JP2572210B2 - Vertical power MOS field effect semiconductor device - Google Patents

Vertical power MOS field effect semiconductor device

Info

Publication number
JP2572210B2
JP2572210B2 JP59247522A JP24752284A JP2572210B2 JP 2572210 B2 JP2572210 B2 JP 2572210B2 JP 59247522 A JP59247522 A JP 59247522A JP 24752284 A JP24752284 A JP 24752284A JP 2572210 B2 JP2572210 B2 JP 2572210B2
Authority
JP
Japan
Prior art keywords
type semiconductor
region
conductivity type
conductivity
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59247522A
Other languages
Japanese (ja)
Other versions
JPS61124178A (en
Inventor
育紀 ▲高▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59247522A priority Critical patent/JP2572210B2/en
Priority to DE19853540433 priority patent/DE3540433A1/en
Publication of JPS61124178A publication Critical patent/JPS61124178A/en
Application granted granted Critical
Publication of JP2572210B2 publication Critical patent/JP2572210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は縦形パワーMOS電界効果型半導体装置に関
し、特に破壊耐量を改善した縦形パワーMOS電界効果型
半導体装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a vertical power MOS field-effect semiconductor device, and more particularly to a vertical power MOS field-effect semiconductor device having improved breakdown strength.

[従来の技術] 従来、この種の半導体装置として第5図に示すものが
あった。第5図は、従来のパワーMOS電界効果トランジ
スタ(以下電界効果トランジスタをFETと記す)の断面
図である。初めに、この装置の構成について説明する。
ドレイン電極8表面に半導体基板である第1導電形の高
濃度ドレイン領域1bが形成されており、この領域表面に
第1導電形の低濃度ドレイン領域1aが形成されている。
第1導電形の低濃度ドレイン領域1a表面に、この領域と
は反対の導電形の第2導電形半導体領域2が間隔を隔て
て複数個形成されており、各第2導電形半導体領域2内
に第1導電形のソース領域3が一部間隔を有して2個形
成されている。各第2導電形半導体領域2は凸部21を有
しており、7はチャンネル形成領域である。各第1導電
形のソース領域3表面の一部およびこれら領域間の第2
導電形半導体領域2表面にソース電極6が形成されてお
り、さらにこのソース電極6はそこから半導体基板1bに
平行に左右に延びている。また、各第2導電形半導体領
域2間の第1導電形の低濃度ドレイン領域1a表面,第1
導電形の低濃度ドレイン領域1aと各第1導電形のソース
領域3間の各第2導電形半導体領域2表面,および各第
1導電形のソース領域3表面の一部に絶縁膜4が形成さ
れている。絶縁膜4表面にゲート電極5が形成されてお
り、ゲート電極5表面に絶縁膜4を介して上述の半導体
基板1bに平行に延びているソース電極6が形成されてい
る。パワーMOSFETは、このような基本ユニットが多数並
列接続された構造をしている。
[Prior Art] Conventionally, there has been a semiconductor device of this type shown in FIG. FIG. 5 is a sectional view of a conventional power MOS field effect transistor (hereinafter, the field effect transistor is referred to as FET). First, the configuration of this device will be described.
A first conductivity type high concentration drain region 1b which is a semiconductor substrate is formed on the surface of the drain electrode 8, and a first conductivity type low concentration drain region 1a is formed on the surface of this region.
On the surface of the low-concentration drain region 1a of the first conductivity type, a plurality of second conductivity type semiconductor regions 2 of a conductivity type opposite to this region are formed at an interval. Two source regions 3 of the first conductivity type are formed with a partial interval. Each second conductivity type semiconductor region 2 has a convex portion 21, and 7 is a channel forming region. Part of the surface of the source region 3 of each first conductivity type and a second region between these regions
A source electrode 6 is formed on the surface of the conductive semiconductor region 2, and the source electrode 6 extends right and left from the source electrode 6 parallel to the semiconductor substrate 1b. Further, the surface of the low-concentration drain region 1a of the first conductivity type between the second conductivity type semiconductor regions 2,
An insulating film 4 is formed on the surface of each semiconductor region 2 of the second conductivity type between the low-concentration drain region 1a of the conductivity type and the source region 3 of the first conductivity type, and a part of the surface of the source region 3 of each first conductivity type. Have been. A gate electrode 5 is formed on the surface of the insulating film 4, and a source electrode 6 is formed on the surface of the gate electrode 5 via the insulating film 4 so as to extend in parallel with the semiconductor substrate 1b. The power MOSFET has a structure in which many such basic units are connected in parallel.

