい。
Next, a preferred composition of the grain-oriented electrical steel sheet according to the present invention will be described. As the silicon-containing steel as a raw material, any of conventionally known component compositions is suitable, and typical compositions are as follows. C: 0.02 to 0.10 mass% C is a useful component for improving the crystal structure by utilizing the α-γ transformation at the time of hot rolling, but the content is 0.02 mass%.
%, A good primary recrystallized structure cannot be obtained.
If the content exceeds 0.10 mass%, decarburization becomes difficult, resulting in poor decarburization and deterioration of magnetic properties. Therefore, the C content is 0.02 to 0.10 mass%.
% Is preferable.

【0025】Si:2.0 〜4.5 mass% Siは、製品の電気抵抗を高め、渦電流損を低減させる上
で重要な成分である。しかしながら、含有量が 2.0mass
%に満たないと最終仕上焼鈍中にα−γ変態によって結
晶方位が損なわれ、一方 4.5mass%を超えると冷延性に
問題が生じるので、Si量は 2.0〜4.5 mass%程度とする
ことが好ましい。
Si: 2.0 to 4.5 mass% Si is an important component for increasing the electric resistance of the product and reducing the eddy current loss. However, the content is 2.0 mass
%, The crystal orientation is impaired by the α-γ transformation during final finish annealing, whereas if it exceeds 4.5 mass%, there is a problem in cold rolling. Therefore, the Si content is preferably about 2.0 to 4.5 mass%. .

【0026】Mn:0.05〜0.2 mass%,Seおよび/または
S:0.01〜0.04mass% MnとSe, Sとは、インヒビターMnSe, MnSとして機能す
るものであるが、Mn量が0.05mass%未満、またSeやS量
が0.01mass%未満ではインヒビター機能が不十分とな
り、一方Mn量が 0.2mass%を超え、またSeやS量が0.04
mass%を超えるとスラブ加熱の際に必要とする温度が高
くなりすぎて実用的でないので、Mnは0.05〜0.2 mass
%、またSe,Sは単独または併用いずれの場合において
も0.01〜0.04mass%程度とすることが好ましい。
Mn: 0.05 to 0.2 mass%, Se and / or S: 0.01 to 0.04 mass% Mn and Se, S function as inhibitors MnSe and MnS, but the Mn content is less than 0.05 mass%. If the Se or S content is less than 0.01 mass%, the inhibitor function becomes insufficient, while the Mn content exceeds 0.2 mass%, and the Se or S content is 0.04%.
If it exceeds mass%, the temperature required for slab heating becomes too high and is not practical.
%, And Se and S, either alone or in combination, are preferably about 0.01 to 0.04 mass%.

【0027】Sb:0.005 〜0.05mass% Sbは、補助インヒビターとして機能し、磁気特性の向上
に有用な元素である。しかしながら、含有量が 0.005ma
ss%に満たないとその添加効果に乏しく、一方0.05mass
%を超えると脱炭性が悪くなるので、Sb量は0.005 〜0.
05mass%程度とすることが好ましい。
Sb: 0.005 to 0.05 mass% Sb functions as an auxiliary inhibitor and is an element useful for improving magnetic properties. However, the content is 0.005ma
If less than ss%, the effect of the addition is poor, while 0.05 mass
%, The decarburization property deteriorates, so the Sb content is 0.005 to 0.
It is preferable to be about 05 mass%.

【0028】以上、基本成分について説明したが、この
発明では、その他にも以下の元素を適宜含有させること
ができる。 Cu:0.05〜0.20mass% Cuは、磁気特性の向上および安定化に有効な元素であ
り、Cuを添加するとインヒビターはMnSeあるいはMnSか
らCuSeあるいはCuSに変化する。この発明では、中間焼
鈍後の鋼板表面近傍のMn量を制御するため、MnSeやMnS
をインヒビターとするよりも、CuSeやCuSをインヒビタ
ーとして使用する方が望ましい。しかしながら、含有量
が0.05mass%に満たないとインヒビターとして十分に機
能せず、一方0.20mass%を超えると酸洗性や熱間圧延時
の脆性が悪化するので、Cuは0.05〜0.20mass%程度とす
ることが好ましい。
Although the basic components have been described above, the present invention may further include the following elements as appropriate. Cu: 0.05 to 0.20 mass% Cu is an element effective for improving and stabilizing magnetic properties. When Cu is added, the inhibitor changes from MnSe or MnS to CuSe or CuS. In the present invention, in order to control the amount of Mn near the steel sheet surface after the intermediate annealing, MnSe or MnS
It is more preferable to use CuSe or CuS as an inhibitor than to use as an inhibitor. However, if the content is less than 0.05 mass%, it will not function sufficiently as an inhibitor. On the other hand, if it exceeds 0.20 mass%, the pickling property and the brittleness during hot rolling will deteriorate, so that Cu is about 0.05 to 0.20 mass%. It is preferable that

