JPS62250607A - Manufacture of fe-si-al alloy dust core - Google Patents
Manufacture of fe-si-al alloy dust coreInfo
- Publication number
- JPS62250607A JPS62250607A JP61093687A JP9368786A JPS62250607A JP S62250607 A JPS62250607 A JP S62250607A JP 61093687 A JP61093687 A JP 61093687A JP 9368786 A JP9368786 A JP 9368786A JP S62250607 A JPS62250607 A JP S62250607A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- particle size
- alloy
- apparent density
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 9
- 239000000428 dust Substances 0.000 title abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 116
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000001301 oxygen Substances 0.000 claims abstract description 33
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 33
- 239000000956 alloy Substances 0.000 claims abstract description 24
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 23
- 229910002796 Si–Al Inorganic materials 0.000 claims abstract description 8
- 238000009689 gas atomisation Methods 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 19
- 238000000465 moulding Methods 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000035699 permeability Effects 0.000 abstract description 34
- 238000010298 pulverizing process Methods 0.000 abstract description 16
- 235000019353 potassium silicate Nutrition 0.000 abstract description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 6
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 230000005389 magnetism Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000000889 atomisation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- -1 which has 5i4-13% Inorganic materials 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、Fe−5i−Al系合金圧粉磁心の製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a Fe-5i-Al alloy dust core.
従来よりFe−Si−Al系合金圧粉磁心は、鉄圧粉磁
心及びFe−Ni合金圧粉磁心とともに高周波数帯域に
おいて、安定して高い透磁率を示すことから電子機8(
内の電源より発生する高周波ノイズ、すなわちノーマル
モードと称せられる電源ライン間を往復するノイズを、
大インピーダンスとして減衰させるチョークコイルとし
て用いられてきた。Conventionally, Fe-Si-Al alloy powder magnetic cores have been used in electronic equipment 8 (
High frequency noise generated from the internal power supply, that is, noise that goes back and forth between the power supply lines called normal mode, is
It has been used as a choke coil to attenuate large impedance.
Fe−Si−Al系合金圧粉磁心は鉄圧粉磁心より高周
波特性に優、hているほか、特に直流重畳特性に優れて
いること、及びNi、Mo等効果な原料を含まず、F”
e−Ni合金圧粉磁心よりは低廉であること、から、近
年徐々に需要が増加しつつある。The Fe-Si-Al alloy powder magnetic core has superior high frequency characteristics than the iron powder magnetic core, and also has particularly excellent DC superposition characteristics, and does not contain effective raw materials such as Ni and Mo.
Since it is cheaper than e-Ni alloy powder magnetic cores, the demand for it has been gradually increasing in recent years.
従来、Fe−8i−Al系合金圧粉磁心はインゴットを
溶製し、これを拡散焼鈍してA1、Siの偏析を低減し
た上で粗粉砕し、さらに、数段階の粉砕工程を経て原料
粉末とした後、粉末表面を無機絶縁物質で被覆し圧粉成
形して加熱することにより製造されてきた。Conventionally, Fe-8i-Al alloy powder magnetic cores are made by melting an ingot, diffusion annealing it to reduce the segregation of A1 and Si, and then coarsely pulverizing it, and then going through several stages of pulverizing processes to obtain raw material powder. It has been manufactured by coating the powder surface with an inorganic insulating material, compacting it, and heating it.
しかしながら、上述のようなインゴットの粉砕による工
程では、インゴットの製造、焼鈍、粉砕の全工程が長く
、勢い圧粉用原料粉末の原価が高くなり、結果としてF
e−5L−AI系合金圧粉磁心自体の高価格をもたらし
、チョークコイルとしての昏及が制約されている現状で
ある。However, in the process of crushing the ingot as described above, the entire process of manufacturing, annealing, and crushing the ingot is long, which increases the cost of raw material powder for force compaction, and as a result, F
The current situation is that the e-5L-AI alloy powder magnetic core itself is expensive, and its use as a choke coil is restricted.
本発明は、以上の7JL情に鑑みてなされたもので粉末
粒子の性状と圧粉磁心の磁気的性質との関係についての
新たな知見に基づいて、良好な磁性を安定して有しかつ
、より廉価なF e−S i−A l系合金圧粉磁心を
提供することを目的とする。The present invention was made in view of the above 7JL circumstances, and is based on new knowledge about the relationship between the properties of powder particles and the magnetic properties of the dust core, and is based on the following: It is an object of the present invention to provide a less expensive Fe-Si-Al alloy powder magnetic core.
本発明は、後述する粉末の形態及び粒度と圧粉磁心の磁
気的性質との関係についての新たな知見に基づき、高性
能で廉価なFe−5L−Al系合金圧粉磁心を得るため
には、Fe−8i−Al系合金の溶湯をガスアトマイズ
して球状の粗粉末を製造し、然る後該粗粉末をさらに粉
砕して得られた平均粒度が40〜110μIの範囲内に
あり、かつ見掛密度が2.6〜3.8 g /aI?で
ある粉末を原料粉末として用いることが有効であること
及びより高透磁率とするためには、粉末に含まれる酸素
量の低減が有効であることを見出したものである。The present invention is based on new findings regarding the relationship between the powder morphology and particle size and the magnetic properties of the powder magnetic core, which will be described later. , a molten metal of Fe-8i-Al alloy is gas atomized to produce a spherical coarse powder, and then the coarse powder is further pulverized, and the average particle size obtained is within the range of 40 to 110 μI, and Is the loading density 2.6 to 3.8 g/aI? The inventors have discovered that it is effective to use a powder having the following properties as a raw material powder, and that in order to obtain higher magnetic permeability, it is effective to reduce the amount of oxygen contained in the powder.