次に、この装置の動作について説明する。ドレイン電
極8とソース電極6間にドレイン電圧を印加した状態で
ゲート電極5とソース電極6間にゲート電圧を印加する
と、チャンネル形成領域7にチャンネルが形成され、ド
レイン電極8とソース電極6間にドレイン電流が流れ
る。このとき、ゲート電極5とソース電極6間に印加す
るゲート電圧を制御することによって、ドレイン電極8
とソース電極6間を流れるドレイン電流を制御すること
ができる。ソース電極6による第2導電形半導体領域2
と第1導電形のソース領域3の短絡は、チャンネル形成
領域7の電位を固定さすために不可欠である。
Next, the operation of this device will be described. When a gate voltage is applied between the gate electrode 5 and the source electrode 6 in a state where a drain voltage is applied between the drain electrode 8 and the source electrode 6, a channel is formed in the channel formation region 7, and a channel is formed between the drain electrode 8 and the source electrode 6. Drain current flows. At this time, by controlling the gate voltage applied between the gate electrode 5 and the source electrode 6, the drain electrode 8
And the drain current flowing between the source electrode 6 can be controlled. Second conductivity type semiconductor region 2 by source electrode 6
The short circuit between the first conductive type and the source region 3 is indispensable for fixing the potential of the channel forming region 7.

パワーMOSFETは、小数キャリアの注入,蓄積が基本的
には問題にならないため高速動作が可能であるという利
点がある反面、バイポーラ(以下BIPと記す)トランジ
スタ,サイリスタで小数キャリアによる伝導度変調によ
り高抵抗領域のON抵抗が下がるという機構がないため、
ON抵抗がBIP素子に比べて大きい。このため、パワーMOS
FETでは活性部の周辺長の増大と第1導電形の低濃度ド
レイン領域である高抵抗領域1aの薄層化が、電流容量増
大のために懸案となっている。高抵抗領域1aは、半導体
素子の耐圧特性が許す限り薄くするのが効果的な設計と
いえる。それにもかかわらず、凸部21が存在するのは次
のような理由による。
Power MOSFETs have the advantage that high-speed operation is possible because the injection and accumulation of minority carriers are basically not a problem. On the other hand, bipolar (hereinafter abbreviated as BIP) transistors and thyristors have high conductivity due to conductivity modulation by minority carriers. Because there is no mechanism to reduce the ON resistance in the resistance area,
ON resistance is larger than BIP element. For this reason, power MOS
In the FET, an increase in the peripheral length of the active portion and a reduction in the thickness of the high-resistance region 1a, which is a low-concentration drain region of the first conductivity type, are pending for increasing the current capacity. It can be said that the effective design is to make the high-resistance region 1a as thin as the breakdown voltage characteristics of the semiconductor element allow. Nevertheless, the reason why the convex portion 21 exists is as follows.

第6図は、従来のパワーMOSFETの出力特性を示す図で
ある。第2導電形半導体領域2に凸部21がない場合、降
伏電流が流れると瞬時に半導体素子が破壊する傾向があ
る。以下にこの破壊モードの説明を行なう。第7A図は、
凸部21がない場合のMOSFETの基本構成単位の断面図であ
り、第7B図は、第7A図の等価回路を示す図である。ソー
ス−ドレイン間に印加した電圧を増大させていき、低濃
度ドレイン領域1aと第2導電形半導体領域2の降伏電圧
値に達すると、第7A図中に矢印で示した降伏電流が流れ
る。ソース領域3の両端では、第7B図に示すように実質
的にBIPトランジスタが寄生している構造となってい
る。このため、ソース領域3の下に流れ込む電流Jcは、
抵抗Raを経てソース電極6から流れ出るのであるが、以
下の(1)式の条件を満たすとこの寄生トランジスタが
導通する状態が出現する。
FIG. 6 is a diagram showing output characteristics of a conventional power MOSFET. If there is no protrusion 21 in the second conductivity type semiconductor region 2, the semiconductor element tends to be destroyed instantaneously when a breakdown current flows. Hereinafter, this destruction mode will be described. FIG.
FIG. 7B is a cross-sectional view of a basic structural unit of the MOSFET when there is no convex portion 21, and FIG. 7B is a diagram showing an equivalent circuit of FIG. 7A. When the voltage applied between the source and the drain is increased to reach the breakdown voltage value of the low-concentration drain region 1a and the second conductivity type semiconductor region 2, a breakdown current indicated by an arrow in FIG. 7A flows. At both ends of the source region 3, as shown in FIG. 7B, the structure is such that a BIP transistor is substantially parasitic. Therefore, the current J c flowing under the source region 3 is
It flows out of the source electrode 6 via the resistor Ra, but when the condition of the following equation (1) is satisfied, a state in which the parasitic transistor becomes conductive appears.

0.6V<Jc×Ra …(1) この現象は、パワーMOSFETのごく一部の領域でまず起
こるし、また導通した後も安定した状態はとり得ずブロ
ッキング発振状態に入る。このような状況で半導体素子
は短時間で破壊する。このモードの破壊は、第2導電形
半導体領域2に凸部21を形成すれば、降伏は第2導電形
半導体領域2の中央のみで起こるようになり、ソース領
域3下の降伏電流を小さくすることと、ソース領域3下
の抵抗Raが小さくなることから著しく改善できる。この
ように、従来の構造においてもソース−ドレイン間の降
伏現象(一般にいう半導体素子の一時降伏現象)には対
処できている。
0.6V <J c × Ra (1) This phenomenon firstly occurs in a very small region of the power MOSFET, and after the conduction, a stable state cannot be obtained and a blocking oscillation state is entered. In such a situation, the semiconductor element is destroyed in a short time. If the projection 21 is formed in the second conductivity type semiconductor region 2, the breakdown will occur only in the center of the second conductivity type semiconductor region 2, and the breakdown current below the source region 3 is reduced. That is, the resistance Ra under the source region 3 is reduced. As described above, the conventional structure can cope with the breakdown phenomenon between the source and the drain (generally, the temporary breakdown phenomenon of a semiconductor element).