【0029】Cr:0.05〜0.30mass% Crは、含有量が0.05%未満ではその添加効果に乏しく、
一方0.30mass%を超えると良好な一次再結晶組織が得ら
れないので、Cr量は0.05〜0.30mass%程度で含有させる
のが好ましい。 Sn:0.03〜0.30mass%,Ge:0.03〜0.30mass% Sn,Geは、含有量が0.03mass%未満ではその添加効果に
乏しく、一方0.30mass%を超えると良好な一次再結晶組
織が得られないので、それぞれの0.02〜0.30mass%程度
で含有させることが好ましい。 Ni:0.03〜0.50mass% Niは、含有量が0.03mass%未満ではその添加効果に乏し
く、一方0.50mass%を超えると熱間強度が低下するの
で、Ni量は0.03〜0.50mass%程度とするのが好ましい。 P:0.002 〜0.30mass% Pは、含有量が 0.002mass%未満では添加効果に乏し
く、一方0.30mass%を超えると良好な一次再結晶組織が
得られないので、P量は0.002 〜0.30mass%程度とする
のが好ましい。 Nb:0.003 〜0.10mass%,V:0.003 〜0.10mass% Nb, Vはいずれも、含有量が 0.003mass%に満たないと
その添加効果に乏しく、一方0.10mass%を超えると脱炭
性が悪化するので、それぞれ0.003 〜0.10mass%程度で
含有させることが好ましい。
Cr: 0.05 to 0.30 mass% Cr is less effective when its content is less than 0.05%.
On the other hand, if it exceeds 0.30 mass%, a good primary recrystallized structure cannot be obtained. Therefore, it is preferable to contain Cr in an amount of about 0.05 to 0.30 mass%. Sn: 0.03 to 0.30 mass%, Ge: 0.03 to 0.30 mass% Sn and Ge have a poor addition effect when the content is less than 0.03 mass%, while a good primary recrystallization structure is obtained when the content exceeds 0.30 mass%. Therefore, it is preferable to contain them at about 0.02 to 0.30 mass% of each. Ni: 0.03 to 0.50 mass% Ni is less effective when its content is less than 0.03 mass%, whereas the hot strength is reduced when it exceeds 0.50 mass%, so the Ni content is about 0.03 to 0.50 mass%. Is preferred. P: 0.002 to 0.30 mass% P has a poor addition effect when the content is less than 0.002 mass%, whereas a good primary recrystallized structure cannot be obtained when the content exceeds 0.30 mass%, so that the P content is 0.002 to 0.30 mass%. It is preferable to set the degree. Nb: 0.003 to 0.10% by mass, V: 0.003 to 0.10% by mass Both Nb and V have poor addition effects when the content is less than 0.003% by mass, while the decarburization property deteriorates when the content exceeds 0.10% by mass. Therefore, it is preferable that each of them is contained at about 0.003 to 0.10 mass%.

【0030】Mo:0.005 〜0.10mass% さらに、表面性状を改善するためにMoを添加することが
できる。しかしながら、含有量が 0.005mass%に満たな
いとその添加効果に乏しく、一方0.10mass%を超えると
脱炭性が悪化するので、Mo量は 0.005〜0.10mass%程度
とするのが好ましい。
Mo: 0.005 to 0.10 mass% Mo can be added to improve the surface properties. However, if the content is less than 0.005 mass%, the effect of the addition is poor. On the other hand, if it exceeds 0.10 mass%, the decarburization property deteriorates. Therefore, the Mo content is preferably set to about 0.005 to 0.10 mass%.

