JPS613870A - Wear resistant parts and its production - Google Patents

Wear resistant parts and its production

Info

Publication number
JPS613870A
JPS613870A JP12580984A JP12580984A JPS613870A JP S613870 A JPS613870 A JP S613870A JP 12580984 A JP12580984 A JP 12580984A JP 12580984 A JP12580984 A JP 12580984A JP S613870 A JPS613870 A JP S613870A
Authority
JP
Japan
Prior art keywords
powder
sec
hardness
cooling rate
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12580984A
Other languages
Japanese (ja)
Inventor
Ryoichi Shibata
良一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12580984A priority Critical patent/JPS613870A/en
Publication of JPS613870A publication Critical patent/JPS613870A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce parts having excellent wear resistance by cooling ultraquickly the melt of an alloy steel contg. >=1 kind among Cr, Mo and W and a specific amt. of V and C to a pulverous powder state and solidifying and molding the powder by a hot hydrostatic press, sintering, etc. CONSTITUTION:The melt of the high-carbon alloy steel contg. by atomic%, about 2%<C<about 25%, about 5%<V+Nb<about 25% and contg. 0<=Cr+ Mo+W<=20% is ultraquickly cooled at a cooling rate of >=10<3> deg.C/sec to produce the powder in which VC having high hardness and <=2mum average grain size is uniformly dispersed and incorporated and which contains the hard carbide of Cr, Mo and W. The non-equil. phase appears markedly in the structure and the powder having the higher hardness is obtainable if the powder is produced at >=10<5> deg.C/sec ultraquick cooling rate. Such high-hardness alloy steel powder is molded and solidified by a hot hydrostatic method and sintering method, by which the production of the parts having the extremely large wear resistance is made possible.

Description

【発明の詳細な説明】 本発明は約5%(at%基準、以下同じ)以上のVを含
有する高バナジウム合金鋼を粉末冶金法によって製造す
る製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method for manufacturing a high vanadium alloy steel containing about 5% (at% basis, the same applies hereinafter) or more of V by a powder metallurgy method.

従来、合金粉末の製造に適した方法としては、■噴霧法
、■粉砕法、■還元法等が知られている。
Conventionally, methods suitable for producing alloy powder include (1) spraying method, (2) pulverization method, and (2) reduction method.

■の噴霧法は合金成分元素を含有する溶湯を水又は不活
性ガスを噴霧媒体として用い噴霧急冷する方法であるが
、従来の方法では粒状の強靭性を有する粉末が得られる
反面、粉体粒子が数10μ■〜数100μmの範囲に分
布しており、粗く、急冷速度が遅いため冷却速度は最大
で102℃/seag度であり、■含有量が高くなるに
したがい、噴霧中にVCの粗大化がおこるため微細なV
Cが均一に分散した高バナジウム合金粉を得ることはで
さない欠点を有していた。第3図にその例を示づ。
The spray method (2) is a method in which a molten metal containing alloying elements is rapidly cooled by spraying using water or an inert gas as a spray medium. VC is distributed in the range of several 10 μm to several 100 μm, and is coarse and the quenching rate is slow, so the maximum cooling rate is 102°C/seag degree. minute V due to
It has the disadvantage that it is not possible to obtain a high vanadium alloy powder in which C is uniformly dispersed. An example is shown in Figure 3.

■の粉砕法は合金成分元素を含有づ−る溶湯から合金塊
をつくり、これを機械的に粉砕するもので、高バナジウ
ム合金鋼においては合金鋼鋳造の過程で粗大な炭化物の
偏析が必然的に発生し、これを粉砕しても良質の合金粉
が得られない。
The pulverization method (2) involves creating an alloy ingot from a molten metal containing alloying elements and mechanically pulverizing it.In high-vanadium alloy steel, segregation of coarse carbides is inevitable during the casting process of alloy steel. Even if this is crushed, good quality alloy powder cannot be obtained.

■の還元法は比較的還元が容易な合金粉末の製造には工
業的に適用可能であるが、V、MnおよびOrなどの難
還元性の成分元素を含有する合金粉末、特にVを5.5
%以上含有する金属粉末の製造は極めて困難である。
The reduction method (2) is industrially applicable to the production of alloy powders that are relatively easy to reduce; 5
It is extremely difficult to produce metal powder containing more than %.

