KR100361743B1 - Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material - Google Patents

Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material Download PDF

Info

Publication number
KR100361743B1
KR100361743B1 KR1019960063042A KR19960063042A KR100361743B1 KR 100361743 B1 KR100361743 B1 KR 100361743B1 KR 1019960063042 A KR1019960063042 A KR 1019960063042A KR 19960063042 A KR19960063042 A KR 19960063042A KR 100361743 B1 KR100361743 B1 KR 100361743B1
Authority
KR
South Korea
Prior art keywords
arc welding
composite material
transferred arc
plasma transferred
plasma
Prior art date
Application number
KR1019960063042A
Other languages
Korean (ko)
Other versions
KR19980044891A (en
Inventor
김형준
윤익찬
강윤하
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1019960063042A priority Critical patent/KR100361743B1/en
Publication of KR19980044891A publication Critical patent/KR19980044891A/en
Application granted granted Critical
Publication of KR100361743B1 publication Critical patent/KR100361743B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE: A composite material for plasma transferred arc welding that is applied to plasma hardfacing in which powder is melted using high density heat source of plasma to improve wear resistance and corrosion resistance of the surface of powder, and a method for plasma transferred arc welding the composite material are provided. CONSTITUTION: The composite material for plasma transferred arc welding is characterized in that a cobalt based matrix composition comprising 32.5 to 41 wt.% of cobalt (Co), 0.5 to 1.0 wt.% of carbon (C), 15 to 20 wt.% of chromium (Cr), 2.0 to 3.0 wt.% of tungsten (W) and 35 to 50 wt.% of ceramic powder WC-Co are used when plasma transferred arc welding steel products or iron. The method for plasma transferred arc welding the composite material for plasma transferred arc welding is characterized in that preheating temperature is maintained to 300 to 500 deg.C to obtain hardfacing layer in which pores or cracks are not formed during plasma transferred arc welding, the heat temperature is maintained to 300 deg.C if a matrix composition comprises 35 wt.% of WC-Co, 1.0 wt.% of C, 20 wt.% of Cr, 3.0 wt.% of W and 41 wt.% of Co, and the preheating temperature is increased as ceramic friction is being increased so that the heat temperature is maintained to 400 deg.C if the matrix composition comprises 50 wt.% of WC-Co, 0.5 wt.% of C, 15 wt.% of Cr, 2.0 wt.% of W and 32.5 wt.% of Co.

Description

플라즈마 육성용 복합재료 및 그 복합재료 육성방법Plasma cultivation composite material and its growth method

본 발명은 플라즈마 육성용 복합재료 및 그 복합재료 육성방법에 관한 것으로, 특히 플라즈마의 고밀도 열원을 이용하여 분말을 용융시키는 플라즈마 육성용접에 적용하는 것으로, 표면의 높은 내마모성과 내부식성을 향상시키고자 하는 것이다.The present invention relates to a plasma growth composite material and a method for growing the composite material, and in particular, to a plasma growth welding for melting powder using a high density heat source of plasma, to improve the high wear resistance and corrosion resistance of the surface will be.

일반적으로 사용되는 분말 재료는 크게 철계, 코발트계, 니켈계, 그리고 복합재료로 분류될 수 있다. 사용조건과 경제성에 따라 적당한 분말을 선택하여 사용하게 된다. 복합재료는 매우 마모가 심한 부품의 표면 경화에 이용되는 재료로서 인성이 우수한 철계, 니켈계 혹은 코발트계 등의 합금 분말에 단단한 세라믹을 혼합하여 매우 우수한 내마모 특성을 얻기 위한 재료이다.Commonly used powder materials can be broadly classified into iron-based, cobalt-based, nickel-based, and composite materials. Depending on the conditions of use and economics, a suitable powder is selected and used. The composite material is a material used for surface hardening of very abrasion parts, and is a material for obtaining very good wear resistance by mixing a hard ceramic with alloy powders such as iron-based, nickel-based or cobalt-based alloys with excellent toughness.

현재 가장 널리 사용되는 복합재료는 미국 특허 US 4923511(1990)에서 명시한 바와 같이 니켈계 합금 기지에 WC-Co나 W2C의 세라믹을 혼합한 것으로서, 이러한 분말로 우수한 내마모 특성을 얻을 수 있는 육성층을 얻을 수 있다.At present, the most widely used composite material is a mixture of WC-Co or W 2 C ceramic with a nickel-based alloy base as specified in US Pat. No. 49,23511 (1990). Can be obtained.