[発明が解決しようとする問題点] 一般にMOSFETは、BIPトランジスタで深刻な問題とな
る2次破壊現象がないと言われているが、この発明の対
象にしている縦型のパワーMOSFETには寄生トランジスタ
があるため2次破壊現象が起きるという問題点があっ
た。この破壊現象は、高電圧,高速スイッチング動作で
起きやすいのであるが、通常のスイッチング・レギュレ
ータのように、半導体素子に印加される電圧と電流の位
相がずれている場合には問題にならない。すなわち、半
導体素子に電流が流れたまま高電圧が印加される動作モ
ードで初めて起きる現象である。たとえば、第8図に示
すインバータ回路で高速スイッチングを行なうと、この
2次破壊現象がたやすく発生する。この回路で負荷
(L)50に流れる電流を制御するためには、対角線上に
配置されたパワーMOSFET40a,40dの対あるいはパワーMOS
FET40b,40cの対を任意の割合でON,OFFすることによって
可能である。負荷(L)50を流れる電流は連続するか
ら、パワーMOSFET40a,40dの対をOFFにしておいてパワー
MOSFET40b,40cをON,OFFさす場合、パワーMOSFET40b,40c
がOFFのとき、負荷(L)50を流れる電流は、パワーMOS
FET40a,40dのそれぞれと逆並列に接続されている還流ダ
イオード41a,41dを通って電源60に戻ることになる。こ
の還流ダイオードは高速用のものが必要なので、パワー
MOSFETチップとは別の素子が接続されているのである
が、第7B図に示すように、パワーMOSFETの内部にはダイ
オードが内蔵されている構造となっている。このため、
還流ダイオードを流れるべき還流電流の一部は、パワー
MOSFETチップ中を流れることになる。この状態に続い
て、OFF状態のパワーMOSFET40b,40cにON信号を入力した
時点以降の(a),(d)側の還流ダイオード41a,41d
の電圧Vd波形と、パワーMOSFET40b,40cに流れる電流Im
波形の例を第9図に示す。(特にパワーMOSFETのスイッ
チング・スピードを制限しなかった場合)パワーMOSFET
40b,40cがONすると、(a),(d)側の還流ダイオー
ド41a,41dのリカバリー電流がほぼ直線的に増大してい
く。この上昇率は、電源電圧Vccと配線のインダクタン
スL0の比Vcc/L0で決まっている。リカバリーしていない
間は、還流ダイオード41a,41dはごく低いインピーダン
スの値をとり、パワーMOSFET40b,40cは電源電圧を保持
している。すなわち、パワーMOSFET40b,40cは電源電圧
が印加されたまま大電流が流れる状態にさらされる(こ
の状態は、一般に短絡状態と呼ばれている)。(a),
(d)側の素子には、リカバリー期間の途中から急峻に
電圧が加わり始め、リカバリー電流の減衰時に過大なピ
ーク値をとる。このような短絡状態は、特に高周波動作
で還流ダイオードのリカバリー特性が悪い場合著しいパ
ワー・ロスをもたらしパワーMOSFETの破壊の原因となる
ことがある。このモードの破壊は、典型としては発熱に
よる温度上昇が主な要因であり、2次破壊現象ではな
い。
[Problems to be Solved by the Invention] Generally, it is said that MOSFETs do not have a secondary destruction phenomenon that is a serious problem in BIP transistors. However, a vertical power MOSFET according to the present invention has a parasitic effect. There is a problem that a secondary breakdown phenomenon occurs due to the presence of the transistor. This destruction phenomenon is likely to occur in a high-voltage, high-speed switching operation, but does not cause a problem when the phase of the voltage applied to the semiconductor element is out of phase with the current, as in a normal switching regulator. That is, this phenomenon occurs for the first time in an operation mode in which a high voltage is applied while a current flows through a semiconductor element. For example, when high-speed switching is performed by the inverter circuit shown in FIG. 8, this secondary destruction phenomenon easily occurs. In order to control the current flowing to the load (L) 50 in this circuit, a pair of power MOSFETs 40a and 40d arranged diagonally or a power MOS
This is possible by turning on / off the pair of FETs 40b and 40c at an arbitrary ratio. Since the current flowing through the load (L) 50 is continuous, the power MOSFETs 40a and 40d are turned off and the power
When turning MOSFETs 40b and 40c ON and OFF, power MOSFETs 40b and 40c
Is OFF, the current flowing through the load (L) 50 is the power MOS
The power returns to the power supply 60 through the freewheel diodes 41a and 41d connected in anti-parallel with the FETs 40a and 40d, respectively. This freewheeling diode requires a high-speed one, so the power
Although another element is connected to the MOSFET chip, as shown in FIG. 7B, the power MOSFET has a structure in which a diode is built in. For this reason,
The part of the return current that should flow through the return diode is power
It will flow through the MOSFET chip. Subsequent to this state, the freewheeling diodes 41a and 41d on the (a) and (d) sides after the ON signal is input to the power MOSFETs 40b and 40c in the OFF state.
Voltage Vd waveform and the current Im flowing through the power MOSFETs 40b and 40c
FIG. 9 shows an example of the waveform. Power MOSFET (especially when the switching speed of the power MOSFET is not limited)
When the switches 40b and 40c are turned ON, the recovery currents of the return diodes 41a and 41d on the (a) and (d) sides increase substantially linearly. This rate of increase is determined by the ratio V cc / L 0 of the inductance L 0 of the wiring and the power supply voltage V cc. During no recovery, the return diodes 41a and 41d have extremely low impedance values, and the power MOSFETs 40b and 40c hold the power supply voltage. That is, the power MOSFETs 40b and 40c are exposed to a state where a large current flows while the power supply voltage is applied (this state is generally called a short-circuit state). (A),
A voltage starts to be rapidly applied to the element on the side (d) in the middle of the recovery period, and takes an excessive peak value when the recovery current is attenuated. Such a short-circuit condition may cause a remarkable power loss, particularly when the recovery characteristics of the freewheeling diode are poor in high-frequency operation, and may cause destruction of the power MOSFET. Typically, this mode of destruction is mainly caused by an increase in temperature due to heat generation, and is not a secondary destruction phenomenon.