【0031】次に、この発明の好適製造条件について具
体的に説明する。従来より用いられている製鋼法で上記
の好適成分組成に調整した溶鋼を、連続鋳造法あるいは
造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブ
とし、ついで1250〜1450℃の温度範囲でスラブ加熱を行
ったのち、熱間圧延を施す。ついで、必要に応じて熱延
板焼鈍を行ったのち、1回または中間焼鈍を挟む2回以
上の冷間圧延により最終板厚の冷延板とする。
Next, preferred production conditions of the present invention will be specifically described. Molten steel adjusted to the above preferred component composition by the conventionally used steelmaking method is cast by a continuous casting method or an ingot-making method, and if necessary, a slab with a lumping step, and then at 1250 to 1450 ° C. After performing slab heating in a temperature range, hot rolling is performed. Next, after performing hot-rolled sheet annealing as needed, a cold-rolled sheet having a final thickness is formed by cold rolling once or twice or more with intermediate annealing.

【0032】ついで、脱炭焼鈍を行うが、この発明で
は、この脱炭焼鈍前における鋼板の地鉄部に対する表面
近傍のMn濃度比を的確に把握しておくことが重要であ
る。ここに、表面近傍のMn濃度比は、表面から 5.0μm
深さ位置(地鉄内部)のMn強度に対する表面から 0.2μ
m 深さ位置(表面近傍)のMn強度の比で表すものとし
た。なお、かかるMn濃度比の測定方法としては、グロー
放電分光法が簡便であるが、表面近傍部と地鉄部を削り
だして化学分析を行うあるいは蛍光X線分析を行う等の
他の測定法を採用してもよい。
Next, decarburization annealing is performed. In the present invention, it is important to accurately grasp the Mn concentration ratio in the vicinity of the surface of the steel sheet with respect to the base iron before the decarburization annealing. Here, the Mn concentration ratio near the surface is 5.0 μm from the surface.
0.2μ from the surface for the Mn intensity at the depth position (inside the steel)
m It is represented by the ratio of the Mn intensity at the depth position (near the surface). As a method of measuring the Mn concentration ratio, glow discharge spectroscopy is simple, but other measurement methods such as performing a chemical analysis by shaving a portion near the surface and a ground iron portion or performing a fluorescent X-ray analysis are used. May be adopted.

【0033】また、この脱炭焼鈍では、その昇温過程に
おける雰囲気酸化度(P[H2O]/P[H 2])を、表面近傍の
Mn濃度比に応じて的確に制御することが重要である。す
なわち、表面近傍のMn濃度比をx、昇温過程の雰囲気酸
化度をyとした場合、雰囲気酸化度yが、次式 y≧0.67x−0.17 の関係を満足する範囲に制御することが重要である。
In this decarburizing annealing, the temperature rise process
Atmosphere oxidation degree (P [HTwoO] / P [H Two]), Near the surface
It is important to control precisely according to the Mn concentration ratio. You
That is, the Mn concentration ratio near the surface is x,
Assuming that the degree of oxidation is y, it is important to control the degree of oxidation of the atmosphere y to a range that satisfies the following relationship: y ≧ 0.67x−0.17.

【0034】さらに、この昇温過程における雰囲気酸化
度(P[H2O]/P[H2])の上下限は、0.30〜0.60の範囲に
制限する必要がある。というのは、昇温過程における雰
囲気酸化度が0.30に満たないと、酸化被膜が不均一に生
成して、最終焼鈍時に耐追加酸化性の劣る被膜となり、
一方0.60を超えると FeOの生成領域となり、不活性な酸
化被膜が形成されるからである。
Further, the upper and lower limits of the degree of oxidation of the atmosphere (P [H 2 O] / P [H 2 ]) in the temperature raising process must be limited to the range of 0.30 to 0.60. This is because if the degree of atmospheric oxidation during the temperature raising process is less than 0.30, an oxide film is generated unevenly and becomes a film with poor additional oxidation resistance at the time of final annealing,
On the other hand, if it exceeds 0.60, it becomes a FeO generation region and an inactive oxide film is formed.

