JPS61223103A - Production of amorphous structural body - Google Patents

Production of amorphous structural body

Info

Publication number
JPS61223103A
JPS61223103A JP3666786A JP3666786A JPS61223103A JP S61223103 A JPS61223103 A JP S61223103A JP 3666786 A JP3666786 A JP 3666786A JP 3666786 A JP3666786 A JP 3666786A JP S61223103 A JPS61223103 A JP S61223103A
Authority
JP
Japan
Prior art keywords
amorphous
powder
metal
metallic
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3666786A
Other languages
Japanese (ja)
Other versions
JPS6346121B2 (en
Inventor
Kazuo Suzuki
一雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3666786A priority Critical patent/JPS61223103A/en
Publication of JPS61223103A publication Critical patent/JPS61223103A/en
Publication of JPS6346121B2 publication Critical patent/JPS6346121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a three-dimensional amorphous metallic structural body by adding a binder to amorphous metallic powder obtd. by ultra-quick cooling of a molten metal and subjecting the powder to compaction to a desired shape then heating the molding to the glass transition temp. or below in a non- oxidizing atmosphere. CONSTITUTION:The metal or alloy in a molten state is discharged from a nozzle in the non-oxidizing atmosphere where a cryogenic fluid such as liquid air or liquid nitrogen is sprayed to cool ultra-quickly the molten metal or alloy and the pulverous amorphous powder is produced. The metallic powder or metallic oxide powder having the smaller grain size is further added and mixed at <=10wt% to and with such power of the amorphous metal or alloy with a thermosetting resin such as epoxy resin, urea resin or melamine resin as a binder. The mixture is packed into a metallic mold and is molded to a desired three-dimensional green compact molding. The molding is heated at the temp. below the glass transition temp. of the amorphous metal in the non-oxidizing atmosphere of gaseous hydrogen, etc., by which the amorphous metallic structural body having the three-dimensional shape is produced.

Description

【発明の詳細な説明】 本発明は非晶質構造体の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for manufacturing an amorphous structure.

一般に非晶質材料は溶融金属を臨界温度以上で急冷する
ととKよ多原子配列の規則化が阻害されて非晶質化した
ものである。この非晶質材料は結晶質材料の如く原子配
列が長周期的に構成されておらず、あえか4液体金属の
様に規則性がないことが特徴であシ、耐食性、強度およ
び磁気特性に優れた材料として注目されている。
Generally, an amorphous material becomes amorphous when a molten metal is rapidly cooled to a temperature higher than a critical temperature because the regularization of the K-polyatomic arrangement is inhibited. This amorphous material does not have a long-period atomic arrangement like crystalline materials, and is characterized by a lack of regularity like liquid metals, and has poor corrosion resistance, strength, and magnetic properties. It is attracting attention as an excellent material.

従来この非晶質材料を製造する方法としては例えば、(
1)平行に配置した金属板間に溶融金属を滴下させてこ
れを両金属板で挟圧急冷し非晶質の金属片を作るスプラ
ットクーリング法、(2)金属ロニル間に浴融金属を滴
下させて、これを両ロール間で急冷圧延して非晶質の金
属片を作る液滴圧延法、および(3)急速回転するドラ
ムの内壁面にノズルで溶融金属を噴射して線状またはり
がン状の非晶質材料を製造する回転ドラム法などがある
Conventionally, methods for manufacturing this amorphous material include, for example, (
1) A splat cooling method in which molten metal is dropped between metal plates arranged in parallel, and the molten metal is quickly cooled by being squeezed between the two metal plates to form an amorphous metal piece. (2) A bath molten metal is dropped between metal plates. (3) Drop rolling method in which the metal is rapidly cooled and rolled between two rolls to create an amorphous metal piece, and (3) molten metal is injected with a nozzle onto the inner wall surface of a rapidly rotating drum to form a linear or amorphous metal piece. Examples include the rotating drum method for producing cancer-like amorphous materials.

しかしながら上記のスプラットクーリング法。However, the above splat cooling method.