パワーMOSFETで問題となる2次破壊は、上記説明の
(a),(d)側のMOSFETで起こる。(a),(d)側
のMOSFETが破壊するための必要条件は次のものである。
Secondary destruction, which is a problem in the power MOSFET, occurs in the MOSFETs on the (a) and (d) sides described above. The necessary conditions for destruction of the MOSFETs on the (a) and (d) sides are as follows.

1) 還流電流がMOSFETに流れること。(MOSFETに直列
にダイオードを結線し、還流電流が専ら還流ダイオード
にのみ流れるようにすると破壊は起こらない。) 2) 還流電流のリカバリー時間が、還流ダイオードよ
りもMOSFETの方が長いこと。(還流ダイオードに高速用
でなく通常型を使用すれば破壊は起きない。) 3) リカバリー動作時に加わる電圧の立ち上がりが急
峻であること。(スナバをつけ電圧の立ち上がりを抑え
ると破壊は起きない。) これらは、すべてBIPトランジスタをインバータに使
用した場合に問題となる2次破壊現象と基本的に同一で
ある。このモードの2次破壊現象は、次のように説明し
得る。還流時にわずかでもパワーMOSFETに電流が流れ、
引続きリカバリー時に急峻な電圧が印加されるまでの間
に、MOSFET内の接合がリカバリーされきれない場合を考
える。このときドレインの高抵抗領域1aに残留している
小数キャリアは、電圧が印加されると同時に電界により
加速されソース側の第2導電形半導体領域2に移動して
いく。高電圧の立ち上がりが極めて急峻な場合には、残
留している小数キャリアがすべて第2導電形半導体領域
2に到達するまでに、電界による小数キャリアのなだれ
増倍現象が無視できなくなり得る。第2導電形半導体領
域2に移動する小数キャリアは、ソース領域3の両端部
に形成されている寄生トランジスタにとってベース電流
が供給されていることに相当する。すなわち、小数キャ
リアのなだれ増倍現象が(1)式で示す条件を満たせ
ば、寄生トランジスタは導通する。寄生トランジスタが
導通すると、ドレインの高抵抗領域1aに新たなキャリア
が供給される訳で、このキャリアがなだれ増倍現象によ
り再び寄生トランジスタのベース領域に注入されるとい
う正帰還ループが成立し得る。この正帰還ループの存立
条件は、基本的にドレインの高抵抗領域1a中の電界領
域,寄生トランジスタのエミッタ・ベース間の抵抗Ra値
と直流電流増幅率hFE値に依存する。すなわち、電界強
度が強く抵抗Raと直流電流増幅率hFEが大きいと、この
正帰還は簡単に起こり得る。一旦正帰還状態に入ると、
電源電圧が下がり電界強度が小さくならない限りこの領
域の導通は止まることはない。この状況は、半導体素子
の局所領域が高電圧を印加されたまま大電流密度動作を
しているわけで、半導体素子は早晩発熱による温度上昇
が直接の原因となって破壊することになる。結局、この
ような現象を低減するのに第2導電形半導体領域2の凸
部21は次の点で効果的である。
1) Return current flows through the MOSFET. (No breakdown occurs if a diode is connected in series with the MOSFET so that the freewheeling current flows exclusively through the freewheeling diode.) 2) The recovery time of the freewheeling current is longer in the MOSFET than in the freewheeling diode. (No damage occurs if a normal type is used for the freewheeling diode instead of a high-speed diode.) 3) The voltage applied during the recovery operation rises steeply. (Destruction does not occur if the voltage rise is suppressed by adding a snubber.) These are all basically the same as the secondary destruction phenomenon that becomes a problem when a BIP transistor is used for an inverter. The secondary destruction phenomenon in this mode can be explained as follows. Even a small amount of current flows through the power MOSFET during reflux,
It is assumed that the junction in the MOSFET cannot be fully recovered until a steep voltage is applied during recovery. At this time, the minority carriers remaining in the high resistance region 1a of the drain are accelerated by the electric field at the same time when the voltage is applied, and move to the second conductivity type semiconductor region 2 on the source side. If the rise of the high voltage is extremely steep, the avalanche multiplication of the minority carrier by the electric field may not be ignored until all the remaining minority carriers reach the second conductivity type semiconductor region 2. The minority carriers moving to the second conductivity type semiconductor region 2 correspond to the base current being supplied to the parasitic transistors formed at both ends of the source region 3. That is, if the avalanche multiplication phenomenon of the minority carrier satisfies the condition shown by the expression (1), the parasitic transistor becomes conductive. When the parasitic transistor is turned on, a new carrier is supplied to the high-resistance region 1a of the drain, so that a positive feedback loop can be established in which the carrier is injected again into the base region of the parasitic transistor by an avalanche multiplication phenomenon. The existence condition of this positive feedback loop basically depends on the electric field region in the high resistance region 1a of the drain, the resistance Ra value between the emitter and base of the parasitic transistor, and the DC current amplification factor hFE value. That is, when the electric field strength is high and the resistance Ra and the DC current amplification factor hFE are large, this positive feedback can easily occur. Once in the positive feedback state,
Unless the power supply voltage decreases and the electric field intensity decreases, conduction in this region does not stop. In this situation, the local region of the semiconductor element operates at a high current density while a high voltage is applied, and the semiconductor element is destroyed directly due to an increase in temperature due to heat generation immediately. As a result, the projection 21 of the second conductivity type semiconductor region 2 is effective in reducing such a phenomenon in the following point.