なお、ここでF e−S L−A I系合金とは、いわ
ゆるセンダスト合金として知られる合金系のことであっ
て、5i4−13%、Al 4−7%、残部Feを主成
分とし、その他年可避の不純物と、必要に応じて錦以下
の添加元素を含む高透磁率合金を指す。Note that the Fe-S L-AI alloy here refers to an alloy system known as a so-called sendust alloy, which has 5i4-13%, Al 4-7%, the balance Fe as its main components, and other elements. Refers to high permeability alloys that contain unavoidable impurities and, if necessary, additional elements below brocade.
まず、本発明者らが新たに見出した知見の一つについて
説明する。First, one of the findings newly discovered by the present inventors will be explained.
圧粉磁心においては、実効透磁率が高周波帯域まで安定
して高くほぼ一定の値を保つことが最も重要である。こ
の目的のためにFe−8i−Al系合金圧粉磁心におい
ては、粉末粒子の表面に水ガラス等の無機絶縁物質を被
覆したものを加圧成形することで粒子間が一定程度絶縁
された状態で磁心となし、これを熱処理して上記の特性
を得ている。In powder magnetic cores, it is most important that the effective magnetic permeability remains stably high and approximately constant up to a high frequency band. For this purpose, in the Fe-8i-Al alloy powder magnetic core, the surface of the powder particles is coated with an inorganic insulating material such as water glass and then pressure-formed to maintain a certain degree of insulation between the particles. This is used as a magnetic core, which is then heat treated to obtain the above characteristics.
粉末粒子の表面絶縁に有機物でなく、耐熱性のある無機
物を用いるのは、最終の熱処理を可能とするためである
。The reason why a heat-resistant inorganic material is used instead of an organic material for the surface insulation of the powder particles is to enable the final heat treatment.
実効透磁率の値とその周波数特性に影響する因子として
最も大きなものは1本発明者らによれば(A)粒子の形
態と(B)粒度である。According to the present inventors, the biggest factors influencing the value of effective magnetic permeability and its frequency characteristics are (A) particle morphology and (B) particle size.
(A)については粒子が絶縁皮膜で覆われていても、成
形の際に粒子相互が圧着すると、皮膜が破壊されて絶縁
が劣化し易く、交番磁界の周波数が高くなるほど渦電流
が流れ易くなり、実効透磁率が減少する。従って、周波
数特性の面から、粒子の形状として、局部的な圧着によ
る絶縁破1iを起こしにくいことが求められる。すなわ
ち、粒子表面が乱れた不規則形状であると、成形時に絶
縁破壊し易く、表面の滑らかな球状粒子が最も好ましい
。よって、不規則形状となるほど粉末の見掛密度は低く
なるので形状パラメータとしての見掛密度は高いことが
望ましい。Regarding (A), even if the particles are covered with an insulating film, if the particles are pressed against each other during molding, the film is likely to be destroyed and the insulation will deteriorate, and the higher the frequency of the alternating magnetic field, the more likely eddy currents will flow. , the effective permeability decreases. Therefore, from the viewpoint of frequency characteristics, the particle shape is required to be difficult to cause insulation breakdown 1i due to local pressure bonding. That is, if the particle surface is disordered and irregularly shaped, dielectric breakdown will easily occur during molding, and spherical particles with a smooth surface are most preferable. Therefore, the apparent density of the powder decreases as the shape becomes more irregular, so it is desirable that the apparent density as a shape parameter be high.
しかしながら透磁率は、一方圧粉磁心の密度のパラメー
タでもあり、見掛密度の最も高い完全球状粒子の場合に
は点接触で圧密化されるので、成形体の密度はかえって
低く、また反磁場係数が高くなることもあって、高い透
磁率を達成することがやや困難となる。従って良好な絶
縁状態を保つことによって実効透磁率が減少し始める周
波数をより高くすることと、成形体の密度を高めること
によって初期直流の実効透磁率を高めることの間には、
均衡を図る必要がある。この目的のためには、粉末の見
掛密度として適正な範囲がある。However, magnetic permeability is also a parameter for the density of the powder magnetic core, and in the case of perfectly spherical particles with the highest apparent density, they are consolidated by point contact, so the density of the compact is rather low, and the demagnetizing field coefficient is This makes it somewhat difficult to achieve high magnetic permeability. Therefore, there is a trade-off between increasing the frequency at which the effective permeability begins to decrease by maintaining good insulation and increasing the initial DC effective permeability by increasing the density of the compact.
A balance needs to be struck. For this purpose, there is a suitable range for the apparent density of the powder.
一方、(B)の視点からは、粉末粒子があまりに粗大で
あると、交番磁界による渦電流が生じ易く、実効透磁率
の周波数特性が劣化し易く、また成形体の強度が低下す
るので粒子の粒度には上限がある。逆にあまりに細粒で
あると、粉末粒子の圧縮性が低下して初期(直流)の透
磁率が低下するので下限の粒度が存在する。On the other hand, from the viewpoint of (B), if the powder particles are too coarse, eddy currents are likely to occur due to the alternating magnetic field, the frequency characteristics of the effective magnetic permeability are likely to deteriorate, and the strength of the compact is reduced, so the particles There is an upper limit to particle size. On the other hand, if the particles are too fine, the compressibility of the powder particles decreases and the initial (DC) magnetic permeability decreases, so there is a lower limit to the particle size.
本発明者らが新たに見出した知見の二は、粉末粒子に含
まれる酸素量の圧粉磁心の磁性への影響である。すなわ
ち、粉末粒子に含有される酸素量が少なくなると初期(
直流)の透磁率の上昇が認められた。これは溶製法によ
って製造されたFe−8i−Al系合金の材料では常識
であるが、同様の現象が圧粉磁心においても初めて見出
されたものである。The second finding newly discovered by the present inventors is the influence of the amount of oxygen contained in the powder particles on the magnetic properties of the dust core. In other words, when the amount of oxygen contained in the powder particles decreases, the initial (
An increase in the permeability of direct current (DC) was observed. Although this is common knowledge for Fe-8i-Al alloy materials manufactured by melting, this is the first time that a similar phenomenon has been found for powder magnetic cores.