および液滴圧延法では得られる非晶質材料仲片状であシ
、また回転ドラム法で得られるものもIJ /ン状或は
線状で何れも平面的なものであるため3次元的な構造物
を製造することができず優れた特性を有するにも拘らず
実用化されていなかった。
The amorphous material obtained by the drop rolling method is in the form of a piece, and the material obtained by the rotating drum method is also flat or linear, so it has a three-dimensional shape. It has not been possible to manufacture structures and it has not been put into practical use despite having excellent properties.

本発明はかかる点に鑑み溶融金属を急冷して非晶質粉末
を形成し、この粉末にバインダーを10重量係以下添加
した後、所望形状に圧粉成形し、ひきつづき前記非晶質
粉末のガラス転移温度以下で加熱することによシ、極め
て容AK強度の高い3次元的な非晶質構造体を製造する
方法を提供することを目的とするものである。
In view of this, the present invention rapidly cools molten metal to form an amorphous powder, adds a binder to this powder of 10% or less by weight, and then compacts the powder into a desired shape, and subsequently forms a glass of the amorphous powder. The object of the present invention is to provide a method for producing a three-dimensional amorphous structure having extremely high AK strength by heating below the transition temperature.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法は非晶質の粉末を形成する第1の工程と、こ
の粉末にバインダーを10重量係以下添加し、所望形状
に圧粉成形した後加熱する第2の工程とからなる。
The method of the present invention consists of a first step of forming an amorphous powder, and a second step of adding 10 weight percent or less of a binder to this powder, compacting it into a desired shape, and then heating it.

第1の工程について説明すると例えば溶融金属を非酸化
性雰囲気中に設けたノズルから流下させながら、このノ
ズルの側面よシ極低温液体を放射状に噴霧することによ
シ、溶融金属を微細化させると共に急冷凝固せしめて原
子配列の規則化を阻止した非晶質粉末が得られる。
To explain the first step, for example, while the molten metal is flowing down from a nozzle installed in a non-oxidizing atmosphere, the molten metal is made fine by spraying a cryogenic liquid radially from the side of the nozzle. At the same time, it is rapidly solidified to obtain an amorphous powder in which the atomic arrangement is prevented from becoming regular.

この非晶質状態となる金属は通常用いられる構造材、磁
性材料など何れのものでも良く、その材質は限定されな
い。また溶融金属を急冷噴霧する極低温液体としては例
えば液体空気、液体酸素、液体窒素などがTo、b、こ
の極低温液体の噴出圧力と流量およびノズルから落下す
る溶融金属の流量を調整することにょシ得られる微粉末
の粒度調整を行なうことができる。こうし九急冷によれ
ばμmオーダの非晶質粉末を得ることができる。
The metal in this amorphous state may be any commonly used structural material, magnetic material, etc., and its material is not limited. Examples of cryogenic liquids used to rapidly cool and spray molten metal include liquid air, liquid oxygen, and liquid nitrogen. The particle size of the resulting fine powder can be adjusted. By this rapid cooling, it is possible to obtain an amorphous powder on the order of μm.

次にとの非晶質粉末を加熱する第2工程について説明す
ると、前記バインダーが添加された非晶質粉末を金型内
に充填し常法に従って所望の3次元的構造に圧粉成型す
る。このバインダーとしては主成分となる非晶質粉末よ
シ粒度の細かい、即ち表面積が大きい金属粉末、金属酸
化物粉末またはエポキシ樹脂、尿素樹脂、メラミン樹脂
、フェノール樹脂などの熱硬化性樹脂などが挙げられる
。なお、前記バインダーの爵加量を限定した理由は、そ
の添加量が10重量俤を越えると非晶質材料の特性が損
なわれ、特に磁性材料を製造する場合にはその磁気特性
を低下させるからである。
Next, the second step of heating the amorphous powder will be described. The amorphous powder to which the binder has been added is filled into a mold and compacted into a desired three-dimensional structure according to a conventional method. Examples of this binder include amorphous powder, which is the main component, metal powder with fine particle size, that is, a large surface area, metal oxide powder, or thermosetting resin such as epoxy resin, urea resin, melamine resin, and phenol resin. It will be done. The reason why the amount of the binder added is limited is because if the amount added exceeds 10% by weight, the properties of the amorphous material will be impaired, and especially when producing a magnetic material, the magnetic properties will be reduced. It is.