1) なだれ増倍現象の発生部を寄生トランジスタ動作
が起こりやすい場所より遠ざける。
1) The part where the avalanche multiplication phenomenon occurs is located farther from the place where the parasitic transistor operation easily occurs.

2) 抵抗Raを小さくする。2) Reduce the resistance Ra.

しかしながら、この凸部は悪影響も及ぼし得る。寄生
トランジスタのなだれ増倍現象を抑えるためには凸部を
深くすればよいが、その場合、なだれ増倍現象の発生部
を寄生トランジスタ動作が起こりやすい部所より遠ざけ
るという効果が小さくなる。また、凸部を深くすると、
凸部の占める幅が広くなり基本ユニットの面積が大きく
なってMOSFETとしての活性領域が減少する。
However, this protrusion can also have an adverse effect. In order to suppress the avalanche multiplication phenomenon of the parasitic transistor, it is only necessary to make the projection deep, but in this case, the effect of moving the avalanche multiplication phenomenon occurrence part away from the part where the parasitic transistor operation is likely to occur is reduced. Also, if you make the projection deeper,
The width occupied by the projections is increased, the area of the basic unit is increased, and the active region as a MOSFET is reduced.

また、MOSFETを高周波動作で使用する場合に対応でき
るように、内蔵ダイオードにライフ・タイム・キラーを
入れることがあるが、この場合MOSFET部分がダイオード
に近接しているために、MOSFET部分のライフ・タイムも
小さくなり動作特性が悪くなる。
In addition, a life time killer may be inserted in the built-in diode in order to cope with the case where the MOSFET is used for high-frequency operation.In this case, the life of the MOSFET is reduced because the MOSFET is close to the diode. The time is also reduced, and the operation characteristics deteriorate.

また、BIPトランジスタの場合は、そもそもMOSFETほ
どの高周波動作をさせないという楽な点があるが、エミ
ッタ・ベース間に逆バイアスを十分印加することによ
り、トランジスタに流れる還流時の電流を遮断してこの
モードの2次破壊から逃れることができる。しかしなが
ら、パワーMOSFETには、BIPトランジスタのように積極
的に還流時の電流を遮断する機能はない。このため、従
来の縦型パワーMOSFETには、汎用電力用素子としては重
大な欠陥があると言わざるを得ない。MOSFETの電圧定格
は、通常、静的なドレイン−ソース間電圧VDSSが使用さ
れるが、寄生トランジスタを含むことにより上記のよう
な動作を行なうことから、トランジスタが静的な電圧特
性であるVCEOでなく、動特性であるVCEOSUS)で規定
されたと同様に、たとえば寄生トランジスタのVCEO
SUS)に相当するような動的な特性で規定されるべきで
あり、その場合現在のMOSFETの電圧定格よりも大幅に低
いものとなる。
Also, in the case of a BIP transistor, there is an advantage that it does not operate as high as a MOSFET in the first place.However, by applying a sufficient reverse bias between the emitter and the base, the current flowing through the transistor at the time of reflux is cut off. You can escape the secondary destruction of the mode. However, the power MOSFET does not have a function of actively shutting off the current at the time of reflux unlike the BIP transistor. For this reason, it cannot be said that the conventional vertical power MOSFET has a serious defect as a general-purpose power element. Normally, a static drain-source voltage V DSS is used for the voltage rating of the MOSFET. However, since the above operation is performed by including a parasitic transistor, the transistor has a static voltage characteristic V DSS. not CEO, in the same manner as defined in V CEO (SUS) is dynamic characteristic, for example, V CEO of the parasitic transistor (
It should be specified with a dynamic characteristic equivalent to SUS ), in which case it is much lower than the current MOSFET voltage rating.