本発明者らは、以上の知見を基にFe−Si−AI系合
金圧粉磁心について最適の粉末粒子の見掛密度と粒度を
規定し、この規定された範囲内の粉末を廉価に製造する
ための条件及び含有酸素量を低減する条件をさらに検討
した。The present inventors have defined the optimum apparent density and particle size of powder particles for Fe-Si-AI alloy powder magnetic cores based on the above knowledge, and have produced powder within these defined ranges at low cost. The conditions for reducing the amount of oxygen contained and the conditions for reducing the amount of oxygen contained were further investigated.
すなわち、Fe−8i−AIl系合金溶湯からガスアト
マイズによって球状の粗粉末を製造し、然る後該粗粉末
をさらに粉砕して得られた平均粒度が4(hllo p
m、見掛密度2.6−3.8 g /fflの粉末を
用いた圧粉磁心が優れた特性を有し、かつ従来より廉価
に製造し得ること、及び球状の粗粉末の酸素含有量が1
100PP以下であることが有効なことを見出し、本発
明をなすに至った。That is, a spherical coarse powder is produced from a molten Fe-8i-AIl alloy by gas atomization, and then the coarse powder is further crushed to obtain an average particle size of 4 (hllo p
The fact that a dust core using powder with an apparent density of 2.6-3.8 g/ffl has excellent properties and can be produced at a lower cost than before, and that the oxygen content of the spherical coarse powder is is 1
It has been found that it is effective to have a PP of 100 PP or less, and the present invention has been completed.
以下本発明をさらに詳細に説明する。The present invention will be explained in more detail below.
まず、平均粒度の上限を110μmとした理由について
述べる。First, the reason why the upper limit of the average particle size was set to 110 μm will be described.
第1図は、見掛密度が3.4±0.1 g /d?とほ
ぼ等しく、平均粒度の異なる5、5%Al−9,5%S
i−残Feの合金粉末より成る圧粉磁心の透磁率の高周
波数特性の平均粒度依存性を示したものである。粉末は
粒度調整の後、水素気流中900℃にて焼鈍し、水ガラ
スを固形分として0.8重量%を粉末表面に被覆し、2
0ton/ cxlの圧力で外径28+m、内径15n
m、高さ8III11のリング状に成形後、大気中70
0℃にて焼鈍を行なった。この成形体の透磁率をインピ
ーダンスメーターによって測定した。第1図縦軸の1t
e13M/ p elOKは、13MH2における実
効透磁率μe13Mと10KI+7.における実効透磁
率μelOKの比であり、透磁率の高周波数特性の目安
とした。第1図から平均粒度が大きくなるほど、μe1
3M/μelOKが小さくなって周波数特性が劣化して
いく様子が認められる。特に平均粒度が110μmを越
えるとμe13M/μelOにが0.4を下まわり劣化
が著しい。従って、平均粒度の上限は110μmとした
。なお、平均粒度130μmを越えると成形体の強度が
低く、ハンドリングが不可能であった6
次に平均粒度の下限を40μmとした理由を述べる。In Figure 1, the apparent density is 3.4±0.1 g/d? 5,5%Al-9,5%S with different average particle size
This figure shows the dependence of the high frequency characteristics of magnetic permeability on the average particle size of a powder magnetic core made of alloy powder of i-residue Fe. After adjusting the particle size, the powder was annealed at 900°C in a hydrogen stream, and the powder surface was coated with 0.8% by weight of water glass as a solid content.
0ton/cxl pressure, outer diameter 28+m, inner diameter 15n
After molding into a ring shape with a height of 8III11 m and a height of 70 m in the atmosphere.
Annealing was performed at 0°C. The magnetic permeability of this molded body was measured using an impedance meter. Figure 1: 1t on the vertical axis
e13M/ pelOK is the effective magnetic permeability μe13M in 13MH2 and 10KI+7. It is the ratio of the effective magnetic permeability μelOK at From Figure 1, the larger the average particle size, the more μe1
It can be seen that the frequency characteristics deteriorate as 3M/μelOK decreases. In particular, when the average particle size exceeds 110 μm, μe13M/μelO becomes less than 0.4, resulting in significant deterioration. Therefore, the upper limit of the average particle size was set to 110 μm. Note that when the average particle size exceeds 130 μm, the strength of the molded product is low and handling is impossible.6 Next, the reason why the lower limit of the average particle size was set to 40 μm will be described.
第2図は、第1図において用いたとの同一の方法で製造
した成形体のl0KIIZにおける実効透磁率μelO
Kの平均粒度依存性を示した・ものである。粒度が大き
くなるほどμeLOKは大きくなるが、Fe−Si−A
I系合金圧粉磁心に要求されるμelOKの最低値7
0を得るには、平均粒度を40μm以上としなければな
らないことがわかる。Figure 2 shows the effective magnetic permeability μelO at l0KIIZ of a molded body manufactured by the same method as used in Figure 1.
This shows the dependence of K on the average particle size. μeLOK increases as the particle size increases, but Fe-Si-A
Minimum value of μelOK required for I-based alloy powder magnetic core 7
It can be seen that in order to obtain a value of 0, the average particle size must be 40 μm or more.