急冷によシ得られた非晶質粉末は1μmμmオーダ程度
の粒径を有し、バインダーを用いることなく圧粉成形し
、非晶質粉末のガラス転移温度以下で加熱することKよ
シ強度等の実用上十分な特性を有する非晶質構造体を製
造できる。
The amorphous powder obtained by rapid cooling has a particle size on the order of 1 μm μm, and is compacted without using a binder and heated below the glass transition temperature of the amorphous powder. An amorphous structure having practically sufficient properties can be manufactured.

更に、必要最小限度でバインダーを加えることによシ非
晶質材料のもつ特性を損なうことなく機械的特性等を良
好にすることができる。特に、金属酸化物、樹脂等の絶
縁物のバインダーを加えることにより磁気特性等を良好
にすることができる。
Furthermore, by adding a binder to the minimum necessary amount, mechanical properties etc. can be improved without impairing the properties of the amorphous material. In particular, magnetic properties etc. can be improved by adding an insulating binder such as a metal oxide or resin.

次に上記の方法によシ得られ九所望形状の圧粉体を水素
ガスなどの非酸化性雰囲気中で、非晶質粉末のガラス転
移温度(結晶化温度)以下に加熱し、3次元的な構造を
持つ非晶質構造体が得られるものである。
Next, the compacted powder having the desired shape obtained by the above method is heated to a temperature below the glass transition temperature (crystallization temperature) of the amorphous powder in a non-oxidizing atmosphere such as hydrogen gas, and three-dimensional An amorphous structure having a similar structure can be obtained.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例l 5i15原子係、BIO原子係、残部Coよシなる組成
物を高周波誘導炉で溶融して均質化させた後、この溶融
金属を口径1.0■φの廊0製ノズルからAr itス
ス中流出させ゛ると共に、前記ノズルより10−下方に
位置させた流体噴霧用ノズルから10気圧の圧力で液体
窒素を放射状に噴霧して溶融金属を微粉化すると共に急
冷凝固せしめて非晶質の粉末を得た。この粉末の平均粒
径を調べたところ10〜13μmを有し、またX@的に
回折ピークを示さず非晶質状態であう九。
Example 1 A composition consisting of 5i15 atoms, BIO atoms, and the remainder Co was melted and homogenized in a high-frequency induction furnace, and then the molten metal was injected through a nozzle made by A00 with a diameter of 1.0 mm. At the same time, liquid nitrogen is sprayed radially at a pressure of 10 atmospheres from a fluid spray nozzle located 10 degrees below the nozzle to pulverize the molten metal and rapidly solidify it to form an amorphous metal. powder was obtained. When the average particle size of this powder was examined, it was found to be 10 to 13 μm, and it did not show any diffraction peaks and was in an amorphous state.

次にこの非晶質粉末(Co −81−B系非晶質粉末)
85重量部と平均粒径0.1 m以下のCo。
Next, this amorphous powder (Co-81-B amorphous powder)
85 parts by weight of Co with an average particle size of 0.1 m or less.

粉末15重量部とを攪拌混合した後金型成形法によシ、
加圧ガフ、0トン/d意で圧粉成形し、直径10■φ、
高さ10■の円柱状圧粉体を製造した。次にこの圧粉体
を露点−65℃の脱水水素謬囲気中で350 ’CK5
時間加熱を行ない円柱状の非晶質構造体を得た。
After stirring and mixing with 15 parts by weight of powder, molding was performed using a molding method.
Pressure gaff, compacted at 0 tons/d, diameter 10 φ,
A cylindrical green compact with a height of 10 cm was produced. Next, this green compact was heated at 350'CK5 in a dehydrating hydrogen atmosphere with a dew point of -65℃.
A columnar amorphous structure was obtained by heating for a period of time.