그러나, 상기의 복합재료는 표면 육성시 종종 균열을 함유하므로서 미국 특허 US 4414029(1983)에서는 균열 현상을 줄이기 위하여 약간의 Nb과 Mo을 첨가하는 기술에 대하여 명기하고 있다.However, the above composites often contain cracks in surface growth, and US Pat. No. 4,44,429,291 (1983) specifies a technique for adding some Nb and Mo to reduce cracking.

특수한 목적을 위하여 철계 기지에 NbC 세라믹 복합 분말(AU 9454592, 1994) 스테인레스 스틸 기지에 ZrC 세라믹 복합분말(JP 62136597, 1987), 그리고 VC 세라믹 함유복합분말(US 4650722)에 대하여 명시하고 있다.For special purposes, NbC ceramic composite powders (AU 9454592, 1994) on iron bases and ZrC ceramic composite powders (JP 62136597, 1987) on stainless steel bases and VC ceramic composite powders (US 4650722) are specified.

일본 특허(JP 58179568, 1983)에서는 구리나 구리합금 기지에 NbC, VC, 그리고 TiC의 세라믹을 혼합한 분말로서 플라즈마 육성용접을 이용하여 우수한 표면 육성층을 얻을 수 있다고 명시하고 있다.Japanese Patent (JP 58179568, 1983) states that a powder obtained by mixing ceramics of NbC, VC, and TiC on a copper or copper alloy base can be used to obtain an excellent surface growth layer using plasma growth welding.

또한 일본 특허(JP 58179569, 1983)에서 알루미늄이나 알루미늄 합금의 표면육성을 위하여 알루미늄이나 알루미늄 합금분말에 NbC, VC, 그리고 TiC의 세라믹을 혼합한 복합재료로서 우수한 육성층을 얻을 수 있다고 명시하고 있다.In addition, Japanese Patent (JP 58179569, 1983) states that an excellent growth layer can be obtained as a composite material in which NbC, VC, and TiC ceramics are mixed with aluminum or aluminum alloy powder for surface growth of aluminum or aluminum alloy.

상기에서 여러가지 기술들을 열거하고 있으나, 상업적으로 가장 널리 사용되는 재료는 역시 니켈계 기지에 WC-Co를 함유한 복합재료가 가장 널리 사용되는데, 그 이유는 다른 세라믹 재료에 비하여 저렴한 WC-Co분말 때문이다.Although various techniques have been listed above, the most widely used commercially available composites containing WC-Co on nickel bases are the most widely used because of the inexpensive WC-Co powder compared to other ceramic materials. to be.

그러나 상기와 같은 금속 기지에 세라믹 분말을 사용하면 내마모성은 향상되나, 일반적으로 내부식성은 저하하는 경향을 보이게 된다.However, when the ceramic powder is used for the metal base as described above, wear resistance is improved, but corrosion resistance is generally decreased.

본 발명이 목적하는 바는 내마모성과 내부식성을 동시에 만족시키기 위하여 코발트계 기지에 적당한 합금 원소를 첨가하고, 저렴한 WC-Co 세라믹을 혼합한 분말을 사용하고, 또한 니켈계 육성층에 비하여 인성이 우수하므로 균열 발생이 덜 일어나 균열 발생 현상을 더욱 억제하고자 하는 것이다.The object of the present invention is to add a suitable alloying element to the cobalt-based matrix to satisfy both abrasion resistance and corrosion resistance at the same time, and to use a powder mixed with an inexpensive WC-Co ceramic, and also excellent toughness compared to the nickel-based growth layer Less occurrence of cracking is to further suppress the occurrence of cracking phenomenon.