次いで、見掛密度の下限を2.6 g /co?とした
理由について述べる。第3図は、平均粒度が70±5μ
mとほぼ等しく、見掛密度の異なる5、5%At−9,
5%Si−残Feの合金粉末より成る圧粉磁心の周波数
特性の見掛密度依存性を示す。Next, set the lower limit of the apparent density to 2.6 g/co? The reasons for this are explained below. Figure 3 shows that the average particle size is 70±5μ.
5.5% At-9, which is approximately equal to m and has a different apparent density.
The apparent density dependence of the frequency characteristics of a powder magnetic core made of a 5% Si-remaining Fe alloy powder is shown.
磁心の製造方法は、第1図、第2図の場合と同様である
。見掛密度が低い不規則形状粉末はど、μe13M/μ
elOKが低く周波数特性に劣る。μc13M/μel
OKの必要値を第1図において触れたように0.4とし
て見掛密度の下限を2.6とした。The method of manufacturing the magnetic core is the same as in the case of FIGS. 1 and 2. Irregularly shaped powder with low apparent density, μe13M/μ
elOK is low and frequency characteristics are poor. μc13M/μel
As mentioned in FIG. 1, the required value of OK was set as 0.4, and the lower limit of the apparent density was set as 2.6.
さらに、見掛密度の上限を3.8 g /ciとした理
由につき述べる。Furthermore, the reason why the upper limit of the apparent density was set to 3.8 g/ci will be described.
第4図は第3図と同様の粉末を用い、長さ40+nn+
。Figure 4 uses the same powder as in Figure 3 and has a length of 40+nn+
.
幅Lone、高さ7 +IInの成形体を作成して、そ
の抗折力を測定した結果である。見掛密度の高い粉末。These are the results of measuring the transverse rupture strength of a molded body having a width of Lone and a height of 7+IIn. Powder with high apparent density.
すなわち粒子間の接触面積が小さく、絡み合いの少ない
粉末の成形体はど抗折力が低くなっている。In other words, a powder compact with a small contact area between particles and less entanglement has a lower transverse rupture strength.
F e−S i−A l系合金は、塑性変形能が低く、
従ってその圧粉成形体は、鉄やF e−N i合金の成
形体に比して強度が小さくなるが、少なくとも自動プレ
ス成形ラインにおいて取扱いできる強度として、最低で
も0.2kg/nwi”は必要である。この点から、粉
末の見掛密度の上限を3.8 g /cdとする。F e-S i-A l alloys have low plastic deformability;
Therefore, the strength of the compacted compact is lower than that of iron or Fe-Ni alloy compacts, but it must be at least 0.2 kg/nwi" strong enough to be handled on an automatic press forming line. From this point of view, the upper limit of the apparent density of the powder is set to 3.8 g/cd.
以上、第1図〜第4図に示したように、安定した透磁率
と周波数特性を有する圧粉磁心を得る上で、40−11
074111の平均粒度、2.6−3.8 g /cd
の見掛密度の粉末が実用的なものであることが明らかで
ある。As shown in Figures 1 to 4, in order to obtain a dust core with stable magnetic permeability and frequency characteristics, 40-11
Average particle size of 074111, 2.6-3.8 g/cd
It is clear that a powder with an apparent density of .
なお、当然のことながら粉末を加圧成形する際の圧力に
よっても透磁率とその周波数特性は変化するが、Fe−
Si−AIl系合金場合には、15ton/d−以上の
成形圧力でないと70以上の透磁率を得ることは難しい
。Naturally, the magnetic permeability and its frequency characteristics change depending on the pressure when the powder is pressure-molded, but Fe-
In the case of Si-AIl alloys, it is difficult to obtain a magnetic permeability of 70 or more unless the molding pressure is 15 tons/d- or more.
また成形圧は、金型寿命の制約から現状では最大上げて
も25ton/ cxl程度が上限である。15から2
5ton/ aJ程度まで成形圧が変化しても、上述の
ような粉末粒子の粒度及び見掛密度の特性に及ぼす影響
は総体として変わらない。Furthermore, the molding pressure is currently limited to about 25 tons/cxl due to mold life constraints. 15 to 2
Even if the molding pressure changes up to about 5 tons/aJ, the effects on the characteristics of the particle size and apparent density of the powder particles as described above do not change as a whole.
以上のように特定された粒度と見掛密度を有する粉末を
廉価に得るために、本発明者らは溶湯から直接粉末を製
造する手法に着眼し、種々検討を行なった。その結果、
Fe−5i−Al系合金の溶湯からガスアトマイズによ
って球状の粗粉末を製造し、然る後該粗粉末をさらに微
粉砕することで廉価に目的の粉末が得られることを見出
した。In order to obtain powder having the particle size and apparent density specified above at a low cost, the present inventors focused on a method of producing powder directly from molten metal and conducted various studies. the result,
It has been found that the desired powder can be obtained at a low cost by producing a spherical coarse powder from a molten Fe-5i-Al alloy by gas atomization, and then further pulverizing the coarse powder.
このガスアトマイズ方法において用いられるガスは1通
常のアルゴン、あるいは窒素等非酸化性であれば特に限
定されない。The gas used in this gas atomization method is not particularly limited as long as it is non-oxidizing, such as ordinary argon or nitrogen.
微粉砕後の最終目的の平均粒度が40〜110μmであ
るので粉砕による見掛密度の調整の必要からガスアトマ
イズままの平均粒度は粉砕後の最終粒度の120%以上
であることが必要である。従ってガスアトマイズままの
平均粒度で、48〜132μm以上必要だが、この程度
に粒度を調整することは、たとえば?8場温度が160
0°Cの場合、ノズル径を4IIW11φ以上、ガス圧
力を100kg/cd以下とすればほぼ達成される。ガ
スアトマイズままの平均粒度は粉砕効率の点から300
μmが好ましく、この場合、1回の粉砕工程で最終目標
の粉末が容易に得られる。Since the final target average particle size after pulverization is 40 to 110 μm, it is necessary to adjust the apparent density by pulverization, so the average particle size as gas atomized must be 120% or more of the final particle size after pulverization. Therefore, the average particle size as gas atomized is required to be 48 to 132 μm or more, but is it possible to adjust the particle size to this extent, for example? 8th place temperature is 160
In the case of 0°C, this can be almost achieved by setting the nozzle diameter to 4IIW11φ or more and the gas pressure to 100kg/cd or less. The average particle size as gas atomized is 300 from the point of view of pulverization efficiency.
