JP2572777B2 - TiC particle dispersion strengthened titanium base alloy - Google Patents

TiC particle dispersion strengthened titanium base alloy

Info

Publication number
JP2572777B2
JP2572777B2 JP62224486A JP22448687A JP2572777B2 JP 2572777 B2 JP2572777 B2 JP 2572777B2 JP 62224486 A JP62224486 A JP 62224486A JP 22448687 A JP22448687 A JP 22448687A JP 2572777 B2 JP2572777 B2 JP 2572777B2
Authority
JP
Japan
Prior art keywords
titanium
tic
alloy
dispersed
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62224486A
Other languages
Japanese (ja)
Other versions
JPS6468437A (en
Inventor
喜郎 芦田
厚 武村
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62224486A priority Critical patent/JP2572777B2/en
Publication of JPS6468437A publication Critical patent/JPS6468437A/en
Application granted granted Critical
Publication of JP2572777B2 publication Critical patent/JP2572777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軽量・高強度・高耐食性といった特性を有
するTiまたはTi合金に、更に耐摩耗性および耐熱性を与
え、耐熱・耐摩耗性材料としても適用できる様にしたTi
C粒子分散強化型チタン基合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention further provides abrasion resistance and heat resistance to Ti or a Ti alloy having characteristics such as light weight, high strength, and high corrosion resistance. Ti that can be applied as a material
It relates to a C particle dispersion strengthened titanium-based alloy.

[従来の技術] 耐摩耗性の要求される金属材料としては従来より主に
軸受鋼(SUJ-2)等の鋼材が汎用されていたが、耐摩耗
性に対する要求度合いが厳しくなってくるにつれて高速
度鋼・超硬合金、サーメット等が使用される様になり、
最近ではセラミックスの利用も検討されている。しかし
ながらこれらの耐摩耗性材料には夫々次の様な欠点があ
る。
[Prior art] Conventionally, steel materials such as bearing steel (SUJ-2) have been widely used as metal materials requiring abrasion resistance. Speed steel, cemented carbide, cermet, etc. are used,
Recently, the use of ceramics has been studied. However, each of these wear-resistant materials has the following disadvantages.

即ち鋼材は比重が大きいため、回転もしくは往復運動
をする耐摩耗性部品として使用した場合は運動機構への
負担が大きく、エネルギーロスが増大するという難点が
あり、たとえばエンジン部品(インテークバルブ、バル
ブロッカー、コンロッド、バルブリテーナー、ロッカー
アーム等)等に使用すると燃費がかさむ。また高速度鋼
や超硬合金は更に比重が大きいため、上記の欠点は一段
とクローズアップされてくる。これに対しセラミックス
は軽量であり、鋼材等に見られる上記の様な問題は生じ
ないが、製法が複雑であるばかりでなく延性や靱性が極
端に低いので衝撃破壊等に対する信頼性が乏しく、機械
部品としての総合的品質を満たすものとは言い難い。
That is, since steel material has a large specific gravity, when it is used as a wear-resistant part that rotates or reciprocates, there is a problem that a heavy load is imposed on a movement mechanism and energy loss increases. For example, engine parts (intake valve, valve locker) , Connecting rods, valve retainers, rocker arms, etc.) increase fuel efficiency. Further, since the high-speed steel and the cemented carbide have a higher specific gravity, the above-mentioned disadvantages are further emphasized. Ceramics, on the other hand, are lightweight and do not suffer from the above-mentioned problems encountered with steel materials, but are not only complicated in production, but also have extremely low ductility and toughness, so they have poor reliability against impact fracture and other problems. It is hard to say that it satisfies the overall quality as a part.

この様な欠点を解消するための新しい耐摩耗性素材と
して、様々の粒子分散型合金が開発され注目を集めてい
る。即ち粒子分散型合金とは、耐熱・耐摩耗性に富む炭
化物、ほう化物、珪化物、窒化物、酸化物等の化合物と
高靱性の金属とを複合したものであり、複合方法として
は粉末同士を混合し、プレス成形後焼結する粉末冶金法
が最も一般的であり、その他溶湯混合法、内部酸化法、
表面酸化法等が知られている。
Various particle-dispersed alloys have been developed and attracted attention as new wear-resistant materials for solving such disadvantages. That is, a particle-dispersed alloy is a composite of a compound such as carbide, boride, silicide, nitride, or oxide having high heat and wear resistance and a high toughness metal. Powder metallurgy is the most common method of mixing and sintering after press molding, and other methods such as melt mixing, internal oxidation,
A surface oxidation method and the like are known.