이와 같은 목적을 갖는 본 발명의 특징은 강재나 철의 플라즈마 육성시 기지의 성분을 코발트계로 하되, 코발트가 32-41%, 탄소가 0.5-1.0%, 크롬이 15-20%, 그리고 텅스텐이 2.0-3.0% 함유되고 세라믹 분말인 WC-Co가 35-50% 함유된 분말을 육성하여 내마모성과 내부식성을 향상시키는 플라즈마 육성용 복합재료와;The characteristics of the present invention having the above object is that when the plasma growth of steel or iron, the known component is cobalt-based, cobalt 32-41%, carbon 0.5-1.0%, chromium 15-20%, and tungsten 2.0 A plasma growth composite material which improves abrasion resistance and corrosion resistance by growing a powder containing -3.0% and containing 35-50% of WC-Co, which is a ceramic powder;

플라즈마 육성시 기공과 균열이 존재하지 않는 우수한 육성층을 얻기 위하여 예열온도를 300-500℃로 하고, WC-Co가 35%에서는 300℃로 하며, 세라믹 분율이 증가함에 따라 최적 예열온도가 증가하여 50%의 WC-Co에서는 400℃로 함에 의한다.Preheating temperature is 300-500 ℃, WC-Co is 300 ℃ at 35%, and the optimum preheating temperature is increased by increasing the ceramic fraction. In WC-Co of%, it is 400 degreeC.

도 1 은 본 발명예 1 의 분말 모양 조직사진1 is a powdery tissue photograph of the invention example 1

도 2 는 본 발명예 1 의 단면 조직사진Figure 2 is a cross-sectional texture picture of Example 1 of the present invention

도 3 은 본 발명예 2 의 단면 조직사진3 is a cross-sectional texture picture of Inventive Example 2

도 4 는 본 발명의 부식 실험결과 그래프4 is a graph of corrosion test results of the present invention

강재나 철의 플라즈마 육성시 기지의 성분을 코발트계로 하되, 코발트가 32-41%, 탄소가 0.5-1.0%, 크롬이 15-20%, 그리고 텅스텐이 2.0-3.0% 함유되고, 세라믹 분말인 WC-Co가 35-50% 함유된 분말을 육성하여 내마모성과 내부식성을 향상시키는 플라즈마 육성용 복합재료와;WC is a ceramic powder containing 32-41% cobalt, 0.5-1.0% carbon, 15-20% chromium, and 2.0-3.0% tungsten. A plasma growth composite material for growing a powder containing 35-50% of Co to improve abrasion resistance and corrosion resistance;

플라즈마 육성시 기공과 균열이 존재하지 않는 우수한 육성층을 얻기 위하여 예열온도를 300-500℃로 하고, WC-Co가 35%에서는 300℃로 하며, 세라믹 분율이 증가함에 따라 최적 예열온도가 증가하여 50%의 WC-Co에서는 400℃로 하여서 된 것이다.Preheating temperature is 300-500 ℃, WC-Co is 300 ℃ at 35%, and the optimum preheating temperature is increased by increasing the ceramic fraction. In WC-Co of%, it was set as 400 degreeC.

이와 같이 구성된 본 발명을 실시예를 통하여 설명하면 다음과 같다.Referring to the present invention configured as described above through the embodiment as follows.

[실시예 1]Example 1

플라즈마 육성용접은 마스모도제이고, 최대 출력이 200A인 기기를 사용하여 분말 송금가스, 플라즈마 가스, 그리고 보호 가스로는 모두 아르곤을 사용하였다.Plasma growing welding was made of masmododo, and the maximum output power of 200 A was used, and powder transfer gas, plasma gas, and protective gas were all used with argon.

모재로는 일반 저탄소강이고, 두께가 15mm인 SS41을 100mm×100mm로 가공하여 표면을 연마한 후 플라즈마 육성 용접 작업을 하였다.As a base material, SS41 having a thickness of 15 mm was processed to 100 mm x 100 mm, and the plasma growth welding was performed.

사용된 분말 재료로는 상업적으로 판매되는 니켈계 기지에 WC-Co의 세라믹을 35-80% 함유한 재료로서 상세한 무게 분율은 하기 표 1에서 보이고 있다.As the powder material used, a material containing 35-80% of WC-Co's ceramic in a commercially available nickel-based matrix is shown in Table 1 below.

발명예에서는 코발트계 기지에 35-50%의 WC-Co 세라믹을 함유한 분말이다. 세라믹이 35% 이하로 함유되면 세라믹 복합재료의 특성이 미미해져서 경도가 저하하고, 마모 특성이 현저히 저하되기 때문이다.In the present invention, the powder contains 35-50% of WC-Co ceramic in a cobalt-based matrix. This is because when the ceramic content is 35% or less, the properties of the ceramic composite material become insignificant, the hardness decreases, and the wear characteristics remarkably decrease.