本発明は従来の合金粉末製造法では困難とされている圧
粉成形が容易で焼結性に優れた鉄を基としCr、MO’
、Wの内の1種以上を含み、かつVを約5at%以上お
よびCを約5〜約25at%含有する高バナジウム合金
耐摩耗部品の製造法に係わるもので、出発原料に合金成
分元素に対応する溶湯より超急冷したフレーク、粉末、
フィラメントを用いて耐摩耗部品を得ることにある。
The present invention is based on iron, which is easy to compact and has excellent sinterability, and which is difficult to produce with conventional alloy powder manufacturing methods.
, W, and about 5 at% or more of V and about 5 to about 25 at% of C. Flakes, powders, etc. that are ultra-quenched from the corresponding molten metal.
The objective is to obtain wear-resistant parts using filaments.

この部品は高い硬度と高い靭性を有しており、組成を選
定することにより、超硬並の硬度を与えることが可能で
、従来の噴霧法による粉末高速度工具鋼よりも耐摩耗性
に優れる。一方、超硬合金に比較すると高価なCa 、
WCを多量には含まず経済的である。
This part has high hardness and toughness, and by selecting the composition, it is possible to give it a hardness comparable to that of carbide, and it has better wear resistance than powdered high-speed tool steel produced by conventional spraying methods. . On the other hand, Ca, which is expensive compared to cemented carbide,
It is economical as it does not contain a large amount of WC.

従来の噴霧法又は粉砕法により製造されている ゛V含
有合金鋼においては高速度鋼JIB  5KB−、10
種の5.2%が最も高いV含有率を示しており、正常な
組織で鋳造可能なV含有合金鋼としてはこれが上限であ
ると考えられていた。これに対し、一般にFe基でVを
含有する合金鋼としては合金工具鋼(SKB−11,5
Ko−ei、5KT−5)および高速度鋼が主であり、
これらの合金鋼には含有量に違いがあるが、Or 、 
Mo、、 W等の成分元素を少なくとも1種以上含有し
ている。
For V-containing alloy steels manufactured by conventional spraying or crushing methods, high speed steel JIB 5KB-, 10
5.2% of the seed showed the highest V content, and this was thought to be the upper limit for a V-containing alloy steel that could be cast with a normal structure. On the other hand, alloy tool steel (SKB-11, 5
Ko-ei, 5KT-5) and high speed steel are the main ones,
These alloy steels have different contents, but Or,
Contains at least one component element such as Mo, W, etc.

これら各構成元素の作用は大路次の通りである。The effects of each of these constituent elements are as follows.

Cr:Cと反応し、マトリックス中に炭化物となって析
出し、合金の耐摩耗性の向上に役立つ。
Cr: Reacts with C and precipitates as a carbide in the matrix, helping to improve the wear resistance of the alloy.

MO及びW:Cと反応して炭化物を形成し、合金の耐摩
耗性を向上させると共に一部はマ]・リックス中に固溶
し合金の強度を向上させる。
It reacts with MO and W:C to form carbides, which improves the wear resistance of the alloy, and also partially dissolves in the matrix to improve the strength of the alloy.

従ってこれら構成元素は鋼とした場合に必要とされる特
性を(=l与するため少なくとも1種を鋼組成中に含ま
せるべきものであり、本発明においてもCr 、MO、
Wの内少なぐとも1種を含ませることとした。
Therefore, at least one of these constituent elements should be included in the steel composition in order to provide the properties (=l) required for steel, and in the present invention, Cr, MO,
It was decided to include at least one type of W.

またCは合金鋼中の各成分が炭化物を形成するために必
要である。■を約5.0%以上とすることにより、この
Vと炭化物を形成するためには約5%のCが必要である
。一方、上限については、溶解温度から言って■の最大
量は25%と考えられることから、このVの最大値25
%の場合に必要なC量である25%を上限とした。
Further, C is necessary for each component in the alloy steel to form carbides. By setting ① to about 5.0% or more, about 5% C is required to form carbide with this V. On the other hand, regarding the upper limit, considering the melting temperature, the maximum amount of ■ is considered to be 25%, so the maximum value of
%, the upper limit was set at 25%, which is the amount of C required.