[発明が解決しようとする問題点] ところが上記の様な粒子分散型合金にはその製法を含
めて次の様な欠点がある。
[Problems to be Solved by the Invention] However, the above-mentioned particle-dispersed alloys have the following disadvantages, including the production method thereof.

分散粒子とマトリックス金属との均一混合が難しく、
均質性に問題がある。
Uniform mixing of the dispersed particles and matrix metal is difficult,
There is a problem with homogeneity.

焼結乃至熱間押出加工と複合工程を組合わさなければ
分散粒子による強化効果は得られ難く、生産性が低い。
Unless the sintering or hot extrusion and the compounding step are combined, the strengthening effect by the dispersed particles is hardly obtained, and the productivity is low.

分散粒子とマトリックスは共存状態で熱力学的に不安
定な状態にあることが多く、後工程の加熱処理あるいは
高温条件での使用時に分散粒子(化合物)やマトリック
ス(金属)が熱力学的に安定な方向に変化(固溶、再結
晶化、拡散、変態等)することがあり、複合材自体の変
質を招き易い。
The dispersed particles and matrix are often in a thermodynamically unstable state in the coexistence state, and the dispersed particles (compound) and matrix (metal) are thermodynamically stable during the heat treatment in the subsequent process or when used under high temperature conditions. In some directions (solid solution, recrystallization, diffusion, transformation, etc.), and the composite material itself is liable to be deteriorated.

他方チタンおよびチタン合金は軽量で耐食性に優れ且
つ高強度であるといった特徴を有しているところから、
航空機等の飛翔体用構造材料等として活用されている
が、耐摩耗性に劣るためそのままでは摩擦を受ける摺動
部に適用することはできない。従って摩擦を受ける部分
に適用する場合は窒化、溶射等の表面硬化処理を施す方
法が採用されているが、これらの表面硬化処理法では満
足のいく様な耐摩耗性を得ることはできない。
On the other hand, titanium and titanium alloys have features such as light weight, excellent corrosion resistance and high strength,
Although it is used as a structural material for a flying object such as an aircraft, it cannot be applied to a sliding portion that receives friction as it is because of its poor wear resistance. Therefore, when applied to a portion subject to friction, a method of performing a surface hardening treatment such as nitriding, thermal spraying or the like is employed. However, these surface hardening methods cannot provide satisfactory wear resistance.

本発明はこの様な事情に着目してなされたものであっ
て、その目的は、チタンおよびチタン合金の有する軽量
性、高耐食性、高強度を維持しつつ、その欠点である耐
摩耗性と耐熱性を、前記粒子分散型合金に対して指摘し
た様な問題を生じることなく分散粒子との複合化によっ
て改善し、軽量性、耐食性、強度、耐熱性、耐摩耗性等
を満足し得る様な材料を提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to maintain the light weight, high corrosion resistance, and high strength of titanium and titanium alloys, and have the disadvantages of abrasion resistance and heat resistance. Properties are improved by compounding with dispersed particles without causing the problems pointed out for the particle-dispersed alloys, and lightness, corrosion resistance, strength, heat resistance, and abrasion resistance can be satisfied. It is intended to provide materials.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明に係る粒子
分散強化型チタン基合金の構成は、1.8〜18重量%のC
を含み、チタンまたはチタン合金マトリックス中にTiC
粒子が均一に分散晶出したものであるところに要旨を有
するものである。
[Means for Solving the Problems] The constitution of the particle-dispersion-strengthened titanium-based alloy according to the present invention, which can achieve the above object, is 1.8 to 18% by weight of C.
Containing TiC in a titanium or titanium alloy matrix
The gist is that the particles are uniformly dispersed and crystallized.