この発明は、かかる問題点を解決するためになされた
もので、2次破壊耐量を改善した縦形パワーMOS電界効
果型半導体装置を得ることを目的とする。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a vertical power MOS field-effect semiconductor device having improved secondary breakdown strength.

[問題点を解決するための手段] この発明にかかる縦形パワーMOS電界効果型半導体装
置は、第1の主面と第2の主面とを有する高不純物濃度
の第1導電形の半導体基板と、この第1導電形半導体基
板の第1の主面に接する第1の主面及びこの第1の主面
と互いに対向する第2の主面を有する低不純物濃度の第
1導電形半導体層と、この第1導電形半導体層の第2の
主面の一部にその底部までの深さが一様で第1導電形半
導体層を介してその辺縁が互いに隣接して対向するよう
に複数配設された第1の第2導電形半導体領域と、この
第1の第2導電形半導体領域の表面にこの領域の辺縁と
間隔をおいて延在するように配設された第1導電形半導
体領域と、この第1導電形半導体領域と第1導電形半導
体層の第2の主面でこの第1導電形半導体領域に対向す
る第1導電形半導体層との間に挟まれた第1の第2導電
形半導体領域の表面上に絶縁膜を介して配設されたゲー
ト電極と、第1の第2導電形半導体領域の底部よりも第
1導電形半導体層の第1の主面に近接した底部を有し第
1導電形半導体層の一部を介して複数の第1の第2導電
形半導体領域を囲むように第1導電形半導体層の第2の
主面に配設された第2の第2導電形半導体領域と、この
第2の第2導電形半導体領域に沿うように第1導電形半
導体層の第2の主面上に絶縁膜を介して配設されるとと
もにゲート電極と接続されたゲート電極配線と、第1の
第2導電形半導体領域と第1導電形半導体領域と第2の
第2導電形半導体領域とを短絡するとともにゲート電極
配線と互いに入り込むようにゲート電極及び第1導電形
半導体層表面と絶縁層を介して配設された第1の主電極
と、半導体基板の第2の主面上に配設された第2の主電
極と、を備えたものである。
[Means for Solving the Problems] A vertical power MOS field-effect semiconductor device according to the present invention includes a semiconductor substrate of a first conductivity type having a high impurity concentration and having a first main surface and a second main surface. A first conductive type semiconductor layer having a low impurity concentration and having a first main surface in contact with the first main surface of the first conductive type semiconductor substrate and a second main surface opposed to the first main surface; A part of the second main surface of the first conductivity type semiconductor layer is formed such that the depth to the bottom is uniform and the edges are adjacent to each other and opposed to each other via the first conductivity type semiconductor layer. A first second conductivity type semiconductor region provided, and a first conductivity type provided on a surface of the first second conductivity type semiconductor region so as to extend at a distance from an edge of the region. Semiconductor region, and the first conductive type semiconductor region and the second conductive surface of the first conductive type semiconductor layer. A gate electrode disposed on the surface of the first second conductivity type semiconductor region sandwiched between the first conductivity type semiconductor layer opposed to the region via an insulating film, and a first second conductivity type semiconductor region. The semiconductor device has a bottom portion closer to the first main surface of the first conductivity type semiconductor layer than a bottom portion of the semiconductor region and surrounds the plurality of first second conductivity type semiconductor regions through a part of the first conductivity type semiconductor layer. A second second conductivity type semiconductor region arranged on the second main surface of the first conductivity type semiconductor layer, and a first conductivity type semiconductor layer extending along the second second conductivity type semiconductor region. A gate electrode wiring provided on the second main surface of the first semiconductor device via an insulating film and connected to the gate electrode; a first second conductivity type semiconductor region; a first conductivity type semiconductor region; The gate electrode and the first conductivity type semiconductor are short-circuited to the two conductivity type semiconductor region and are inserted into the gate electrode wiring. A first main electrode disposed over the surface and the insulating layer, a second main electrode disposed on the second major surface of the semiconductor substrate, those having a.