세라믹 분율이 50% 이상이 되면 세라믹이 너무 많이 함유되어 양호한 육성을 얻기 힘들고, 또한 부식 특성도 저하하게 된다. 도 1에서는 발명예 1의 분말 형상을 보이는데, 구형은 코발트계 금속 합금이고, 각형은 WC-Co 세라믹이다.When the ceramic fraction is 50% or more, too much ceramic is contained, so that it is difficult to obtain good growth and the corrosion characteristics are also deteriorated. In Fig. 1, the powder form of Inventive Example 1 is shown. The spherical shape is a cobalt-based metal alloy, and the square shape is WC-Co ceramic.

크롬은 기지의 내부식성을 향상시키기 위하여 첨가되고, 텅스텐은 고온에서의 우수한 강도 특성을 주기 위하여 첨가되었다.Chromium was added to improve the corrosion resistance of the matrix and tungsten was added to give good strength properties at high temperatures.

또한, 탄소는 크롬과 공정 탄화물을 형성하여 기지에 내마모성을 부여하기 위하여 첨가되었다.Carbon was also added to form eutectic carbides with chromium to impart wear resistance to the matrix.

[표 1] 사용된 복합재료의 성분(무게분율)[Table 1] Component (weight fraction) of composite material used

하기 표 2에서는 상기 표 1의 분말을 사용하여 얻어진 육성층의 표면 경도와 최대 경도를 보이고 있다.Table 2 shows the surface hardness and the maximum hardness of the growth layer obtained using the powder of Table 1.

얻어진 육성층은 모두 기공이 존재하지 않는 양호한 육성층으로서 육성층의 두께는 약 2-3mm이다.The obtained growth layer is a good growth layer in which no pores exist, and the thickness of the growth layer is about 2-3 mm.

[표 2] 플라즈마 육성층의 경도 측정결과(비커스 경도기 10kg 사용)[Table 2] Hardness Measurement Results of Plasma Growth Layer (Using Vickers Hardness 10kg)

상기 표 2에서 표면 경도와 최대 경도가 일치하지 않은 경우는 최대 경도가 표면 근처에서 나타나지 않고, 육성층의 중앙 부근에서 나타나는 현상을 의미한다.When the surface hardness and the maximum hardness do not match in Table 2, the maximum hardness does not appear near the surface, and means a phenomenon appearing near the center of the growing layer.

발명예에서 보이는 경도는 모두 종래예와 거의 유사하거나 오히려 더 높은 정도를 보이므로, 유사하거나 더 우수한 마모 특성을 보이리라 예상된다.Since the hardnesses shown in the invention examples are all almost similar to or higher than those in the prior art, it is expected that they will show similar or better wear characteristics.

특히 발명예 2의 경우는 기지의 공정 탄화물이 더해져서 대단히 높은 경도를 보이고 있다.Especially in the case of invention example 2, the known process carbide is added and the hardness is very high.

도 2와 도 3에서는 발명예 1과 2의 표면 근처에서의 단면 조직 사진을 각각 보이고 있다. 사진에서 각형은 WC-Co의 세라믹이고, 기지는 코발트와 맨 나중에 응고된 라멜라 형상을 보이는 공정 조직으로 구성되어 있다. 모두 기공과 균열이 존재하지 않은 양호한 육성층임을 보이고 있다.2 and 3 show cross-sectional texture photographs near the surfaces of Inventive Examples 1 and 2, respectively. In the picture, the square is a ceramic of WC-Co, and the base consists of a process structure showing cobalt and the last solidified lamellar shape. All have been shown to be good growth layers without pores and cracks.

상기의 육성층을 이용하여 3% NaCl 용액에서 부식 시험을 시행하였다. 부식 시험기기는 포텐시오스테트(potentiostat)를사용하여 초기 부식 전류와 부식 전위를 측정하였다.Corrosion test was performed in 3% NaCl solution using the above grown layer. The corrosion tester used potentiostat to measure the initial corrosion current and corrosion potential.

