JP2575040B2 - Amorphous alloy powder - Google Patents

Amorphous alloy powder

Info

Publication number
JP2575040B2
JP2575040B2 JP63035410A JP3541088A JP2575040B2 JP 2575040 B2 JP2575040 B2 JP 2575040B2 JP 63035410 A JP63035410 A JP 63035410A JP 3541088 A JP3541088 A JP 3541088A JP 2575040 B2 JP2575040 B2 JP 2575040B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
powder
alloy powder
density
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63035410A
Other languages
Japanese (ja)
Other versions
JPH01212701A (en
Inventor
駿 佐藤
有一 佐藤
利男 山田
毅 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63035410A priority Critical patent/JP2575040B2/en
Publication of JPH01212701A publication Critical patent/JPH01212701A/en
Application granted granted Critical
Publication of JP2575040B2 publication Critical patent/JP2575040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧粉成形体の素材として使用できる非晶質合
金粉末に関するものである。
Description: TECHNICAL FIELD The present invention relates to an amorphous alloy powder that can be used as a material for a green compact.

(従来の技術) 非晶質合金の最も一般的な製造法は融体から急冷して
固化する方法、すなわち融体急冷法と呼ばれる方法であ
る。非晶質化に要求される冷却速度は合金によって異な
るが、通常104〜105゜K/sec程度かそれ以上である。こ
のように大きな冷却速度は製造可能な材料の寸法、とく
に板厚に制約を与える。例えばFe基合金を単ロール法
(冷却ロール)の外周面に合金の溶湯を吹き付け急冷固
化する方法)で作製する場合、得られる材料はリボン状
で板厚は最大200μm程度である。数100μmを超える板
厚をもつ非晶質合金はPd−Siなど特殊な例を除いて融体
急冷法では得られていない。
(Prior Art) The most common method for producing an amorphous alloy is a method of rapidly cooling and solidifying from a melt, that is, a method called a melt quenching method. The cooling rate required for amorphization varies depending on the alloy, but is usually about 10 4 to 10 5 K / sec or more. Such a large cooling rate restricts the size of the material that can be manufactured, particularly the thickness of the plate. For example, when an Fe-based alloy is produced by a method of spraying a molten alloy onto the outer peripheral surface of a single roll method (cooling roll and rapidly cooling and solidifying), the obtained material has a ribbon shape and a maximum thickness of about 200 μm. Amorphous alloys having a plate thickness exceeding several hundreds of micrometers have not been obtained by the melt quenching method except for special cases such as Pd-Si.

融体急冷法において不可避の板厚の制限を超えてバル
ク状(3次元的)非晶質合金をつくる方法として、非晶
質合金の粉末や箔を成形する方法がある。
As a method of producing a bulk (three-dimensional) amorphous alloy exceeding the unavoidable thickness limit in the melt quenching method, there is a method of forming powder or foil of an amorphous alloy.

粉末や箔状の非晶質合金よりバルク状の立体成形物を
作製する方法には大別すると以下に示す3つの方法があ
る。それは、 (i)銃弾の衝突による衝撃力や火薬の爆発力を利用す
るもの(例えば日本金属学会講演概要集、1984年10月発
行、541頁)、 (ii)非晶質合金のガラス遷移に伴う軟化現象を利用す
るもの(例えばH.H.Liebermann,Mat,Sci and Eng.46(1
980),241頁) (iii)結合剤を使用し、成形体を得るもの、(例えば
特開昭60−165303号公報)である。
There are three main methods for producing a bulk solid molded article from a powdery or foil-shaped amorphous alloy. It uses (i) impact force due to bullet impact and explosive force of explosives (for example, Abstracts of the Japan Institute of Metals, October 1984, p. 541), and (ii) glass transition of amorphous alloys. Using the accompanying softening phenomenon (for example, HHLiebermann, Mat, Sci and Eng. 46 (1
980), p. 241) (iii) A molded article is obtained by using a binder (for example, JP-A-60-165303).