[作用] この発明に係る縦形パワーMOS電界効果型半導体装置
は、低不純物濃度の第1導電形半導体層の第2の主面の
一部に第1導電形半導体層を介してその辺縁が互いに隣
接して対向するようにその底部までの深さが一様な第1
の第2導電形半導体領域を複数配設し、この第1の第2
導電形半導体領域の表面にこの領域の辺縁と間隔をおい
て延在するように第1導電形半導体領域を配設し、この
第1導電形半導体領域と第1導電形半導体層の第2の主
面でこの第1導電形半導体領域に対向する第1導電形半
導体層との間に挟まれた第1の第2導電形半導体領域の
表面上に絶縁膜を介してゲート電極を配設するとともに
第1の第2導電形半導体領域の底部よりも第1導電形半
導体層の第1の主面に近接した底部を有し第1導電形半
導体層の一部を介して複数の第1の第2導電形半導体領
域を囲むように第1導電形半導体層の第2の主面に第2
の第2導電形半導体領域を配設し、この第2の第2導電
形半導体領域に沿うように第1導電形半導体層の第2の
主面上に絶縁膜を介してゲート電極と接続されたゲート
電極配線を配設し、さらに第1の第2導電形半導体領域
と第1導電形半導体領域と第2の第2導電形半導体領域
とを短絡しかつゲート電極配線と互いに入り込むように
ゲート電極及び第1導電形半導体層表面と絶縁層を介し
て第1の主電極を配設したので、電界効果により機能す
る部分に流れる還流電流はダイオード領域にも分かれて
流れ、電界効果により機能する部分の寄生トランジスタ
近辺を流れる還流電流が小さくなり、MOS電界効果型半
導体素子領域を広く確保しつつダイオード領域の面積比
率が大きくなり、MOS電界効果型半導体素子領域を高密
度に配置できる。
[Operation] In the vertical power MOS field-effect semiconductor device according to the present invention, the edge of the first conductive semiconductor layer having a low impurity concentration is partially formed on the second main surface via the first conductive semiconductor layer. A first layer having a uniform depth to the bottom so as to be adjacent to and opposed to each other;
A plurality of second conductivity type semiconductor regions, and the first
A first conductivity type semiconductor region is provided on the surface of the conductivity type semiconductor region so as to extend at a distance from an edge of the region, and a second conductivity type semiconductor region and a second conductivity type semiconductor layer of the first conductivity type semiconductor layer. A gate electrode is disposed on the surface of the first second conductivity type semiconductor region sandwiched between the first conductivity type semiconductor layer opposed to the first conductivity type semiconductor region on the main surface of the first conduction type semiconductor region via an insulating film. And a bottom portion closer to the first main surface of the first conductivity type semiconductor layer than a bottom portion of the first second conductivity type semiconductor region. Is formed on the second main surface of the first conductivity type semiconductor layer so as to surround the second conductivity type semiconductor region.
Is disposed on the second main surface of the first conductive type semiconductor layer along the second second conductive type semiconductor region with a gate electrode via an insulating film. A gate electrode wiring is provided, and the first second conductivity type semiconductor region, the first conductivity type semiconductor region, and the second second conductivity type semiconductor region are short-circuited and the gate is formed so as to enter the gate electrode wiring. Since the first main electrode is provided via the electrode and the surface of the first conductivity type semiconductor layer and the insulating layer, the return current flowing to the portion functioning by the electric field effect flows also to the diode region and functions by the electric field effect. The return current flowing near a part of the parasitic transistor is reduced, the area ratio of the diode region is increased while the MOS field-effect semiconductor element region is widened, and the MOS field-effect semiconductor element region can be arranged at high density.

[実施例] 前述の説明から、パワーMOSFETの2次破壊耐量を改善
するためには、 a)寄生トランジスタに印加される電界強度を小さくす
る。
[Embodiments] From the above description, in order to improve the secondary breakdown strength of the power MOSFET, a) reduce the intensity of the electric field applied to the parasitic transistor.

b) 寄生トランジスタのエミッタ・ベース間の抵抗Ra
値と直流電流増幅率hFEを小さくすること。
b) The resistance Ra between the emitter and base of the parasitic transistor
The value and the DC current gain hFE must be reduced.

c) 還流時に、寄生トランジスタ近辺を流れる電流を
小さくする。
c) Reduce the current flowing near the parasitic transistor during reflux.

ことが効果があることがわかる。また、 d) ダイオード部分に流れる電流は、寄生トランジス
タから離れて2次破壊と関係しなくてもパワー・ロス源
となるので小さいことが望ましい。
It turns out that this is effective. D) The current flowing in the diode portion is desirably small because it becomes a power loss source even if it is not related to secondary destruction apart from the parasitic transistor.

この発明は、c)の効果を第1の目的とするものであ
るがa),d)の効果も併せ持つものである。また、従来
の構造中の凸部をMOSFET部分と分離することによって、
MOSFET部の集積度が上がり高電流特性が改善される。
The first object of the present invention is to provide the effect of c), but it also has the effects of a) and d). Also, by separating the convex part in the conventional structure from the MOSFET part,
The degree of integration of the MOSFET section increases, and the high current characteristics are improved.

以下、この発明の実施例を図によって説明する。な
お、以下の実施例の説明において、第5図〜第9図の説
明と重複する部分については適宜その説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in the following description of the embodiments, description of portions that are the same as those in FIGS. 5 to 9 will be omitted as appropriate.