[作用] 従来の粒子分散型金属もしくは合金に見られる欠点
は、前述の如く分散粒子(化合物)とマトリックスが共
存状態で熱力学的に不安定な状態にあり、後工程での加
熱あるいは高温条件下での使用等に際し、化合物または
マトリックスが熱力学的に安定な方向に変化し、複合素
材としての性質が変わることである。従ってこの様な欠
点を改善するためには、金属もしくは合金からなるマト
リックスと化合物を共存状態で安定な状態、即ち熱力学
的平衡状態に維持する必要がある。そのための1つの考
え方として、たとえば合金の平衡状態図において液相と
化合物(炭化物、窒化物、酸化物、金属間化合物)が共
存し得る組成のものを対象とし、マトリックスと共に化
合物が完全に液相となる温度域に加熱保持した後、この
溶融物を冷却して固体にする方法が考えられる。即ち溶
融混合物を冷却凝固していく過程で、液相と化合物固相
との共存域における液相が凝固して固相になると、この
とき変態が起こり、合金の固体単相もしくはこれと化合
物(この化合物は液相と共存していた化合物とは異なる
こともある)との混合固相になる場合もあるが、いずれ
にせよ、この固相は合金マトリックスに化合物が分散し
た粒子分散型合金となり、化合物としての含有量を適正
に調整すれば、従来の粒子分散型合金と同様の組成のも
のが得られるはずである。しかもこの方法を採用すれば
液相から徐々に固相が晶出して最終的に全体が凝固する
ものであるから、マトリックスと晶出粒子(化合物)と
は熱力学的に安定な状態にあり、界面での変態等は起こ
り難いと考えられる。
[Action] The disadvantage of the conventional particle-dispersed metal or alloy is that, as described above, the dispersed particles (compound) and the matrix coexist and are thermodynamically unstable. When used below, the compound or matrix changes in a thermodynamically stable direction, and the properties as a composite material change. Therefore, in order to remedy such a drawback, it is necessary to maintain a stable state, that is, a thermodynamic equilibrium state of a matrix and a compound made of a metal or an alloy in a coexisting state. One idea for this purpose is, for example, a composition in which a liquid phase and a compound (carbide, nitride, oxide, intermetallic compound) can coexist in an equilibrium phase diagram of an alloy. A method in which the melt is cooled to a solid after heating and holding at a temperature in the range described below is considered. That is, in the process of cooling and solidifying the molten mixture, when the liquid phase in the coexistence region of the liquid phase and the compound solid phase solidifies to a solid phase, transformation occurs at this time, and a solid single phase of the alloy or a compound ( This compound may be different from the compound that coexisted with the liquid phase), but in any case, this solid phase becomes a particle-dispersed alloy in which the compound is dispersed in an alloy matrix. If the content as a compound is properly adjusted, a composition similar to that of a conventional particle-dispersed alloy should be obtained. Moreover, if this method is adopted, the solid phase gradually crystallizes out of the liquid phase and eventually the whole solidifies, so that the matrix and the crystallized particles (compound) are in a thermodynamically stable state, It is considered that transformation at the interface is unlikely to occur.

他方、チタンやチタン合金にみられる耐摩耗性不足の
改善策としては、硬質粒状物の分散強化が考えられる。
これは鋼材における耐摩耗性向上のメカニズムから導か
れるものであり、鋼はマトリックス(フェライトやマル
テンサイト)中に硬質の炭化物(セメンタイトや合金炭
化物)が分散した複合組織であり、炭化物の共存によっ
て耐摩耗性は著しく高められている。
On the other hand, as a measure for improving the insufficient wear resistance of titanium and titanium alloy, dispersion strengthening of hard particulate matter can be considered.
This is derived from the mechanism of improvement in wear resistance of steel materials. Steel has a composite structure in which hard carbides (cementite and alloy carbides) are dispersed in a matrix (ferrite or martensite). The wear properties are significantly increased.

従ってチタンやチタン合金についても、耐摩耗性鋼材
の場合と同様マトリックス中に超硬質の炭化物粒子が分
散した複合組織とすることができれば、耐摩耗性を大幅
に改善し得るものと考えられる。この場合、共存する炭
化物とチタンまたはチタン合金とが熱力学的平衡状態に
ある複合組織であれば、前述の様な粒子分散型複合合金
に見られる熱力学的不安定性に起因する変態等の問題も
起こらないはずである。
Therefore, it is considered that the wear resistance of titanium and titanium alloys can be significantly improved if a composite structure in which ultra-hard carbide particles are dispersed in a matrix can be formed as in the case of wear-resistant steel. In this case, if the coexisting carbide and titanium or titanium alloy are in a composite structure in a thermodynamic equilibrium state, problems such as transformation caused by the thermodynamic instability seen in the particle-dispersed composite alloy as described above. Should not happen.