これらのうち(i)および(ii)は従来の硬くて、塑
性変形しにくい非晶質合金に永久的な変形を与えて高い
占積率を有する成形体を得るために考案された方法であ
る。しかし、(i)は巨大な衝撃力に耐える大がかりな
設備が必要となること、(ii)は実用的非晶質合金の大
半が結晶化温度以下の温度で非晶質固体状態から過冷却
液体状態への遷移挙動に伴なう軟化現象を明瞭に示さな
いこと、の理由により、今日工業的規模で実用化されて
いない。
Among them, (i) and (ii) are methods devised in order to obtain a compact having a high space factor by giving permanent deformation to a conventional hard amorphous alloy which is hardly plastically deformed. . However, (i) requires large-scale equipment that can withstand a huge impact force, and (ii) most of practical amorphous alloys are cooled from the amorphous solid state to the supercooled liquid at a temperature lower than the crystallization temperature. Due to the fact that it does not clearly show the softening phenomenon accompanying the transition behavior to the state, it has not been put to practical use on an industrial scale today.

(iii)は非晶質合金の機械的強度よりも、磁気特性を
利用する用途に採用が考えられている方法でる。したが
って粉体粒子同志が原子レベルで一体化するほどの高密
度を必要としないが、圧粉磁心の飽和磁化を高めるため
に、なるべく占積率は高い方が好ましい。しかしこの場
合、使用される成形機の圧力が比較的小さいため、従来
の非晶質合金粉末では充分に占積率を高めることが困難
であった。
(Iii) is a method which is considered to be used for applications utilizing magnetic properties rather than the mechanical strength of an amorphous alloy. Therefore, the powder particles do not need to have such a high density as to be integrated at the atomic level, but in order to increase the saturation magnetization of the dust core, the space factor is preferably as high as possible. However, in this case, since the pressure of the molding machine used is relatively small, it has been difficult to sufficiently increase the space factor with the conventional amorphous alloy powder.

以上のように、従来の非晶質合金粉末を原料として立
体成形物をつくるとき、今日提示されている主要な方法
はいずれも、生産性、経済性、製品の品質(占積率な
ど)の点から工業的に採用するには問題があった。
As described above, when producing a three-dimensional molded product from a conventional amorphous alloy powder as a raw material, all of the main methods presented today include productivity, economic efficiency, and product quality (occupancy ratio, etc.). From the point of view, there was a problem in industrial adoption.

(発明が解決しようとする課題) 本発明は、その特徴的機械的性質および熱的性質のた
めに高密度の立体成形物を得ることが困難であった非晶
質合金の粉末を、比較的低い圧力によって高密度に圧縮
成形することを可能にする新規な組成の非晶質合金粉末
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention relates to an amorphous alloy powder which has been difficult to obtain a high-density three-dimensional molded product due to its characteristic mechanical properties and thermal properties. An object of the present invention is to provide an amorphous alloy powder having a novel composition that enables high-density compression molding with low pressure.

(課題を解決するための手段・作用) 本発明は立体成形物の素材として用いることの出来る
金属−半金属系非晶質合金粉末において、硫黄(S)、
セレン(Se)、テルル(Te)の1種又は2種以上を合計
0.01〜3原子%含有することを特徴とする非晶質合金粉
末である。
(Means and Actions for Solving the Problems) The present invention relates to a metal-semimetallic amorphous alloy powder that can be used as a material for a three-dimensional molded product, comprising sulfur (S),
Total of one or more of selenium (Se) and tellurium (Te)
It is an amorphous alloy powder characterized by containing 0.01 to 3 atomic%.

本発明の非晶質合金では、金属はFe,Co,Niの1種又は
2種以上を主成分とし、Cr,Mo,Nb,V,W,Ta、Mnの1種又
は2種以上を副成分とする。また半金属としてB,C,Si,
P,Geの1種又は2種以上を含有し、さらに本発明の特徴
とする必須成分として、S,Se,Teの1種又は2種以上を
合計0.01〜3原子%含有する。
In the amorphous alloy of the present invention, the metal is one or more of Fe, Co, and Ni as main components, and one or more of Cr, Mo, Nb, V, W, Ta, and Mn is an auxiliary. Ingredients. B, C, Si,
It contains one or more of P and Ge, and further contains one or more of S, Se and Te as essential components characteristic of the present invention in a total of 0.01 to 3 atomic%.

本発明の非晶質合金粉末においてS,Se,Teを0.01〜3
原子%の範囲で含有することを必要とする理由は次の通
りである。
In the amorphous alloy powder of the present invention, S, Se and Te are contained in the range of 0.01 to 3
The reason that the content needs to be contained in the range of atomic% is as follows.