参照例 前記実施例1において用いたCo−8i−B系非晶質粉
末のみを同実施例1と同様に圧粉成形して角柱状の圧粉
体を製造した。つづいて、この圧粉体を水素雰囲気中で
320℃にて5時間加熱を行ない円柱状の非晶質構造体
を得た。
Reference Example Only the Co-8i-B amorphous powder used in Example 1 was compacted in the same manner as in Example 1 to produce a prismatic compact. Subsequently, this green compact was heated at 320° C. for 5 hours in a hydrogen atmosphere to obtain a cylindrical amorphous structure.

得られた本実施例1及び参照例の構造体についてその硬
度を測定した。その結果、本実施例1の構造体はビッカ
ース硬度でHマ=770を示し、参照例の構造体(Hv
 = 780 )とほぼ同等の値を有するものであった
。なお、比較の丸めに実施例1での加熱条件を850℃
で5時間として粉末を結晶化させ・た構造体についても
同様にその硬度を測定したところ、Hマ=220と本実
施例1の構造体に比べて173以下の硬度しか得られな
かった。
The hardness of the obtained structures of Example 1 and Reference Example was measured. As a result, the structure of Example 1 exhibited a Vickers hardness of Hv=770, and the structure of Reference Example (Hv
= 780). For comparison purposes, the heating conditions in Example 1 were changed to 850°C.
When the hardness of the structure obtained by crystallizing the powder for 5 hours was measured in the same manner, the hardness was only 173 or less compared to the structure of Example 1, which had an H value of 220.

・    また、本実施例1の構造体は参照例の構造体
に比べて緻密なもので6りた。
- Also, the structure of Example 1 was denser than the structure of Reference Example.

実施例2 実施例1において用いたCo −St −B系非晶質粉
末95重量部に対してバインダーとしてエポキシ樹脂5
重量部を攪拌混合し、この混合粉末を金型で成形して外
径50箇φ、内径40■φ、高さ101mのリング状圧
粉体を得た。次にこの圧粉体を水素気流中で320℃に
5時間加熱し。
Example 2 5 parts by weight of epoxy resin was added as a binder to 95 parts by weight of Co-St-B amorphous powder used in Example 1.
The weight parts were stirred and mixed, and the mixed powder was molded in a mold to obtain a ring-shaped green compact having an outer diameter of 50 φ, an inner diameter of 40 φ, and a height of 101 m. Next, this green compact was heated to 320° C. for 5 hours in a hydrogen stream.

磁石用の非晶質構造体を得た。An amorphous structure for a magnet was obtained.

このようにして得られた構造体についてその磁気特性を
調べたところ透磁率(μwax ) =58000〜6
5000、抗磁力(He ) =0.05〜o、os(
o・)と、通常用いられている軟質磁性材料が透磁率4
0000以上、抗磁力0.1(0・)以下であるのに比
べて優れた磁気特性を有することが認められた。
The magnetic properties of the thus obtained structure were investigated and found to be magnetic permeability (μwax) = 58,000 to 6.
5000, coercive force (He) = 0.05~o, os(
o・), and commonly used soft magnetic materials have magnetic permeability of 4.
0,000 or more and coercive force of 0.1 (0.) or less, it was recognized that the magnetic properties were excellent.

以上説明した如く本発明に係る非晶質構造体の製造方法
によれば、溶融金属を急冷することによシ非晶質粉末を
製造し、これにバインダーの添加、圧粉成形、所定温度
での加熱を行なうことによシ従来片状、すがン状、或は
線状の非晶質材料しか得られなかった欠点を改善して強
度の高い3次元的な構造を有する非晶質構造体を得るこ
とができ、特に優れた磁気特性と硬度が要求される磁性
材料の製造において顕著な効果を発揮するものである。
As explained above, according to the method for manufacturing an amorphous structure according to the present invention, an amorphous powder is manufactured by rapidly cooling a molten metal, and a binder is added to the amorphous powder, the powder is compacted, and the powder is heated at a predetermined temperature. By heating the material, we can overcome the drawbacks of conventionally only being able to obtain amorphous material in the form of flakes, ridges, or lines, and create an amorphous structure with a strong three-dimensional structure. It is particularly effective in the production of magnetic materials that require excellent magnetic properties and hardness.