こうした観点に立ってTi-Cよりなる2元合金平衡状態
図を基に検討すると、熱力学的に安定に共存し得る硬質
の炭化物はTiCであり、該TiC粒子の分散による耐摩耗性
改善効果は、チタンマトリックスのみならず、チタンと
共に種々の合金元素を含むα合金、α+β合金あるいは
β合金よりなるマトリックスとの共存系においても同様
に発揮される。
From this viewpoint, a study based on a binary alloy equilibrium diagram made of Ti-C shows that a hard carbide that can stably coexist thermodynamically is TiC, and that the dispersion of the TiC particles improves the wear resistance. Is exerted not only in a titanium matrix but also in a coexistence system with a matrix composed of an α alloy, an α + β alloy or a β alloy containing various alloying elements together with titanium.

今、純チタンにa重量%の炭素を添加した液相共存系
より、TiC平衡状態図に基づいてTiCが晶出する場合を考
えると、添加した炭素のすべてがチタンと反応してTiC
に変化すると仮定すると、凝固した複合組織中に占める
TiCの体積率(Vf)は、下記の概算式によって表わすこ
とができる。
Considering the case where TiC is crystallized based on a TiC equilibrium diagram from a liquid phase coexistence system in which a wt% of carbon is added to pure titanium, all of the added carbon reacts with titanium to form TiC.
Occupy in solidified composite tissue
The volume fraction (V f ) of TiC can be represented by the following approximate expression.

この関係を図示すると第1図の通りであって、TiC体
積率(Vf)は炭素の添加量と直線関係にあり、炭素の添
加量によってTiCの体積率を任意に調整し得ることが分
かる。こうした傾向は、様々のチタン合金に炭素を添加
してTiCを生成させる場合にも基本的には変わらない。
This relationship is illustrated in FIG. 1 and shows that the TiC volume ratio (V f ) has a linear relationship with the amount of carbon added, and that the volume ratio of TiC can be arbitrarily adjusted by the amount of carbon added. . This tendency is basically the same even when carbon is added to various titanium alloys to generate TiC.

この様にしてチタンまたはチタン合金マトリックス中
にTiCを生成・分散させると、TiCが超高硬度(Hv:3000
程度)粒子であるため複合則によって複合材全体が著し
く硬質化し、耐摩耗性の卓越したものとなる。但し実験
によればTiCの体積率が約10%未満では硬質粒子の絶対
量が不足するため満足のいく耐摩耗性向上効果が得られ
ず、一方TiCの体積率が約90%を超えると複合材の靱性
が劣悪となって割れ等の欠損を生じ易くなる。この様な
ところから、TiCの体積率は約10〜90%となる様に炭素
の添加量を調整すべきであり、第1図に示したTiC体積
率と炭素量の関係から、目的にかなう耐摩耗性を確保す
るために必要な炭素量は1.8〜18重量%という範囲が導
かれる。
When TiC is generated and dispersed in the titanium or titanium alloy matrix in this manner, the TiC becomes extremely hard ( Hv : 3000
Degree) Since the particles are particles, the entire composite material is remarkably hardened by the compounding rule and has excellent wear resistance. However, according to the experiments, if the volume ratio of TiC is less than about 10%, the absolute amount of hard particles is insufficient, so that a satisfactory effect of improving wear resistance cannot be obtained. The toughness of the material becomes poor, and cracks and other defects tend to occur. From such a point, the addition amount of carbon should be adjusted so that the volume ratio of TiC becomes about 10 to 90%. From the relationship between the volume ratio of TiC and the carbon amount shown in FIG. The range of 1.8 to 18% by weight of the amount of carbon required to secure the wear resistance is derived.

[実施例] 実施例1 C:0〜18.5重量%を含み残部がTiおよび不可避不純物
からなる200gの鋳塊(幅40×長さ80×厚さ15mm)をタン
グステンアーク溶解法によって溶製した。この鋳塊を使
用し、(I)鋳塊のまま、および(II)1150℃に加熱し
た後50%の熱間圧延を与え更に750℃で焼鈍したもの、
について、光学顕微鏡によるTiC体積率の測定(画像解
析装置使用)、ビッカース硬度測定及びSUS304を相手材
とする摩耗試験(大越式摩耗試験機を使用し、距離300m
移動させたときの単位面積当たりの摩耗量で評価)を行
なった。
[Example] Example 1 C: A 200-g ingot (width 40 x length 80 x thickness 15 mm) containing 0 to 18.5% by weight and the balance consisting of Ti and inevitable impurities was melted by a tungsten arc melting method. Using this ingot, (I) as it is, and (II) after being heated to 1150 ° C, subjected to 50% hot rolling and further annealed at 750 ° C,
Measurement of TiC volume ratio by optical microscope (using image analyzer), Vickers hardness measurement and wear test using SUS304 as a mating material (300m distance using Ogoshi type abrasion tester)
(Evaluated by the amount of abrasion per unit area when moved).