すなわち、本発明に係るFe基の合金粉は(1)Cr 
、MO、Wの内の1種以上を含み、かつ(2)■を約5
.0%以上及び(3)cを5.〜25%含むものであり
、しかも10”℃/ sec以上の冷却速度で溶湯から
急冷して得られることを特徴とするものである。
That is, the Fe-based alloy powder according to the present invention contains (1) Cr
, MO, W, and (2)■ about 5
.. 0% or more and (3) c 5. ~25%, and is characterized by being obtained by rapid cooling from a molten metal at a cooling rate of 10''°C/sec or more.

超急冷法を採用する理由は次の如くである。The reason for adopting the ultra-quenching method is as follows.

■冷却速度が101℃/’sea以上となるとVCの粗
大化は抑制され、基地中に微細に分散されるようになる
(2) When the cooling rate is 101°C/'sea or more, the coarsening of VC is suppressed and it becomes finely dispersed throughout the base.

■得られたフレークやフィラメントは容易に粉砕され粉
末となる。
■The resulting flakes and filaments are easily crushed into powder.

■超急冷によりVCが微細に分散して高硬度が得られる
■Ultra-quenching allows VC to be finely dispersed, resulting in high hardness.

■Cr、Mo、Wを添加すると急冷時に非平衡相を生じ
、最終的に得られる部品の組織を緻密化する。
(2) When Cr, Mo, and W are added, a non-equilibrium phase is generated during rapid cooling, and the structure of the final product is densified.

このように超急冷法の採用により、従来の手法では得ら
れなかった利点が得られる。
In this way, by adopting the ultra-quenching method, advantages not available with conventional methods can be obtained.

また、冷却速成が105℃/ Seeを越えると、非平
衡相が顕著にあられれ、非晶質の相となる場合も有る。
Furthermore, if the cooling rate exceeds 105° C./See, a non-equilibrium phase will appear significantly, and an amorphous phase may occur.

非平衡相があられれると硬度は上昇し、焼処理を行うこ
とにより、一層微細な炭化物組織を得ることが出来る。
When the non-equilibrium phase is formed, the hardness increases, and a finer carbide structure can be obtained by performing the sintering treatment.

実施例1 300φの径のCuロールに丸穴ノズルより溶湯を噴出
し第1表に示す組成のフレークを作製した後、振動ミル
を用いて粉砕して100メツシユ以下の平板状の粉末を
得た。これを冷間成型した後、1000℃でホットプレ
スして試料を得た。その後、焼入、焼ぎ戻し処理により
硬度の調整を行った。
Example 1 Molten metal was spouted from a round hole nozzle onto a Cu roll with a diameter of 300φ to produce flakes having the composition shown in Table 1, and then crushed using a vibration mill to obtain a flat powder of 100 meshes or less. . This was cold-molded and then hot-pressed at 1000°C to obtain a sample. Thereafter, the hardness was adjusted by quenching and tempering.

熱処理後の硬度も第1表に示・した。素材となったフレ
ークは厚さ約15μmであり、冷蝿速度は105’C/
sec以上と判断される。
The hardness after heat treatment is also shown in Table 1. The flakes used as the material are approximately 15 μm thick, and the cold fly speed is 105'C/
sec or more.

成型した試料には偏析は見られず、微細な炭化物が分散
している。第1図には顕微鏡組織を示す、炭化物サイズ
は約1μm以下と微細である。
No segregation was observed in the molded sample, and fine carbides were dispersed. FIG. 1 shows the microscopic structure, and the carbide size is fine, about 1 μm or less.

実施例2 溶湯を高速で回転する円板に滴下させアトマイズした第
2表に示した合金を分級し、100メツシユ以下のもの
を冷間で成型し、1000℃でホットプレスして試料を
得た。その後焼入、焼き戻し処理により硬度の調整を行
った。熱処理後の硬度も第2表中に示した。本例の冷却
速度は、〜103℃/secと推定している。
Example 2 The alloys shown in Table 2, which were atomized by dropping the molten metal onto a disk rotating at high speed, were classified, and those with 100 mesh or less were cold molded and hot pressed at 1000°C to obtain samples. . Thereafter, the hardness was adjusted by quenching and tempering. The hardness after heat treatment is also shown in Table 2. The cooling rate in this example is estimated to be ~103°C/sec.

実施例1に比較して炭化物はやや大きいが、成型した試
料には偏析は見られず、微細な炭化物が分散している。
Although the carbides are slightly larger than those in Example 1, no segregation is observed in the molded sample, and fine carbides are dispersed.