すなわち、0.01原子%未満では、粉体を一定条件下で
成形するとき成形体の占積率(あるいは密度)の改善効
果が明確でなく、本発明の目的を達成しない。一方3原
子%を超えると成形体の靱性など機械的性質の劣化を招
くことがあるので上限を3原子%とした。
That is, when the content is less than 0.01 atomic%, the effect of improving the space factor (or density) of the molded body when the powder is molded under certain conditions is not clear, and the object of the present invention is not achieved. On the other hand, if it exceeds 3 atomic%, the mechanical properties such as the toughness of the compact may be deteriorated, so the upper limit is set to 3 atomic%.

他の合金成分については、非晶質形成の容易性(非晶
質形成能)、熱的安定性の観点から、主成分のFe、Co、
Niは合計65〜85原子%の範囲、副成分Cr,Mo,Nb,V,W,Ta,
Mnは合計0〜30原子%の範囲、半金属はB,C,Si,P,Geが
合計15〜35原子%であることが好ましい。
As for other alloy components, from the viewpoint of easiness of amorphous formation (amorphous forming ability) and thermal stability, Fe, Co,
Ni is in the range of 65 to 85 atomic% in total, and the subcomponents Cr, Mo, Nb, V, W, Ta,
Mn is preferably in the range of 0 to 30 atomic% in total, and the semimetal is preferably in the range of 15 to 35 atomic% in total of B, C, Si, P and Ge.

S,Se,Te以外の成分の選定は本発明の非晶質合金粉末
の成形体を用いる目的に依存する。例えば耐食性を要求
される構造部材の場合はFeNiCrBC、FeCrVPCなどが、熱
的安定性が求められる場合はFeCrTaBSi、FeTaNbMoBCな
どが用いられる。また磁性材料としては、高透磁率が要
求される場合はCoFeBSi、CoFeMoBSi、CoFeMnBSi、CoFeN
iWBCなどが、高磁束密度を要求される用途には、FeCoMo
BC、FeBSiC、FeCoBSiなどが使用できる。
The selection of components other than S, Se and Te depends on the purpose of using the amorphous alloy powder compact of the present invention. For example, for a structural member requiring corrosion resistance, FeNiCrBC, FeCrVPC, or the like is used, and when thermal stability is required, FeCrTaBSi, FeTaNbMoBC, or the like is used. When a high magnetic permeability is required, CoFeBSi, CoFeMoBSi, CoFeMnBSi, CoFeN
For applications requiring high magnetic flux density such as iWBC, use FeCoMo
BC, FeBSiC, FeCoBSi, etc. can be used.

本発明の非晶質合金粉末を製造する方法は、箔や繊維
状の非晶質合金をボールミルなどで粉砕してつくる間接
法とアトマイズ法、キャビテーション法、液中噴霧法、
メカニカルアロイング法(MA法)、メカニカルグライン
ディング法(MG法)などの直接法がある。間接法におい
て中間製品の箔や繊維状非晶質合金の製造には単ロール
法、双ロール法、遠心急冷法、液中紡糸法が適用でき
る。
The method for producing the amorphous alloy powder of the present invention is an indirect method and an atomizing method in which a foil or a fibrous amorphous alloy is crushed with a ball mill or the like, a cavitation method, a submerged spraying method,
There are direct methods such as a mechanical alloying method (MA method) and a mechanical grinding method (MG method). In the indirect method, a single roll method, a twin roll method, a centrifugal quenching method, and a submerged spinning method can be applied to the production of an intermediate product foil or a fibrous amorphous alloy.

本発明のS,Se,Teの1種又は2種以上を含有する金属
−半金属系非晶質合金の粉末を圧縮成形体の原料として
用いる効果は、従来の非晶質合金の粉末に比べて、同一
条件下で成形された成形体の密度あるいは占積率が著し
く向上することである。
The effect of using a powder of a metal-metalloid amorphous alloy containing one or more of S, Se, and Te of the present invention as a raw material of a compression-molded body is smaller than that of a conventional amorphous alloy powder. That is, the density or space factor of a molded article molded under the same conditions is significantly improved.

この理由として本発明者らはS,Se,Teのいずれかを含
有する粉末は粉末自体が加工によって変形あるいは微粉
化して空隙を埋めること、その際、内部の新生面が露出
して互いに接合しやすくなることが成形体の高密度化を
もたらすものと推定している。
As a reason for this, the present inventors have found that the powder containing any of S, Se, and Te is deformed or pulverized by processing itself to fill the voids. It is presumed that this leads to a higher density of the compact.