【0035】また、脱炭焼鈍板のサブスケール量につい
ては、鋼板の酸素目付量(片面当たり)で 0.5〜1.0 g/
m2程度とするのが好ましい。というのは、0.5 g/m2未満
では、フォルステライトの原料となるサブスケールが不
足するために良好な被膜が形成しにくく、一方 1.0 g/m
2 超えるとフォルステライト被膜が過剰に生成し厚くな
るため、占積率の低下をきたすからである。
The amount of subscale of the decarburized annealed sheet was 0.5 to 1.0 g / oxygen per sheet (per one side).
preferably with m 2 approximately. Since, 0.5 is less than g / m 2, good film is difficult to form to subscale as the raw material of forsterite is insufficient, whereas 1.0 g / m
If it exceeds 2 , the forsterite film is excessively formed and becomes thick, resulting in a decrease in the space factor.

【0036】上記のような脱炭焼鈍を施した鋼板表面
に、マグネシアを主成分とする焼鈍分離剤をスラリー状
にして塗布した後、乾燥する。ここで、焼鈍分離剤に用
いるマグネシアは、水和量(20℃,6分間にて水和後、
1000℃,1時間の強熱による減量)が1〜4mass%の範
囲のものを用いるのがよい。というのは、マグネシアの
水和量が1mass%未満ではフォルステライト被膜の生成
が不充分となり、一方4mass%を超えるとコイル層間へ
の持ち込み水分量が多くなりすぎて鋼板の追加酸化量が
多くなるため、良好なフォルステライト被膜が得られな
くなるおそれがあるからである。また、30℃でのクエン
酸活性度 (CAA40)は30秒から 150秒のものを用いるのが
よい。というのは、クエン酸活性度が30秒未満では反応
性が強すぎてフォルステライトが急激に生成して剥落し
易く、一方 150秒を超えると反応性が弱すぎてフォルス
テライト生成が進行しないからである。さらに、BET
(比表面積) は10〜40 m2/g 程度のものを用いるのがよ
い。というのは、10 m2/g 未満では反応性が弱すぎてフ
ォルステライト生成が進行せず、一方 40 m2/gを超える
と反応性が強すぎてフォルステライトが急激に生成し、
剥落し易くなるからである。またさらに、焼鈍分離剤の
塗布量は鋼板片面当たり4〜10g/m2の範囲で塗布するの
が好ましい。というのは、塗布量が4g/m2より少ないと
フォルステライトの生成が不十分となり、一方10g/m2
超えるとフォルステライト被膜が過剰に生成し厚くなる
ために占積率の低下をきたすからである。
An annealed separating agent containing magnesia as a main component is applied in the form of a slurry to the surface of the steel sheet subjected to the decarburizing annealing as described above, and then dried. Here, the magnesia used for the annealing separator has a hydration amount (after hydration at 20 ° C. for 6 minutes,
It is preferable to use one having a weight loss by ignition at 1000 ° C. for one hour in the range of 1 to 4 mass%. This is because if the hydration of magnesia is less than 1 mass%, the formation of a forsterite film is insufficient, while if it exceeds 4 mass%, the amount of water carried between the coil layers becomes too large and the additional oxidation of the steel sheet increases. Therefore, a good forsterite film may not be obtained. The citric acid activity (CAA40) at 30 ° C. is preferably 30 to 150 seconds. This is because if the citric acid activity is less than 30 seconds, the reactivity is too strong and forsterite is rapidly generated and easily peels off, while if it exceeds 150 seconds, the reactivity is too weak and forsterite generation does not progress It is. In addition, BET
(Specific surface area) is preferably about 10 to 40 m 2 / g. If it is less than 10 m 2 / g, the reactivity is too weak and forsterite formation does not proceed, while if it exceeds 40 m 2 / g, the reactivity is too strong and forsterite is rapidly generated,
This is because it is easy to peel off. Further, it is preferable to apply the amount of the annealing separator in the range of 4 to 10 g / m 2 per one side of the steel sheet. If the coating amount is less than 4 g / m 2, the formation of forsterite is insufficient, while if it exceeds 10 g / m 2 , the forsterite film is excessively formed and becomes thick, resulting in a decrease in the space factor. Because.