μm is preferred; in this case, the final target powder can be easily obtained in one crushing step.
300μm以下とするにはノズル径は10nmφ以下と
することが必要である。In order to make it 300 μm or less, the nozzle diameter needs to be 10 nmφ or less.
粉砕方法は、特に限定されることなく広範な方法を適用
できる。たとえばスタンプミル、ボールミル、振動ミル
、ジェットミル等によって注意深く条件設定すれば目的
の粒度及び見掛密度の粉末を1回の粉砕工程で得ること
が可能である。The pulverization method is not particularly limited and a wide variety of methods can be applied. For example, by carefully setting the conditions using a stamp mill, ball mill, vibration mill, jet mill, etc., it is possible to obtain a powder having the desired particle size and apparent density in a single pulverization process.
また1本発明のガスアトマイズ粉末は、通常の場合、最
大でも粒径500μmであるので、従来方法。In addition, the gas atomized powder of the present invention usually has a maximum particle size of 500 μm, so it is difficult to use the conventional method.
のインゴットにおいて見られるようなA1.Siの偏析
は皆無であり、従って偏析低減のための拡散焼鈍は全く
不要である。A1. There is no segregation of Si, so diffusion annealing for reducing segregation is completely unnecessary.
以上本発明のF e−S i−A l系合金粉末の製造
方法を説明してきたが、ガスアトマイズによって粗粉末
を得た後、これを粉砕する方法は、インゴットを製造し
た後、これを拡散焼鈍し、数段階の工程で粉砕する従来
方法に比べて、大幅な工程の短縮、エネルギーの節減と
なり、原料粉末の原価を低減させることができる画期的
なものである。The method for producing the Fe-S i-Al alloy powder of the present invention has been described above, but the method for obtaining coarse powder by gas atomization and then pulverizing it is to produce an ingot and then diffusion annealing it. However, compared to the conventional method of grinding in several steps, it is a revolutionary method that significantly shortens the process, saves energy, and reduces the cost of raw material powder.
次に圧粉成形されるべき粉末に含まれる酸素量が圧粉磁
心の透磁率とその高周波特性に及ぼす影響について述べ
る。Next, we will discuss the influence of the amount of oxygen contained in the powder to be compacted on the magnetic permeability of the powder magnetic core and its high frequency characteristics.
通常酸素量としてガス分析によって測定される値は、固
溶M素と粉末粒子表面に吸若した未固溶酸素を包含する
ものであり、固溶酸素と未固溶吸着酸素を分離すること
は回連であるが1本発明者らは、アトマイズ後の球状粗
粉末の酸素量が圧粉磁心の磁気特性に影響することを新
たに知見した。The amount of oxygen normally measured by gas analysis includes the solid dissolved M element and the undissolved oxygen absorbed on the powder particle surface, and it is impossible to separate the solid dissolved oxygen and the undissolved adsorbed oxygen. However, the present inventors have newly discovered that the amount of oxygen in the spherical coarse powder after atomization affects the magnetic properties of the dust core.
第5図に、アトマイズ後の球状粗粉末に含まれる酸素量
と圧粉磁心の磁性との関係を示す。アトマイズままの粗
粉末の酸素量は主として溶解雰囲気を調整することによ
って行なった。ガスアトマイズままの球状粗粉末の平均
粒度は約230μmで、これを振動ミルにより微粉砕し
、S11均粒度72μm、見掛密度3.4g/cdとし
た。これら各種初期酸素量の粉末を0.4tit%の水
ガラスで表面被覆した後20ton/ iの圧力で圧粉
成形し、700℃で1時間熱処理した。第5図によれば
アトマイズままの粗粉末の酸素量が減っても透磁率の高
周波特性には変化がないが、 l0KII2での透磁率
は酸素量の低減とともに上昇していくことが認められる
。酸素量が140PPMまで減少しても透磁率の増加は
ないが、1001”PM以下となると140PPM以上
の場合の97から103以上に向上し、効果が現われて
くる。このように初期の透磁率の上昇に関して酸素量の
低減は効果的であり、特に1100PP以下でその効果
が大である。FIG. 5 shows the relationship between the amount of oxygen contained in the spherical coarse powder after atomization and the magnetism of the dust core. The amount of oxygen in the as-atomized coarse powder was determined mainly by adjusting the dissolution atmosphere. The average particle size of the spherical coarse powder as gas atomized was about 230 μm, and it was finely pulverized using a vibration mill to give an S11 average particle size of 72 μm and an apparent density of 3.4 g/cd. The surfaces of these powders with various initial oxygen amounts were coated with 0.4 tit% water glass, compacted at a pressure of 20 tons/i, and heat treated at 700° C. for 1 hour. According to FIG. 5, even if the amount of oxygen in the as-atomized coarse powder decreases, there is no change in the high-frequency characteristics of magnetic permeability, but it is recognized that the magnetic permeability at 10KII2 increases as the amount of oxygen decreases. Even if the amount of oxygen decreases to 140 PPM, there is no increase in magnetic permeability, but when the amount of oxygen decreases to 1001" PM or less, it improves from 97 in the case of 140 PPM or more to 103 or more, and the effect becomes apparent. In this way, the initial magnetic permeability decreases. Reducing the amount of oxygen is effective for increasing the temperature, and the effect is particularly large at 1100 PP or less.