本発明の非晶質合金粉末は先に述べた三つの成形法す
なわち(i)衝撃圧着法、(ii)加熱圧縮法、(iii)
結合剤を使用する方法、のいずれにおいても効果的に使
用できるが、とくに(iii)の結合剤を使用する方法に
おいて効果が顕著である。(iii)の方法は結合剤の特
性上、通常室温付近で成形されるが、このような低温で
は高温の場合の過冷液体化にともなう軟化は期待できな
い。しかし本発明の合金粉末は常温付近でも比較的小さ
な圧力によって圧粉密度を高めることが可能である。
The amorphous alloy powder of the present invention can be obtained by the three molding methods described above, namely, (i) impact compression bonding, (ii) heat compression, and (iii)
Any of the methods using a binder can be effectively used, but the effect is particularly remarkable in the method using a binder of (iii). The method (iii) is usually formed at around room temperature due to the properties of the binder, but at such a low temperature, softening due to supercooled liquid at a high temperature cannot be expected. However, the powder density of the alloy powder of the present invention can be increased by a relatively small pressure even at around normal temperature.

また本発明の合金粉末は最近開発された強制圧延法
(日本金属学会主催シンポジウム予稿「超急冷粉とその
固化技術」1987年6月19日発行、1頁〜4頁)を適用す
るときにもすぐれた素材であることが見い出された。
In addition, the alloy powder of the present invention can be applied to a newly developed forced rolling method (published on June 19, 1987, pp. 1 to 4), which was published on June 19, 1987 by the Japan Institute of Metals, a symposium preliminarily, “Super-Quenched Powder and Solidification Technology”. It was found to be an excellent material.

強制圧延法は例えばステンレスのパイプなど強靭な容
器の中に非晶質合金などの粉末や箔を充填し、両端を密
閉した後、これを急速加熱し、直ちにパイプごとに圧延
する方法である。圧延中、粉末同志がこすれ合い、剪断
力が働くので、通常の圧縮成形法では得られないような
高密度の成形体が得られる。この強制圧延法を適用する
際、従来の合金では、結晶化温度直下にきわめて短時間
保持することが要求されたが、本発明の合金では温度と
時間に対する制約が大幅に緩和されたのである。例えば
Fe65Co10Mo2B19C4(原子%)非晶質合金の粉末を強制圧
延法で成形するとき、真密度に対して98%以上の密度を
得るためには、475±5℃の温度範囲で1分間の保持時
間というかなり厳しい条件が要求されたが、本発明の合
金Fe64Co10Mo2B19C4S1では430〜480℃の温度範囲で1分
間の保持という緩い条件でも同じ密度を得ることができ
る。
The forced rolling method is a method in which a tough container such as a stainless steel pipe is filled with a powder or foil of an amorphous alloy or the like, and after sealing both ends, this is rapidly heated and immediately rolled for each pipe. During rolling, the powders rub against each other and a shearing force acts, so that a high-density compact that cannot be obtained by a normal compression molding method is obtained. When this forced rolling method is applied, in the conventional alloy, it was required to maintain the temperature just below the crystallization temperature for a very short time, but in the alloy of the present invention, the restrictions on the temperature and time were greatly relaxed. For example
When forming powder of Fe 65 Co 10 Mo 2 B 19 C 4 (atomic%) amorphous alloy by the forced rolling method, in order to obtain a density of 98% or more with respect to the true density, a temperature of 475 ± 5 ° C. Although a very severe condition of 1 minute holding time in the temperature range was required, the mild condition of 1 minute holding in the temperature range of 430 to 480 ° C. was required for the alloy Fe 64 Co 10 Mo 2 B 19 C 4 S 1 of the present invention. But the same density can be obtained.

さらに箔などから間接的手法で作製された本発明の非
晶質合金は、熱処理などの脆化処理なしで粉体化できる
ので、粉末の表面には酸化膜がほとんどない。このため
強制圧延法以外の剪断力を利用して成形体をつくる方法
たとえば、押し出し法、鍛造法などに適用するとき、小
さな剪断力でも粉末同志が一体化しやすい利点をもつ。
Further, since the amorphous alloy of the present invention produced from a foil or the like by an indirect method can be powderized without embrittlement treatment such as heat treatment, there is almost no oxide film on the surface of the powder. For this reason, when applied to a method of forming a molded body using a shearing force other than the forced rolling method, for example, an extrusion method, a forging method, etc., there is an advantage that the powders are easily integrated even with a small shearing force.