【0037】さらに、被膜特性および磁気特性の一層の
均一性向上を目的として、焼鈍分離剤中にTiO2, SnO2,
Fe2O3, CaOのような酸化物、 MgSO4やSnSO4 のような硫
化物あるいはSrSO4, Sr(OH)2・8H2OようなSr化合物のう
ちから選んだ1種または2種以上をそれぞれ単独または
複合して添加してもよい。
Further, in order to further improve the uniformity of the film properties and the magnetic properties, TiO 2 , SnO 2 ,
Oxides such as Fe 2 O 3, CaO, MgSO 4 and sulfides such as SnSO 4 or SrSO 4, Sr (OH) 1 or more kinds chosen from among the 2 · 8H 2 O Such Sr compound May be added alone or in combination.

【0038】ついで、二次再結晶焼鈍および純化焼鈍
(最終仕上焼鈍)を施したのち、りん酸塩系の絶縁コー
ティング好ましくは張力を有する絶縁コーティングを施
して製品とする。二次再結晶焼鈍は、焼鈍中 750〜900
℃のある温度で20〜70時間の保定焼鈍を行ってから昇温
する方法、あるいは保定を行わずに焼鈍する方法のいず
れでも良い。また、最終冷延後あるいは最終仕上焼鈍後
または絶縁コーティング後に既知の磁区細分化処理を行
うこともでき、より一層の鉄損の低減に有効である。
Next, after subjecting to secondary recrystallization annealing and purification annealing (final finish annealing), a phosphate insulating coating, preferably an insulating coating having tension, is applied to obtain a product. Secondary recrystallization annealing during annealing 750-900
Either a method of performing holding annealing at a certain temperature of 20 ° C. for 20 to 70 hours and then raising the temperature or a method of performing annealing without holding is performed. Also, a known magnetic domain refining treatment can be performed after the final cold rolling, the final finish annealing, or the insulating coating, which is effective for further reducing iron loss.

【0039】[0039]

【実施例】実施例1 C:0.041 mass%, Si:3.28mass%, Mn:0.071 mass
%, Se:0.021 mass%,Sb:0.023 mass%およびMo:0.0
12 mass%を含有し、残部はFeおよび不可避的不純物か
らなるけい素鋼スラブを、1400℃で20分間加熱後、熱間
圧延により 1.8mm厚の熱延板とした。ついで、 950℃,
1分間の熱延板焼鈍後、冷間圧延によって0.19mmの最終
板厚に仕上げた。ここで、熱延板焼鈍での雰囲気酸化度
(P[H2O]/P[H2])とその後の酸洗条件を変化させて、
表層部におけるMn量を制御した。ついで、脱炭焼鈍を施
すに先立ち、鋼板表面近傍のMn濃度比をグロー放電分光
法を用いて測定したところ、その値はおよそ0.85であっ
た。ついで、H2-H2O-N2 雰囲気中にて 830℃,1分間の
脱炭焼鈍を行った。なお、その際、昇温過程における雰
囲気酸化度(P[H2O]/P[H2])を表1に示すように変更
した。
EXAMPLES Example 1 C: 0.041 mass%, Si: 3.28 mass%, Mn: 0.071 mass
%, Se: 0.021 mass%, Sb: 0.023 mass% and Mo: 0.0
A silicon steel slab containing 12 mass% and the balance consisting of Fe and unavoidable impurities was heated at 1400 ° C. for 20 minutes, and then hot-rolled into a hot-rolled sheet having a thickness of 1.8 mm. Then, 950 ℃,
After hot-rolled sheet annealing for 1 minute, the sheet was finished to a final sheet thickness of 0.19 mm by cold rolling. Here, by changing the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the hot-rolled sheet annealing and the subsequent pickling conditions,
The amount of Mn in the surface layer was controlled. Next, before performing decarburization annealing, the Mn concentration ratio near the steel sheet surface was measured using glow discharge spectroscopy, and the value was about 0.85. Then, decarburizing annealing was performed at 830 ° C. for 1 minute in an atmosphere of H 2 —H 2 ON 2 . At this time, the degree of oxidation of the atmosphere (P [H 2 O] / P [H 2 ]) during the heating process was changed as shown in Table 1.