結果は第1表に示す通りであり、炭素の添加量が増加
するにつれてTiC体積率はほぼ比例的に増大し、それに
伴なって複合材の硬度は高まると共に耐摩耗性は向上し
ている。但し炭素量が18重量%を超えると、TiC体積率
が90%を超えて耐衝撃強度に悪影響が表われてくる。
The results are as shown in Table 1. As the amount of added carbon increases, the volume ratio of TiC increases almost proportionally, and accordingly, the hardness of the composite material increases and the wear resistance improves. However, when the carbon content exceeds 18% by weight, the TiC volume ratio exceeds 90%, and the impact strength is adversely affected.

実施例2 純チタンに代えてTi-6A1-4V合金を使用した他は実施
例1と同様にして炭素量の異なる数種のチタン合金鋳塊
を製造し、鋳造まま材および熱延・焼鈍材について同様
の試験を行なった。
Example 2 Several kinds of titanium alloy ingots having different carbon contents were produced in the same manner as in Example 1 except that Ti-6A1-4V alloy was used in place of pure titanium, and as-cast materials and hot-rolled and annealed materials A similar test was performed for

結果は第2表に示す通りであり、第1表に示した純チ
タンを対象とする実験結果とほぼ同様の傾向が得られて
いる。尚第2図は、6重量%の炭素を加えたTi-6A1-4V
合金(鋳造まま材)の金属組織を示す図面代用光学顕微
鏡写真であり、粒状のTiCが均一に分散した複合組織と
なっていることが分かる。
The results are as shown in Table 2, which shows almost the same tendency as the experimental results for pure titanium shown in Table 1. FIG. 2 shows Ti-6A1-4V to which 6% by weight of carbon was added.
It is an optical microscope photograph instead of a drawing showing the metallographic structure of the alloy (as-cast material), and it can be seen that it has a composite structure in which granular TiC is uniformly dispersed.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約
すると次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects are summarized as follows.

(1)チタンまたはチタン合金の有する軽量性、高耐食
性、高強度特性を維持しつつ耐摩耗性を著しく高めるこ
とができ、軽量で運動機構への負担の少ない回転もしく
は往復運動部材として有利に活用することができる。
(1) Abrasion resistance can be significantly enhanced while maintaining the lightweight, high corrosion resistance, and high strength characteristics of titanium or titanium alloy, and it is advantageously used as a rotating or reciprocating member that is lightweight and does not impose a burden on the movement mechanism. can do.

(2)耐摩耗性向上の為のTiC粒子は、溶融状態のチタ
ンまたはチタン合金中に含まれる炭素と結合してマトリ
ックス中に晶出したものであり、TiCとマトリックスは
共存状態で熱力学的に安定であるから、従来の粒子分散
型合金の様に高温使用時に固溶、再析出、拡散、変態等
を起こして変質する様な恐れがない。
(2) TiC particles for improving abrasion resistance are crystallized in a matrix by bonding to carbon contained in molten titanium or a titanium alloy, and TiC and the matrix coexist in a thermodynamic state. Therefore, there is no danger of causing a solid solution, re-precipitation, diffusion, transformation, etc., when used at a high temperature as in a conventional particle-dispersed alloy, to cause a deterioration.

【図面の簡単な説明】[Brief description of the drawings]

第1図はチタン中の炭素の添加量とTiC体積率の関係を
示すグラフ、第2図は本発明に係るTiC粒子分散強化型
チタン基合金の金属組織を示す図面代用光学顕微鏡写真
である。
FIG. 1 is a graph showing the relationship between the amount of carbon added in titanium and the volume fraction of TiC, and FIG. 2 is an optical microscope photograph showing the metal structure of the TiC particle dispersion strengthened titanium-based alloy according to the present invention.