부식 전류가 작을수록 부식이 천천히 일어나고, 부식 전위의 절대값이 작을수록 부식이 잘 일어나지 않는다는 것을 의미한다. 부식 시험결과는 도 4에서 보이고 있는데, 발명예 1의 경우는 부식 전위와 전류 모두 현저하게 우수한 부식 특성을 보이고 있다.The smaller the corrosion current, the slower the corrosion occurs. The smaller the absolute value of the corrosion potential, the less likely that corrosion occurs. Corrosion test results are shown in Figure 4, in the case of Inventive Example 1, both the corrosion potential and the current shows a significantly superior corrosion characteristics.

발명예 2의 경우는 부식 전류로는 대단히 우수한 것으로 평가되지만, 부식전압은 큰 향상을 보이지는 않는다. 따라서 WC-Co 세라믹의 분율이 증가함에 따라 마모 특성은 증가하지만 부식 특성은 감소하며, 특히 50% 이상의 세라믹 분율에서는 많은 기공을 포함하여 양호한 육성층을 얻기가 용이하지 않다.In the case of Inventive Example 2, the corrosion current is evaluated to be very excellent, but the corrosion voltage does not show a great improvement. Therefore, as the fraction of WC-Co ceramics increases, the wear characteristics increase but the corrosion characteristics decrease. In particular, in the ceramic fraction of 50% or more, it is difficult to obtain a good growth layer including many pores.

[실시예 2]Example 2

도 2와 3에서 보이는 조직과 같은 우수한 육성을 얻기 위해서는 예열 온도가 필요하다. 그러나 예열 온도가 너무 높으면 모재와의 열응력 발생이 커지고, 모재의 뒤틀림 현상이 증대되므로 본 발명에서는 최대 500℃로 한정하였다.Preheating temperature is required to obtain good growth, such as the tissue shown in FIGS. 2 and 3. However, if the preheating temperature is too high, the thermal stress with the base material is increased, and the warpage phenomenon of the base material is increased, so the present invention is limited to a maximum of 500 ° C.

예열온도가 200℃까지는 많은 균열이 존재하고, 발명예 2의 경우는 기공틀이 존재하였으나, 발명예 1의 육성층에서는 300℃에서 균열이 사라지기 시작하고, 발명예 2의 육성층에서는 400℃에서 균열이 사라짐을 관찰할 수 있었다.Many cracks exist until the preheating temperature is 200 ° C., and in the case of Inventive Example 2, a pore frame exists. This disappearance could be observed.

예열온도가 증가할수록 모재와의 열응력 발생이 커지고, 모재의 뒤틀림 현상이 증가하므로, 최적인 예열온도는 35%의 세라믹이 함유된 발명예 1의 경우는 300℃이고, 세라믹 분율이 증가함에 따라 예열온도가 증가하여 발명예 2인 50%의 세라믹이 함유된 경우에는 400℃가 가장 적당한 예열 온도로 평가된다.As the preheating temperature increases, the thermal stress with the base metal increases and the warpage of the base material increases, so the optimum preheating temperature is 300 ° C. in the case of Inventive Example 1 containing 35% of ceramic, and as the ceramic fraction increases. When the preheating temperature is increased to contain 50% of the ceramics of invention example 2, 400 ° C is evaluated as the most suitable preheating temperature.

[표 3] 예열온도에 따른 육성층의 조직 관찰결과[Table 3] Structure Observation Results of Growth Layers According to Preheating Temperature

이상과 같은 본 발명은 종래에 비하여 우수한 특성을 얻을 수 있고, 기지의 고온특성이 우수하므로 고온에서 더욱 우수한 내마모성을 얻을 수 있으며, 코발트계가 니켈계에 비하여 우수한 인성을 보이므로 얻어지는 육성층도 우수한 인성을 지니게 된다.The present invention as described above can obtain excellent properties compared to the conventional, and excellent excellent high temperature characteristics can be obtained more excellent wear resistance at high temperatures, and the resulting growth layer also has excellent toughness as cobalt-based shows excellent toughness compared to nickel-based Will be carried.

또한 코발트가 니켈에 비하여 Zn에 대한 저항성이 우수하므로 용융 Zn내의 각종 부품에 적용하면 우수한 특성을 얻을 수 있고, 균열과 기공이 존재하지 않는 우수한 육성층을 얻을 수 있는 효과가 있다.In addition, cobalt has better resistance to Zn than nickel, and thus, when applied to various components in molten Zn, excellent properties can be obtained, and an excellent growth layer free of cracks and pores can be obtained.