【0040】ついで、マグネシアを主成分とする焼鈍分
離剤をスラリー状にして、脱炭焼鈍板コイルに塗布し、
乾燥させたのち、窒素雰囲気中にて 850℃, 50時間の二
次再結晶焼鈍を施し、ついで窒素:20%、水素:80%の
雰囲気中にて30℃/hの速度で1180℃まで昇温したのち、
水素雰囲気中にて1180℃, 5時間の純化焼鈍を施した。
しかるのち、りん酸マグネシウムとコロイダルシリカを
主成分とする絶縁コーティングを施した。
Next, an annealing separator containing magnesia as a main component is made into a slurry and applied to a decarburized annealing plate coil.
After drying, it is subjected to secondary recrystallization annealing at 850 ° C for 50 hours in a nitrogen atmosphere, and then heated to 1180 ° C at a rate of 30 ° C / h in an atmosphere of 20% nitrogen and 80% hydrogen. After warming,
Purification annealing was performed at 1180 ° C. for 5 hours in a hydrogen atmosphere.
Thereafter, an insulating coating containing magnesium phosphate and colloidal silica as main components was applied.

【0041】かくして得られた各製品コイルの磁気特性
(磁束密度B8 、鉄損W17/50)と被膜の曲げ密着性およ
び被膜外観を調査した。なお、被膜の曲げ密着性は、5
mm間隔の種々の径を有する丸棒に試験片を巻き付け、被
膜が剥離しない最小径で評価した。得られた結果を表1
に併記する。
Magnetic properties of each product coil thus obtained
(Magnetic flux density B 8 , iron loss W 17/50 ), bending adhesion of the coating and appearance of the coating were examined. The coating has a bending adhesion of 5
The test pieces were wound around round bars having various diameters at mm intervals, and evaluated with the minimum diameter at which the coating did not peel. Table 1 shows the obtained results.
It is described together.

【0042】[0042]

【表1】 [Table 1]

【0043】同表から明らかなように、この発明に従う
条件で製造した発明例はいずれも、良好な被膜特性およ
び磁気特性を示している。
As is clear from the table, all of the inventive examples manufactured under the conditions according to the present invention show good film properties and magnetic properties.

【0044】[0044]

【発明の効果】かくして、この発明に従い、脱炭焼鈍前
の鋼板の表面近傍におけるMn濃度比に応じて、脱炭焼鈍
の昇温過程における雰囲気酸化度(P[H2O]/P[H2])を
適切に制御することにより、磁気特性と被膜特性に優れ
た方向性電磁鋼板を安定して得ることができる。
Thus, according to the present invention, the degree of atmospheric oxidation (P [H 2 O] / P [H] in the temperature rising process of decarburizing annealing is determined according to the Mn concentration ratio near the surface of the steel sheet before decarburizing annealing. By appropriately controlling 2 ]), a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 グロー放電分光法により得られる脱炭焼鈍前
の鋼板表層部のMn濃度プロファイルを示す図である。
FIG. 1 is a view showing a Mn concentration profile of a surface layer portion of a steel sheet before decarburization annealing obtained by glow discharge spectroscopy.

【図2】 脱炭焼鈍前の鋼板の表面近傍のMn濃度比と最
終製品の磁束密度B8 との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a Mn concentration ratio near the surface of a steel sheet before decarburization annealing and a magnetic flux density B 8 of a final product.