また、従来、リデン状非晶質材料では、トロイダル形状
の磁心しか得られなかったのに対し、本発明によシ任意
の形状にできる。
In addition, conventionally, with the redenant amorphous material, only a toroidal-shaped magnetic core could be obtained, but the present invention allows the core to be formed into any shape.

Claims (1)

【特許請求の範囲】[Claims] 溶融金属を急冷して非晶質粉末を形成し、この非晶質粉
末に、バインダーを10重量%以下添加した後所望形状
に圧粉成形し、ひきつづき前記非晶質粉末のガラス転移
温度以下で加熱することを特徴とする非晶質構造体の製
造方法。
The molten metal is rapidly cooled to form an amorphous powder, a binder is added to this amorphous powder in an amount of 10% by weight or less, and then compacted into a desired shape, and then the amorphous powder is heated at a temperature below the glass transition temperature of the amorphous powder. A method for producing an amorphous structure, the method comprising heating.
JP3666786A 1986-02-21 1986-02-21 Production of amorphous structural body Granted JPS61223103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3666786A JPS61223103A (en) 1986-02-21 1986-02-21 Production of amorphous structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3666786A JPS61223103A (en) 1986-02-21 1986-02-21 Production of amorphous structural body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52015704A Division JPS6014081B2 (en) 1977-02-16 1977-02-16 Method for manufacturing amorphous structure

Publications (2)

Publication Number Publication Date
JPS61223103A true JPS61223103A (en) 1986-10-03
JPS6346121B2 JPS6346121B2 (en) 1988-09-13

Family

ID=12476207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3666786A Granted JPS61223103A (en) 1986-02-21 1986-02-21 Production of amorphous structural body

Country Status (1)

Country Link
JP (1) JPS61223103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112613A (en) * 2019-12-24 2020-05-08 安徽卓锐三维科技有限公司 Auxiliary cooling device for working cavity of laser sintering equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
JPS51133796A (en) * 1975-04-30 1976-11-19 Ibm Method of manufacturing magnetic powder
JPS53100905A (en) * 1977-02-16 1978-09-02 Toshiba Corp Manufacture of sintered material of noncrystalline structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
JPS51133796A (en) * 1975-04-30 1976-11-19 Ibm Method of manufacturing magnetic powder
JPS53100905A (en) * 1977-02-16 1978-09-02 Toshiba Corp Manufacture of sintered material of noncrystalline structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112613A (en) * 2019-12-24 2020-05-08 安徽卓锐三维科技有限公司 Auxiliary cooling device for working cavity of laser sintering equipment

Also Published As

Publication number Publication date
JPS6346121B2 (en) 1988-09-13

Similar Documents

Publication Publication Date Title
US4197146A (en) Molded amorphous metal electrical magnetic components
JP3771224B2 (en) Amorphous soft magnetic alloy powder and powder core and radio wave absorber using the same
KR910002350B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
US6827557B2 (en) Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
US6022424A (en) Atomization methods for forming magnet powders
JP2004204296A (en) BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
WO2016121950A1 (en) Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
JP2783997B2 (en) Method for producing powder for sendust core with low loss
JP2002249802A (en) Amorphous soft magnetic alloy compact, and dust core using it
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPWO2016121951A1 (en) Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, coil component, and motor
TW201917225A (en) Fe-based alloy, crystalline fe-based alloy atomized powder, and magnetic core
JP2002151317A (en) Dust core and its manufacturing method
JPS6014081B2 (en) Method for manufacturing amorphous structure
JP4899254B2 (en) Isotropic powder magnet material, manufacturing method thereof, and bonded magnet
JPS6321807A (en) Electromagnetic component made from amorphous alloy powder and manufacture thereof
JPS61223103A (en) Production of amorphous structural body
JPS62250607A (en) Manufacture of fe-si-al alloy dust core
JPS58182802A (en) Preparation of permanent magnet
JPH0277505A (en) Apparatus for casting metal powder
JPS6289802A (en) Production of fe-ni alloy green compact magnetic core
KR102118955B1 (en) Magnetic powder, compressed powder core and method of preparation thereof
JP2575040B2 (en) Amorphous alloy powder
JPH0270011A (en) Production of permanent magnet material