本発明の非晶質合金粉末としては、その、90重量%以
上が35メッシュ(520μm)の篩を通過する粒度分布を
もつものが好ましい。これより粗い粉末は成形性が悪い
だけでなく、アトマイズ粉末では結晶化した粒を多く含
むので好ましくない。
The amorphous alloy powder of the present invention preferably has a particle size distribution in which 90% by weight or more passes through a 35-mesh (520 μm) sieve. A coarser powder is not preferred because not only is the moldability poor, but the atomized powder contains a lot of crystallized grains.

(実施例) 実施例1 第1表のNo.1〜16に、単ロール法で作製された箔をル
ーレットミルで粉砕してつくられた本発明の非晶質合金
粉末の組成を示した。またNo.17〜20は比較例に用いた
粉末の組成を示した。ただし、No.1〜16は箔の熱処理を
せずに粉砕したのに対して比較例はいずれも熱処理をし
た後粉砕した。第1表の粉末はいずれも分級して74〜14
9μmの範囲に整粒してある。
(Example) Example 1 Tables 1 to 16 in Table 1 show the composition of the amorphous alloy powder of the present invention produced by pulverizing a foil produced by a single roll method with a roulette mill. Nos. 17 to 20 show the compositions of the powders used in the comparative examples. However, Nos. 1 to 16 were pulverized without heat treatment of the foil, whereas the comparative examples were all pulverized after heat treatment. All of the powders in Table 1 were classified into 74-14
The particles are sized to a range of 9 μm.

これらの非晶質合金粉末、約3gに3重量%の結合剤
(ロックタイト290)を混合し、直径12mmの片押し型ダ
イスにて加圧力620MPa,加圧時間10秒の同一条件で圧縮
成形した。真密度に対する成形体の圧粉密度(%)を第
1表に示した。比較例の合金粉末は成形体をダイスから
抜き出す際に、型がくずれ密度の測定はできなかった。
About 3 g of these amorphous alloy powders and 3 wt% of a binder (Loctite 290) were mixed, and compression-molded under the same conditions with a pressing force of 620 MPa and a pressing time of 10 seconds using a single-press die having a diameter of 12 mm. . Table 1 shows the green density (%) of the compact with respect to the true density. In the alloy powder of the comparative example, when the compact was extracted from the die, the mold collapse density could not be measured.

実施例2 第2表は水アトマイズ法で作製した非晶質合金粉末の
組成を示している。No.1〜7は本発明の合金組成、No.8
〜10は比較例である。第2表の粉末はいずれも分級し
て、74〜149μmに整粒してある。実施例1に示した方
法と同じ条件で圧縮成形した時、各成形体の真密度に対
する相対圧粉密度(%)を第2表に示した。水アトマイ
ズ法によって作製された粉末においても本発明の合金組
成を有する非晶質粉末は、比較例に比べて、高い圧粉密
度をもたらすことが明らかになった。
Example 2 Table 2 shows the composition of the amorphous alloy powder produced by the water atomizing method. Nos. 1 to 7 are alloy compositions of the present invention, No. 8
1010 are comparative examples. All of the powders in Table 2 were classified and sized to 74 to 149 µm. Table 2 shows the relative green density (%) with respect to the true density of each compact when compression-molded under the same conditions as in the method shown in Example 1. It has been clarified that the amorphous powder having the alloy composition of the present invention, even in the powder produced by the water atomization method, provides a higher green density than the comparative example.

実施例3 第1表の各組成の非晶質合金粉末を強制圧延法によっ
て成形し、その見掛け密度を調べた。
Example 3 Amorphous alloy powders having the compositions shown in Table 1 were formed by forced rolling, and the apparent density was examined.

粉末の製造法、粒度は実施例1と同一である。本実施
例で用いた強制圧延法の条件は以下の通りである。
The production method and particle size of the powder are the same as in Example 1. The conditions of the forced rolling method used in this example are as follows.

パイプの材質はSUS304ステンレス鋼、寸法は内径20m
m、外径30mm、長さ150mmである。パイプの一端をプレス
でつぶして封じた後、約50gの粉末を装入した後、真空
に引き、Arガスで置換した。この状態のまま残りの一端
もつぶし、密封した。
Pipe material is SUS304 stainless steel, dimensions 20m inside diameter
m, outer diameter 30mm, length 150mm. After crushing one end of the pipe with a press and sealing it, about 50 g of powder was charged, then vacuum was drawn and replaced with Ar gas. In this state, the other end was crushed and sealed.