Claims (2)

강재나 철의 플라즈마 육성시 기지의 성분을 코발트계로 하되, 코발트가 32.5-41%, 탄소가 0.5-1.0%, 크롬이 15-20%, 그리고 텅스텐이 2.0-3.0% 함유되고 세라믹 분말인 WC-Co가 35-50% 함유된 분말을 육성하는 것을 특징으로 하는 플라즈마 육성용 복합재료.In the plasma growth of steel and iron, the known ingredients are cobalt-based, with cobalt containing 32.5-41%, carbon 0.5-1.0%, chromium 15-20%, and tungsten 2.0-3.0%, and the ceramic powder WC- A composite material for plasma growth, characterized by growing powder containing 35-50% of Co. 플라즈마 육성시 기공과 균열이 존재하지 않는 육성층을 얻기 위하여 예열온도를 300-500℃로 하고, WC-Co가 35%, C가 1.0%, Cr이 20%, W가 3.0%, Co가 41%에서는 300℃로 하며, 세라믹 분율이 증가함에 따라 예열온도가 증가하여 WC-Co가 50%, C가 0.5%, Cr이 15%, W가 2.0%, Co가 32.5%에서는 400℃로 함을 특징으로 하는 플라즈마 육성용 복합재료 육성방법.Preheating temperature is set to 300-500 ℃, WC-Co is 35%, C is 1.0%, Cr is 20%, W is 3.0%, Co is 41% At 300 ℃, the preheating temperature increases with increasing ceramic fraction, resulting in WC-Co of 50%, C of 0.5%, Cr of 15%, W of 2.0% and Co of 32.5% at 400 ℃. Method for growing composite material for plasma growth.
KR1019960063042A 1996-12-09 1996-12-09 Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material KR100361743B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960063042A KR100361743B1 (en) 1996-12-09 1996-12-09 Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960063042A KR100361743B1 (en) 1996-12-09 1996-12-09 Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material

Publications (2)

Publication Number Publication Date
KR19980044891A KR19980044891A (en) 1998-09-15
KR100361743B1 true KR100361743B1 (en) 2003-01-29

Family

ID=37490678

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960063042A KR100361743B1 (en) 1996-12-09 1996-12-09 Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material

Country Status (1)

Country Link
KR (1) KR100361743B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046601B (en) * 2021-03-15 2022-06-28 上海大学 Tungsten carbide reinforced cobalt-based composite material and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253853A (en) * 1995-03-15 1996-10-01 Mitsubishi Materials Corp Composite powder for thermal spraying

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253853A (en) * 1995-03-15 1996-10-01 Mitsubishi Materials Corp Composite powder for thermal spraying

Also Published As

Publication number Publication date
KR19980044891A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
Upadhyaya Materials science of cemented carbides—an overview
EP0738782B1 (en) Iron aluminide useful as electrical resistance heating elements
Chao et al. Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
EP1582605B1 (en) Wear-resistant iron base alloy
US5637816A (en) Metal matrix composite of an iron aluminide and ceramic particles and method thereof
US4003715A (en) Copper-manganese-zinc brazing alloy
Xibao et al. Formation of TiB2 whiskers in laser clad Fe–Ti–B coatings
US3933483A (en) Silicon-containing nickel-aluminum-molybdenum heat resisting alloy
EP0336612B1 (en) Oxidation resistant alloy
CA1116891A (en) Wear-resistant nickel-base alloy
KR100361743B1 (en) Composite material for plasma transferred arc welding and method for plasma transferred arc welding the composite material
JPH07179967A (en) Cobalt-based alloy excellent in corrosion and wear resistance and high-temperature strength
CN108620763A (en) A kind of high boron flux-cored wire of self-shield open arc
EP0250414B1 (en) Method in producing a molding of an iron alloy
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JPS60100646A (en) High toughness sintered body of ceramic
JP2572777B2 (en) TiC particle dispersion strengthened titanium base alloy
JP2528704B2 (en) Hardfacing alloy with excellent high temperature tensile creep properties
JP3301442B2 (en) Composite cylinder for high-temperature and high-pressure molding
JPH0768600B2 (en) Compound boride sintered body
JP2797048B2 (en) Melt erosion resistant material
JPH0617532B2 (en) Cermet member for cutting tools
Schneibel et al. Bonding of WC with an iron aluminide (FeAl) intermetallic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131106

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151104

Year of fee payment: 14

EXPY Expiration of term