なお本発明者らは、球状粗粉末の粉砕方案を変えて粉砕
後の粉末の酸素量と圧粉磁心の特性の関係を検討したが
、明確な相関関係は認めることができなかった。これは
粉砕によって生じる吸着酸素より固溶している酸素の量
が圧粉磁心の磁気特性に影響を与えていることを示唆す
るものと考えられる。 具体的にガスアトマイズままで
の酸素含有量を1100PP以下とするには非酸化性雰
囲気中での溶解とハンドリング、噴霧媒体のガスをAr
等の不活性ガスとし、比較的大量のガスによってアトマ
イズしなければならない。最も実効のある方法は、溶解
及びアトマイズを密閉容器内中で不活性雰囲気下で行な
う方法であって、これによれば酸素含有ffiloOP
PM以下は容易に達成される。The present inventors examined the relationship between the oxygen content of the powder after pulverization and the properties of the dust core by changing the method of pulverizing the spherical coarse powder, but no clear correlation could be recognized. This is considered to suggest that the amount of dissolved oxygen rather than the adsorbed oxygen produced by pulverization has an effect on the magnetic properties of the powder magnetic core. Specifically, in order to reduce the oxygen content in the gas atomized state to 1100 PP or less, melting and handling in a non-oxidizing atmosphere, and changing the spray medium gas to Ar
It must be atomized using a relatively large amount of gas. The most effective method is to carry out dissolution and atomization in a closed container under an inert atmosphere, according to which the oxygen-containing ffiloOP
Below PM is easily achieved.
以下具体的な本発明の内容について実施例を挙げてさら
に説明する。The specific content of the present invention will be further explained below with reference to Examples.
実施例1
5.5%Al−9,5%Si−残Feの1600℃の溶
湯を511IIIφのノズルを通じて流下せしめ、 8
0kg/aJのArガスによってアトマイズし、平均粒
度210μmの球状粉末とした。酸素ガス含有量は20
0PPMであった。この球状粉末を振動ミルによって乾
式粉砕し、平均粒度83μm、見掛密度3.19g/a
Jの粉末を得た。8
It was atomized with Ar gas at 0 kg/aJ to form a spherical powder with an average particle size of 210 μm. Oxygen gas content is 20
It was 0 PPM. This spherical powder was dry-pulverized using a vibration mill, with an average particle size of 83 μm and an apparent density of 3.19 g/a.
A powder of J was obtained.
この粉末に水素気流中で900℃×1時間の歪取り処理
を施し、0.5.1.0、l 、 5wt%の水ガラス
により表面を絶縁被覆した後、20ton/ ciの圧
力で加圧成形し、その後700℃×0.5時間の熱処理
によって圧粉磁心とした。得られた圧粉磁心のμelO
Kとμe13M/μelOKは第1表の通りであり、高
い透磁率が高周波帯域まで安定して得られている。This powder was subjected to strain relief treatment at 900°C for 1 hour in a hydrogen stream, the surface was insulated with 0.5.1.0, l, 5 wt% water glass, and then pressurized at a pressure of 20 tons/ci. It was molded and then heat-treated at 700° C. for 0.5 hours to obtain a powder magnetic core. μelO of the obtained dust core
K and μe13M/μelOK are as shown in Table 1, and high magnetic permeability is stably obtained up to the high frequency band.
第1表
実施例2
実施例1と同一の方法で120kg/an?のArガス
によってアトマイズし、平均粒度155μmの球状粉末
とした。酸素ガス含有量は250PPMであった。この
球状粉末をボールミルによって平均粒度48μm、見掛
密度2.80 g /rylの粉末を得た。この粉末に
水素気流中で900℃×1時間の歪取り処理を施し、1
、 (ht%の水ガラスにより表面を絶縁被覆した後
、20ton/ cxlの圧力で加圧成形し、その後7
00℃x0.5時間の熱処理によって圧粉磁心とした。Table 1 Example 2 120kg/an? by the same method as Example 1? The powder was atomized with Ar gas to form a spherical powder with an average particle size of 155 μm. The oxygen gas content was 250 PPM. This spherical powder was milled into a powder having an average particle size of 48 μm and an apparent density of 2.80 g/ryl. This powder was subjected to strain relief treatment at 900°C for 1 hour in a hydrogen stream.
(After insulating the surface with ht% water glass, pressure molding was performed at a pressure of 20 tons/cxl, and then 7
A powder magnetic core was obtained by heat treatment at 00°C for 0.5 hours.
得られた圧粉磁心のμelOKとμe13M/ μel
OKは、各々75.0.82であった。μelOK and μe13M/μel of the obtained powder magnetic core
OK was 75.0.82 respectively.
実施例3
アトマイズ以後の工程を実施例1と全く同一として、ア
トマイズをAr雰囲気に保たれた密閉容器中で行ない、
アトマイズままの平均粒度が230±20μnaで、酸
素含有量を50.80.150PPMとしたときの圧粉
磁心の特性を第2表に示す。粉末表面を被覆処理した水
ガラスは1.0%である。酸素量は、雰囲気の酸素分圧
により調整した。第2表には、実施例1におけるア1−
マイズままの酸素量200PPMの場合も合わせて示し
た。酸素量の低減による透磁率の増加の効果が認められ
る。Example 3 The steps after atomization were exactly the same as in Example 1, and atomization was performed in a closed container maintained in an Ar atmosphere.
Table 2 shows the properties of the powder magnetic core when the average particle size as atomized is 230±20 μna and the oxygen content is 50.80.150 PPM. The amount of water glass coated on the powder surface was 1.0%. The amount of oxygen was adjusted by the oxygen partial pressure of the atmosphere. Table 2 shows A1- in Example 1.