第2図には顕微鏡組織を示す。Figure 2 shows the microscopic structure.

以上の例から、硬さはv、Cの量の増大と共に上昇する
こと、Or 、MOの添加は硬度の大幅な上昇をもたら
すことが明らかとなった。また、冷却速度が103℃/
 SeC以上では、得られた試料に粗大炭化物や偏析は
なく、105℃/’sea以上では炭化物サイズが小さ
くなり、硬度や抗折ツノ、たわみ量が上昇することがわ
かった。
From the above examples, it has become clear that hardness increases with increasing amounts of v and C, and that addition of Or and MO brings about a significant increase in hardness. In addition, the cooling rate is 103℃/
It was found that at temperatures above SeC, there were no coarse carbides or segregation in the obtained sample, and at temperatures above 105° C./'sea, the carbide size decreased and the hardness, bending horns, and deflection increased.

実施例1および実施例2においては特にl1G2酸元素
を使用してばいないが、溶解時の酸化防止のために通常
使用される、AI、Si、Mn、Ca。
In Examples 1 and 2, the l1G2 acid elements are not particularly used, but AI, Si, Mn, and Ca are commonly used to prevent oxidation during melting.

Sr等の脱酸元素を1種又はそれ以上添加することは溶
解を容易にする。
Adding one or more deoxidizing elements such as Sr facilitates dissolution.

また、Ni 、Co 、Cu 、Ti 、B等通常工具
鋼に含有される合金をFe量の174程度含む材料をF
eと置換して使うことは、本発明の趣旨をそこなうこと
なく行うことが出来る。実施例3にその例を示す。
In addition, F
It can be used in place of e without detracting from the spirit of the present invention. Example 3 shows an example.

実施例3 実施例1の方法で第3表に示す組成の試料を製造した結
果を示す。
Example 3 The results of manufacturing samples having the compositions shown in Table 3 using the method of Example 1 are shown below.

られた。It was done.

本発明は、以上の如くであって偏析が少なく、高硬度で
優れた機械強度を有するものであり、耐摩耗部品として
良好な性質を有している。特に工具としては耐摩耗性と
耐火は性を併せもっておりエンドミル用工具、圧延用ロ
ールなどには最適である。
As described above, the present invention has low segregation, high hardness, and excellent mechanical strength, and has good properties as a wear-resistant component. In particular, as a tool, it has both wear resistance and fire resistance, making it ideal for end mill tools, rolling rolls, etc.

また本試料の硬度は高価な超硬材(WC;+COjに比
較しても劣らず、経済的でしかも耐摩耗性の良い工具ど
なる。
In addition, the hardness of this sample is comparable to that of expensive cemented carbide (WC; +COj), making it an economical and wear-resistant tool.

第3図はNo、7と同一組成で通常のガス71へマイ−
1Q只−
Figure 3 shows the same composition as No. 7, and the migration to normal gas 71.
1Q only

Claims (1)