粉末を封入したパイプは冷間で、11mmまで7パスで圧
延した後、結晶化温度の下、30℃に保持したソルトバス
に浸し、約2分間加熱した。ソルトバスより引き出した
試料は直ちに、8mmまで1パスで圧延した後水中で急冷
した。切り出した成形体は厚さ約3mmの板であった。成
形体の断面組織から計算で求めた密度を真密度に対する
相対密度で表わした結果を第1表の右の欄に示した。
The pipe enclosing the powder was cold-rolled to 7 mm in 11 passes, then immersed in a salt bath maintained at 30 ° C. under the crystallization temperature, and heated for about 2 minutes. The sample withdrawn from the salt bath was immediately rolled in one pass to 8 mm and then quenched in water. The cut compact was a plate having a thickness of about 3 mm. The results obtained by expressing the density obtained by calculation from the cross-sectional structure of the molded body as a relative density to the true density are shown in the right column of Table 1.

第1表から明らかなように本発明の非晶質合金粉末は
比較例に比べて成形体の密度が高くなることが明らかで
ある。
As is clear from Table 1, it is clear that the amorphous alloy powder of the present invention has a higher density of the compact than the comparative example.

(発明の効果) 以上説明したように、本発明の非晶質合金粉末を立体
成形物の素材として用いるとき、従来の非晶質合金粉末
に比べて容易に高い密度が得られる。したがって成形体
が磁気コアの場合、小型化、高性能化できる。また構造
部材として用いるとき、すぐれた機械的特性が期待でき
る。
(Effect of the Invention) As described above, when the amorphous alloy powder of the present invention is used as a material for a three-dimensional molded product, a higher density can be easily obtained as compared with a conventional amorphous alloy powder. Therefore, when the molded body is a magnetic core, miniaturization and high performance can be achieved. When used as a structural member, excellent mechanical properties can be expected.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属−半金属系の非晶質合金粉末におい
て、S,Se,Teの1種又は2種以上を合計0.01〜3原子%
の範囲で含有することを特徴とする非晶質合金粉末。
1. A metal-metalloid amorphous alloy powder comprising one, two or more of S, Se and Te in a total amount of 0.01 to 3 atomic%.
Amorphous alloy powder characterized by containing in the range of:
JP63035410A 1988-02-19 1988-02-19 Amorphous alloy powder Expired - Lifetime JP2575040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035410A JP2575040B2 (en) 1988-02-19 1988-02-19 Amorphous alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035410A JP2575040B2 (en) 1988-02-19 1988-02-19 Amorphous alloy powder

Publications (2)

Publication Number Publication Date
JPH01212701A JPH01212701A (en) 1989-08-25
JP2575040B2 true JP2575040B2 (en) 1997-01-22

Family

ID=12441111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035410A Expired - Lifetime JP2575040B2 (en) 1988-02-19 1988-02-19 Amorphous alloy powder

Country Status (1)

Country Link
JP (1) JP2575040B2 (en)

Also Published As

Publication number Publication date
JPH01212701A (en) 1989-08-25

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
EP0069406A2 (en) Method of making shaped articles from metallic glass bodies
CN101256859A (en) Rare-earth alloy casting slice and method of producing the same
CN107924743B (en) Soft magnetic powder
JPH07145442A (en) Soft magnetic alloy compact and its production
US2864734A (en) Magnetic flake core and method of
JPH068484B2 (en) Article made from processable boron-containing stainless steel alloy and method of making the same
JP2002249802A (en) Amorphous soft magnetic alloy compact, and dust core using it
Collins Overview of rapid solidification technology
JPS62202506A (en) Permanent magnet and manufacture thereof
US3243288A (en) Ferrosilicon-alloy
JP2575040B2 (en) Amorphous alloy powder
EP0092091B1 (en) Apparatus for the production of magnetic powder
NO156117B (en) PROCEDURE FOR THE MANUFACTURE OF METAL POWDER.
JPS6014081B2 (en) Method for manufacturing amorphous structure
JPS6289802A (en) Production of fe-ni alloy green compact magnetic core
JPH0347946A (en) Manufacture of boron-containing austenitic stainless steel having excellent hot workability as well as cold ductility and toughness
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPH02138706A (en) Anisotropic permanent magnet
JPS613870A (en) Wear resistant parts and its production
Ramachandrarao Rapid solidification of steels
JPS61223103A (en) Production of amorphous structural body
JPS6321804A (en) Manufacture of permanent magnet of rare-earth iron
JPS63226007A (en) Rare-earth magnet and manufacture thereof