【図3】 表面近傍のMn濃度比(表層 0.2μm 強度/5.
0 μm 強度)と脱炭焼鈍の昇温過程の雰囲気酸化度(P
[H2O]/P[H2])が最終仕上焼鈍後の製品品質に及ぼす影
響を示す図である。
[Fig. 3] Mn concentration ratio near the surface (surface layer 0.2μm intensity / 5.
0 μm strength) and the degree of atmospheric oxidation (P
[H 2 O] / P [H 2 ]) shows the effect on product quality after final finish annealing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含けい素鋼スラブを、熱間圧延し、必要
に応じて熱延板焼鈍を施したのち、1回または中間焼鈍
を挟む2回以上の冷間圧延を施し、ついで脱炭焼鈍後、
鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を
施す一連の工程によって方向性電磁鋼板を製造するに際
し、 最終冷延後、脱炭焼鈍前における鋼板の地鉄部に対する
表面近傍のMn濃度比に応じて、脱炭焼鈍の昇温過程にお
ける雰囲気酸化度(P[H2O]/P[H2])を下記式を満足す
る範囲に制御することを特徴とする方向性電磁鋼板の製
造方法。 記 0.30 ≦y≦ 0.60 y≧0.67x−0.17 ここで、y:雰囲気酸化度(P[H2O]/P[H2]) x:鋼板の地鉄部に対する表面近傍のMn濃度比
1. A silicon-containing steel slab is hot-rolled, subjected to hot-rolled sheet annealing if necessary, and then subjected to one or two or more cold-rolling steps including intermediate annealing, and then decarburization. After annealing,
After applying an annealing separator to the steel sheet surface, when manufacturing a grain-oriented electrical steel sheet by a series of steps of final finish annealing, after the final cold rolling, before the decarburizing annealing Mn near the surface with respect to the base steel part of the steel sheet A grain-oriented electrical steel sheet characterized in that the degree of atmospheric oxidation (P [H 2 O] / P [H 2 ]) in the temperature rising process of decarburization annealing is controlled in a range satisfying the following equation according to the concentration ratio. Manufacturing method. Note 0.30 ≦ y ≦ 0.60 y ≧ 0.67x−0.17 where, y: Atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) x: Ratio of Mn concentration in the vicinity of the surface of the steel plate to the base iron
JP2001066798A 2001-03-09 2001-03-09 Method for manufacturing grain-oriented silicon steel sheet Pending JP2002266029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066798A JP2002266029A (en) 2001-03-09 2001-03-09 Method for manufacturing grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066798A JP2002266029A (en) 2001-03-09 2001-03-09 Method for manufacturing grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JP2002266029A true JP2002266029A (en) 2002-09-18

Family

ID=18925250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066798A Pending JP2002266029A (en) 2001-03-09 2001-03-09 Method for manufacturing grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2002266029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563583A (en) * 2016-08-05 2019-04-02 新日铁住金株式会社 The manufacturing method of non-oriented electromagnetic steel sheet, the manufacturing method of non-oriented electromagnetic steel sheet and motor iron core
JP2019099827A (en) * 2017-11-28 2019-06-24 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563583A (en) * 2016-08-05 2019-04-02 新日铁住金株式会社 The manufacturing method of non-oriented electromagnetic steel sheet, the manufacturing method of non-oriented electromagnetic steel sheet and motor iron core
EP3495525A4 (en) * 2016-08-05 2020-01-01 Nippon Steel Corporation Non-oriented electromagnetic steel sheet, production method for non-oriented electromagnetic steel sheet, and production method for motor core
US11295881B2 (en) 2016-08-05 2022-04-05 Nippon Steel Corporation Non-oriented electrical steel sheet, manufacturing method of non-oriented electrical steel sheet, and manufacturing method of motor core
JP2019099827A (en) * 2017-11-28 2019-06-24 Jfeスチール株式会社 Manufacturing method of grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP5434524B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002060843A (en) Method for producing mirror finished grain oriented silicon steel sheet having high magnetic flux density
JPH06200325A (en) Production of silicon steel sheet having high magnetism
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2019099839A (en) Manufacturing method of oriented electromagnetic steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP4241126B2 (en) Method for producing grain-oriented electrical steel sheet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002266029A (en) Method for manufacturing grain-oriented silicon steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP2002275534A (en) Method for manufacturing grain-oriented silicon steel sheet
JP3896786B2 (en) Method for producing grain-oriented electrical steel sheet
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3480332B2 (en) Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and coating properties
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
WO2021085421A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP3952601B2 (en) Method for producing grain-oriented silicon steel sheets with excellent magnetic properties
JP2002060844A (en) Method for producing grain oriented silicon steel sheet
JPH1060533A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and coating characteristics