【特許請求の範囲】 1、組成がat%で約2%<C<約25%、約5%<V
+Nb<約25%含有する合金で、0≦Cr+Mg+W
≦20を含有し、残部Feおよび不可避の不純物と溶湯
脱酸材よりなり、その素材が10^3℃/sec以上で
溶融状態から急冷されたものよりなることを特徴とする
耐摩耗部品。 2、通常工具鋼に含有される元素をFeと1/4以下置
換したことを特徴とする特許請求の範囲第1項記載の耐
摩耗部品。 3、最終製品の微細炭化物の平均粒径が2μm以下であ
り、かつ偏析のないことを特徴とする特許請求の範囲第
1項記載の耐摩耗部品。 4、at%で約2%<C<約25%、約5%<V+Nb
<約25%含有する合金で、0≦Cr+Mo+W≦20
を含有し、残物不可避の不純物と溶湯脱酸材よりなる組
成の溶湯を10^3℃/sec以上の冷却速度で冷却し
て、フレーク、フィラメント、リボン、粉末等を作成し
、これを出発原料とする材料をホットプレス、押出し、
熱間静水圧プレス、焼結等により固化することを特徴と
する耐摩耗部品の製造方法。 5、冷却速度が10^5℃/sec以上であることを特
徴とする特許請求の範囲第4項記載の耐摩耗部品の製造
方法。
[Claims] 1. Composition in at%: about 2%<C<about 25%, about 5%<V
+Nb<approximately 25% alloy containing 0≦Cr+Mg+W
≦20, the balance being Fe and unavoidable impurities, and a molten metal deoxidizer, and the material is rapidly cooled from a molten state at 10^3°C/sec or more. 2. The wear-resistant part according to claim 1, wherein not more than 1/4 of the element contained in ordinary tool steel is replaced with Fe. 3. The wear-resistant part according to claim 1, wherein the final product has an average particle size of fine carbides of 2 μm or less and is free from segregation. 4, at%: approx. 2%<C<approx. 25%, approx. 5%<V+Nb
<Alloy containing about 25%, 0≦Cr+Mo+W≦20
A molten metal containing unavoidable residual impurities and a molten metal deoxidizer is cooled at a cooling rate of 10^3°C/sec or more to create flakes, filaments, ribbons, powders, etc. Hot press, extrude the raw materials,
A method for manufacturing wear-resistant parts characterized by solidification by hot isostatic pressing, sintering, etc. 5. The method for manufacturing wear-resistant parts according to claim 4, wherein the cooling rate is 10^5°C/sec or more.
JP12580984A 1984-06-19 1984-06-19 Wear resistant parts and its production Pending JPS613870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12580984A JPS613870A (en) 1984-06-19 1984-06-19 Wear resistant parts and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12580984A JPS613870A (en) 1984-06-19 1984-06-19 Wear resistant parts and its production

Publications (1)

Publication Number Publication Date
JPS613870A true JPS613870A (en) 1986-01-09

Family

ID=14919452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12580984A Pending JPS613870A (en) 1984-06-19 1984-06-19 Wear resistant parts and its production

Country Status (1)

Country Link
JP (1) JPS613870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483397A (en) * 1987-09-28 1989-03-29 Mitsubishi Heavy Ind Ltd Composite wire for build-up welding for hard facing
JPH01116027A (en) * 1987-10-28 1989-05-09 Daido Steel Co Ltd Method for controlling atmospheric gas composition in furnace and atmosphere heat treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483397A (en) * 1987-09-28 1989-03-29 Mitsubishi Heavy Ind Ltd Composite wire for build-up welding for hard facing
JPH01116027A (en) * 1987-10-28 1989-05-09 Daido Steel Co Ltd Method for controlling atmospheric gas composition in furnace and atmosphere heat treatment device

Similar Documents

Publication Publication Date Title
US4297135A (en) High strength iron, nickel and cobalt base crystalline alloys with ultrafine dispersion of borides and carbides
US4347076A (en) Aluminum-transition metal alloys made using rapidly solidified powers and method
US5656787A (en) Hi-density sintered alloy
US4582536A (en) Production of increased ductility in articles consolidated from rapidly solidified alloy
US4419130A (en) Titanium-diboride dispersion strengthened iron materials
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
WO2010122960A1 (en) High-strength copper alloy
US20200156156A1 (en) Powder metal material for wear and temperature resistance applications
EP0587186B1 (en) Aluminum-based alloy with high strength and heat resistance
JPH07145442A (en) Soft magnetic alloy compact and its production
US4362553A (en) Tool steels which contain boron and have been processed using a rapid solidification process and method
JPH068484B2 (en) Article made from processable boron-containing stainless steel alloy and method of making the same
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
US6056802A (en) High-strength aluminum-based alloy
US5407636A (en) High-strength, heat-resistant aluminum-based alloy, compacted and consolidated material thereof, and process for producing the same
JPS5943802A (en) Aluminum-transition metal alloy from quick coagulating powder and manufacture
US4473402A (en) Fine grained cobalt-chromium alloys containing carbides made by consolidation of amorphous powders
WO1991014013A1 (en) Aluminum-chromium alloy and production thereof
US4402745A (en) New iron-aluminum-copper alloys which contain boron and have been processed by rapid solidification process and method
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
JPS613870A (en) Wear resistant parts and its production
US4430115A (en) Boron stainless steel powder and rapid solidification method
EP0577944B1 (en) High-strength aluminum-based alloy, and compacted and consolidated material thereof
DE10064056B9 (en) A process for producing a sintered body of high-hardness, high-chromium-content cast iron
JPH0651895B2 (en) Heat-resistant aluminum powder metallurgy alloy