The case where the amount of oxygen is 200 PPM is also shown. The effect of increasing magnetic permeability by reducing the amount of oxygen is recognized.
第 2 表
〔発明の効果〕
以上から明らかなように本発明のFe−8i−AI系合
金圧粉磁心の製造方法は、高い周波数帯域にわたって安
定して高い透磁率を示す圧粉磁心の製造方法として最適
で、かつ従来からある溶製インゴットを製造し、焼鈍を
経た後、これを粉砕して得られる粉末を用いた圧粉磁心
の製造方法より廉価な圧粉磁心を提供するもので、その
工業的価値が大である。Table 2 [Effects of the Invention] As is clear from the above, the method for manufacturing a Fe-8i-AI alloy powder magnetic core of the present invention is a method for manufacturing a powder magnetic core that stably exhibits high magnetic permeability over a high frequency band. This method provides a powder magnetic core that is optimal as a powder core and is less expensive than the conventional method of producing a powder magnetic core using powder obtained by manufacturing a molten ingot, annealing it, and then pulverizing it. It has great industrial value.
第1図は粉末の平均粒度と透磁率の周波数特性との相関
図、第2図は粉末の平均粒度と透磁率との相関図、第3
図は粉末の見掛密度と透磁率の周波数特性との相関図、
第4図は粉末の見掛密度と抗折力との相関図、第5図は
粉末の酸素含有量と透磁率及びその周波数特性との相関
図である。
第1図
平均粒度(μm)
平均粒度(pm)
見掛密度(9/Cm3 )
見掛密度(cycm3)
p610に
/je13M /p210にFigure 1 is a correlation diagram between the average particle size of powder and frequency characteristics of magnetic permeability, Figure 2 is a correlation diagram between average particle size of powder and magnetic permeability, and Figure 3 is a correlation diagram between average particle size of powder and magnetic permeability.
The figure shows the correlation between the apparent density of powder and the frequency characteristics of magnetic permeability.
FIG. 4 is a correlation diagram between the apparent density and transverse rupture strength of the powder, and FIG. 5 is a correlation diagram between the oxygen content and magnetic permeability of the powder and its frequency characteristics. Figure 1 Average particle size (μm) Average particle size (pm) Apparent density (9/Cm3) Apparent density (cycm3) p610/je13M/p210
Claims (1)
質で被覆し、加圧成形後熱処理してなるFe−Si−A
l系合金圧粉磁心の製造方法において、Fe−Si−A
l系合金の溶湯からガスアトマイズによって球状の粗粉
末を製造し、然る後該粗粉末をさらに粉砕して得られた
平均粒度が40〜110μm、見掛密度2.6〜3.8
g/cm^3の粉末を用いたことを特徴とするFe−S
i−Al系合金圧粉磁心の製造方法。 2、ガスアトマイズによって製造された球状の粗粉末が
、含まれる酸素量100PPM以下である特許請求の範
囲第1項記載のFe−Si−Al系合金圧粉磁心の製造
方法。[Claims] 1. Fe-Si-A made by coating the surface of Fe-Si-Al alloy powder with an inorganic insulating material and heat-treating it after pressure molding.
In the method for manufacturing an l-based alloy powder magnetic core, Fe-Si-A
A spherical coarse powder is produced by gas atomization from the molten metal of the L-based alloy, and then the coarse powder is further crushed to obtain an average particle size of 40 to 110 μm and an apparent density of 2.6 to 3.8.
Fe-S characterized by using powder of g/cm^3
A method for producing an i-Al alloy powder magnetic core. 2. The method for producing a Fe-Si-Al alloy powder magnetic core according to claim 1, wherein the spherical coarse powder produced by gas atomization contains 100 PPM or less of oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61093687A JPH0750648B2 (en) | 1986-04-23 | 1986-04-23 | Method for manufacturing Fe-Si-A1 alloy powder magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61093687A JPH0750648B2 (en) | 1986-04-23 | 1986-04-23 | Method for manufacturing Fe-Si-A1 alloy powder magnetic core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62250607A true JPS62250607A (en) | 1987-10-31 |
JPH0750648B2 JPH0750648B2 (en) | 1995-05-31 |
Family
ID=14089312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61093687A Expired - Lifetime JPH0750648B2 (en) | 1986-04-23 | 1986-04-23 | Method for manufacturing Fe-Si-A1 alloy powder magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0750648B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07179911A (en) * | 1993-06-30 | 1995-07-18 | Samsung Electro Mech Co Ltd | Production of powder for mpp core and production of mpp core from this powder |
US5651841A (en) * | 1994-07-22 | 1997-07-29 | Tdk Corporation | Powder magnetic core |
US5756162A (en) * | 1995-08-31 | 1998-05-26 | Samsung Electro-Mechanics Co., Ltd. | Method for manufacturing sendust core powder |
KR100481371B1 (en) * | 2000-12-13 | 2005-04-07 | 주식회사 포스코 | apparatus for generating twin direction flow in cleaning cell |
CN102598163A (en) * | 2009-09-18 | 2012-07-18 | 霍加纳斯股份有限公司 | Ferromagnetic powder composition and method for its production |
JP2014078629A (en) * | 2012-10-11 | 2014-05-01 | Daido Steel Co Ltd | Iron-based soft magnetic metal powder |
WO2015079856A1 (en) * | 2013-11-26 | 2015-06-04 | 住友電気工業株式会社 | Powder core, coil component, and method for producing powder core |
CN107671298A (en) * | 2017-08-23 | 2018-02-09 | 南京新康达磁业股份有限公司 | A kind of high frequency FeSiAl alloy powders and preparation method thereof |
CN116288007A (en) * | 2023-03-22 | 2023-06-23 | 龙门金南磁性材料有限公司 | Low-loss high-molding-strength Fe-Si-Al powder and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120703A (en) * | 1974-08-14 | 1976-02-19 | Nippon Steel Corp | Denjotetsupun |