フロントページの続き (56)参考文献 特開 昭62−222041(JP,A) 特公 昭46−17044(JP,B1) 特公 昭54−19846(JP,B2)Continuation of the front page (56) References JP-A-62-222041 (JP, A) JP-B-46-17044 (JP, B1) JP-B-54-19846 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1.8〜18重量%のCを含み、チタンまたは
チタン合金マトリックス中にTiC粒子が均一に分散晶出
したものであることを特徴とするTiC粒子分散強化型チ
タン基合金。
1. A TiC particle dispersion strengthened titanium base alloy containing 1.8 to 18% by weight of C, wherein TiC particles are uniformly dispersed and crystallized in a titanium or titanium alloy matrix.
JP62224486A 1987-09-08 1987-09-08 TiC particle dispersion strengthened titanium base alloy Expired - Lifetime JP2572777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62224486A JP2572777B2 (en) 1987-09-08 1987-09-08 TiC particle dispersion strengthened titanium base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62224486A JP2572777B2 (en) 1987-09-08 1987-09-08 TiC particle dispersion strengthened titanium base alloy

Publications (2)

Publication Number Publication Date
JPS6468437A JPS6468437A (en) 1989-03-14
JP2572777B2 true JP2572777B2 (en) 1997-01-16

Family

ID=16814550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62224486A Expired - Lifetime JP2572777B2 (en) 1987-09-08 1987-09-08 TiC particle dispersion strengthened titanium base alloy

Country Status (1)

Country Link
JP (1) JP2572777B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336230A (en) * 1989-06-30 1991-02-15 Toshiba Corp Erosion-resistant alloy steel and its manufacture
US20070062614A1 (en) 2005-09-19 2007-03-22 Grauman James S Titanium alloy having improved corrosion resistance and strength
CN109777988A (en) * 2019-02-25 2019-05-21 盐城工业职业技术学院 A kind of tough titanium alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419846A (en) * 1977-07-12 1979-02-14 Shirou Funayama Automatic arranging apparatus for slippers
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
JPS5978774A (en) * 1982-10-28 1984-05-07 Sumitomo Metal Ind Ltd Build-up welding method of titanium or titanium alloy
JPS6123574A (en) * 1984-07-12 1986-02-01 Daido Steel Co Ltd Engine valve and its manufacture
JPS62222041A (en) * 1986-03-24 1987-09-30 Seiko Instr & Electronics Ltd Watchcase parts
JPS62270277A (en) * 1986-05-18 1987-11-24 Daido Steel Co Ltd Production of titanium base alloy-made wear resistant member

Also Published As

Publication number Publication date
JPS6468437A (en) 1989-03-14

Similar Documents

Publication Publication Date Title
EP2653578B1 (en) Aluminum die casting alloy
JP3027200B2 (en) Oxidation resistant low expansion alloy
US5711366A (en) Apparatus for processing corrosive molten metals
US5976214A (en) Slide member of sintered aluminum alloy and method of manufacturing the same
US5458701A (en) Cr and Mn, bearing gamma titanium aluminides having second phase dispersoids
EP4083244A1 (en) Heat-resistant powdered aluminium material
US5015534A (en) Rapidly solidified intermetallic-second phase composites
JP3229339B2 (en) Oxidation and corrosion resistant alloy for components used in intermediate temperature range based on added iron aluminide Fe3Al
JPH0593232A (en) Niobium-containing,aluminum-modified titanium rendered castable by inoculating boron
JPH0776398B2 (en) Method for producing titanium aluminide containing niobium and boron
JP2572777B2 (en) TiC particle dispersion strengthened titanium base alloy
JPH07188815A (en) Tin-based white metal bearing alloy excellent in heat and fatigue resistance
JP2572777C (en)
US2979397A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt and manganese
JP2711296B2 (en) Heat resistant aluminum alloy
Bram et al. Kinetics of the phase transformation and wear resistance of in-situ processed titanium matrix composites based on Ti–Fe–B
JP2000345259A (en) CREEP RESISTANT gamma TYPE TITANIUM ALUMINIDE
JPH06299276A (en) Ti-al alloy parts
JP3743019B2 (en) Titanium aluminide for precision casting containing Fe and V
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
JP3087377B2 (en) Surface hardening material, surface hardening method and surface hardening member for member made of Ti or Ti alloy
KR102319905B1 (en) Alloy for high temperature and manufacturing method thereof
JP3245338B2 (en) Hot chamber die casting machine for low aluminum zinc base alloy
KR100361743B1 (en) Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material
JP6841441B2 (en) Manufacturing method of Mo-Si-B alloy, Mo-Si-B alloy and friction stir welding tool