JPS55138205A (en) * | 1979-04-14 | 1980-10-28 | Nippon Kinzoku Kk | Dust core |
JPS6021301A (en) * | 1983-07-11 | 1985-02-02 | Kawasaki Steel Corp | Iron powder for compacted magnetic core |
JPS6039102A (en) * | 1983-08-10 | 1985-02-28 | Tohoku Metal Ind Ltd | Manufacture of compressed powder core of magnetic iron-silicon-aluminum alloy |
-
1986
- 1986-04-23 JP JP61093687A patent/JPH0750648B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120703A (en) * | 1974-08-14 | 1976-02-19 | Nippon Steel Corp | Denjotetsupun |
JPS55138205A (en) * | 1979-04-14 | 1980-10-28 | Nippon Kinzoku Kk | Dust core |
JPS6021301A (en) * | 1983-07-11 | 1985-02-02 | Kawasaki Steel Corp | Iron powder for compacted magnetic core |
JPS6039102A (en) * | 1983-08-10 | 1985-02-28 | Tohoku Metal Ind Ltd | Manufacture of compressed powder core of magnetic iron-silicon-aluminum alloy |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07179911A (en) * | 1993-06-30 | 1995-07-18 | Samsung Electro Mech Co Ltd | Production of powder for mpp core and production of mpp core from this powder |
US5651841A (en) * | 1994-07-22 | 1997-07-29 | Tdk Corporation | Powder magnetic core |
US5756162A (en) * | 1995-08-31 | 1998-05-26 | Samsung Electro-Mechanics Co., Ltd. | Method for manufacturing sendust core powder |
KR100481371B1 (en) * | 2000-12-13 | 2005-04-07 | 주식회사 포스코 | apparatus for generating twin direction flow in cleaning cell |
CN102598163A (en) * | 2009-09-18 | 2012-07-18 | 霍加纳斯股份有限公司 | Ferromagnetic powder composition and method for its production |
JP2013505563A (en) * | 2009-09-18 | 2013-02-14 | ホガナス アクチボラゲット | Ferromagnetic powder composition and method for producing the same |
JP2014078629A (en) * | 2012-10-11 | 2014-05-01 | Daido Steel Co Ltd | Iron-based soft magnetic metal powder |
WO2015079856A1 (en) * | 2013-11-26 | 2015-06-04 | 住友電気工業株式会社 | Powder core, coil component, and method for producing powder core |
JP2015103719A (en) * | 2013-11-26 | 2015-06-04 | 住友電気工業株式会社 | Powder-compact magnetic core, coil part, and method for manufacturing powder-compact magnetic core |
CN107671298A (en) * | 2017-08-23 | 2018-02-09 | 南京新康达磁业股份有限公司 | A kind of high frequency FeSiAl alloy powders and preparation method thereof |
CN107671298B (en) * | 2017-08-23 | 2019-01-11 | 南京新康达磁业股份有限公司 | A kind of high frequency FeSiAl alloy powder and preparation method thereof |
CN116288007A (en) * | 2023-03-22 | 2023-06-23 | 龙门金南磁性材料有限公司 | Low-loss high-molding-strength Fe-Si-Al powder and preparation method and application thereof |
CN116288007B (en) * | 2023-03-22 | 2024-04-02 | 龙门金南磁性材料有限公司 | Low-loss high-molding-strength Fe-Si-Al powder and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0750648B2 (en) | 1995-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100561891B1 (en) | Amorphous soft magnetic alloy powder, and dust core and wave absorber using the same | |
US4956011A (en) | Iron-silicon alloy powder magnetic cores and method of manufacturing the same | |
JP2713363B2 (en) | Fe-based soft magnetic alloy compact and manufacturing method thereof | |
WO2008093430A1 (en) | High-compressibility iron powder, iron powder comprising the same for dust core, and dust core | |
EP0383035B1 (en) | Iron-silicon alloy powder magnetic cores and method of manufacturing the same | |
EP3842168A1 (en) | Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder | |
JP2007092162A (en) | Highly compressive iron powder, iron powder for dust core using the same and dust core | |
US5756162A (en) | Method for manufacturing sendust core powder | |
JPS62250607A (en) | Manufacture of fe-si-al alloy dust core | |
JP2002249802A (en) | Amorphous soft magnetic alloy compact, and dust core using it | |
JP2007251125A (en) | Soft magnetic alloy consolidation object and method for fabrication thereof | |
CN110004382A (en) | A kind of ring-shaped inductors part, FeSiCr soft-magnetic alloy powder and preparation method thereof | |
JP2018073947A (en) | Soft magnetic alloy, soft magnetic alloy powder and magnetic part | |
JP2009147252A (en) | Compound magnetic material and method of manufacturing thereof | |
JP2003109810A (en) | Dust core and its manufacturing method | |
US5002728A (en) | Method of manufacturing soft magnetic Fe-Si alloy sintered product | |
JP2002151317A (en) | Dust core and its manufacturing method | |
JPS6289802A (en) | Production of fe-ni alloy green compact magnetic core | |
KR101387961B1 (en) | Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof | |
JP2001338808A (en) | Filter and amplifier | |
CN114144851A (en) | Iron-based soft magnetic alloy, method for producing same, and magnetic component comprising same | |
JPS61295342A (en) | Manufacture of permanent magnet alloy | |
JPS62222002A (en) | Production of dust core of fe-si-al alloy | |
KR100262488B1 (en) | Method of manufacturing sintered fe-si type soft magnets | |
JPS62282417A (en) | Manufacture of rare earth magnet |