第1図は、この発明の基礎となった縦形パワーMOS電
界効果型半導体装置の断面図である。この装置の構成が
第5図の装置の構成と異なる点は、第1導電形の低濃度
ドレイン領域1a表面に、新たにダイオード領域の別の第
2導電形半導体領域9を、MOSFET部分と分離してかつMO
SFET部分の第2導電形半導体領域2よりも深く形成した
点および凸部21をなくした点である。このような構造で
は、MOSFET部分に流れる還流電流は、ダイオード領域9
に分かれて流れるため従来の電界効果型半導体装置より
も小さくなる。また、従来の第2導電形半導体領域2の
凸部21がないためにMOSFET部分のごく中央のみ還流電流
が流れ、実質的な寄生トランジスタへの影響が緩和され
る効果がある。さらに、MOSFET部分が高電圧で破壊が起
こりやすいことについても次に述べるように好ましい効
果がある。すなわち、高電圧が印加されている場合、ほ
とんどの電圧は第1導電形低濃度ドレイン領域1aで保持
される。この領域の幅が広いとその抵抗による電圧効果
が大きくなるので、典型的な高電圧素子では、低濃度ド
レイン領域1aの幅は、定格電圧よりも大幅に低い値で空
乏層が第1導電形の高濃度ドレイン領域1bに到達する形
になっている。このため、2次破壊が問題になる電圧領
域では、空乏層が高濃度ドレイン領域1bの領域全体にま
で広がる。接合の降伏は電界の最も高い箇所で起こるの
で、間隔の一番狭いダイオード領域9と高濃度ドレイン
領域1bの距離で決まることとなる。たとえば、第6図の
ような破壊モードについては、降伏電流はダイオード部
分のみに流れるので、破壊強度はダイオードの破壊耐量
で決まりMOSFET部分の2次破壊は問題とならない。この
ことは従来の電界効果型半導体装置における凸部21と高
濃度ドレイン領域1bの関係と基本的に同じであるが、こ
の実施例によれば、ダイオード領域9の深さの設定に大
きな自由度があり有効な耐圧値に設定することが容易で
ある。ダイオード領域9の深さを大きくすると全体とし
ての半導体素子の耐圧は下がるのであるが、これはその
特性が悪くなったのではなく半導体素子にとって危険な
電圧にさらされないように保護機能がついたとみなすべ
きものである。従来の凸部21は、その低濃度ドレイン領
域1aへの深さを深くすると、半導体素子の有効面積が著
しく減るためと還流電流の寄生トランジスタへの影響が
大きくなるという制限があったために、破壊強度的には
十分な機能が果たせてなかったが、この実施例の形をと
れば従来の制限から逃れることができる。
FIG. 1 is a sectional view of a vertical power MOS field-effect semiconductor device on which the present invention is based. The configuration of this device is different from that of the device of FIG. 5 in that another second conductivity type semiconductor region 9 of a diode region is newly separated from the MOSFET portion on the surface of the lightly doped drain region 1a of the first conductivity type. And MO
The point is that the SFET portion is formed deeper than the second conductivity type semiconductor region 2 and that the protrusion 21 is eliminated. In such a structure, the return current flowing through the MOSFET part is reduced by the diode region 9.
Therefore, the size is smaller than that of the conventional field effect type semiconductor device. In addition, since there is no projection 21 of the conventional second conductivity type semiconductor region 2, a return current flows only at the very center of the MOSFET portion, and the effect on the parasitic transistor is substantially reduced. Further, the fact that the MOSFET portion is easily broken at a high voltage has a favorable effect as described below. That is, when a high voltage is applied, most of the voltage is held in the first conductivity type low concentration drain region 1a. If the width of this region is wide, the voltage effect due to its resistance increases, so in a typical high-voltage element, the width of the low-concentration drain region 1a is much lower than the rated voltage, and the depletion layer is of the first conductivity type. To reach the high-concentration drain region 1b. Therefore, in a voltage region where secondary breakdown is a problem, the depletion layer extends to the entire region of the high-concentration drain region 1b. Since the breakdown of the junction occurs at the place where the electric field is highest, it is determined by the distance between the diode region 9 having the shortest interval and the high-concentration drain region 1b. For example, in the breakdown mode as shown in FIG. 6, since the breakdown current flows only in the diode portion, the breakdown strength is determined by the breakdown strength of the diode, and secondary breakdown of the MOSFET portion does not matter. This is basically the same as the relationship between the convex portion 21 and the high-concentration drain region 1b in the conventional field-effect semiconductor device. However, according to this embodiment, the degree of freedom in setting the depth of the diode region 9 is great. It is easy to set an effective withstand voltage value. Increasing the depth of the diode region 9 lowers the withstand voltage of the semiconductor device as a whole, but this does not mean that its characteristics have deteriorated, but that the protection function has been provided so that the semiconductor device is not exposed to a dangerous voltage. Should be. The conventional projection 21 is destroyed when its depth to the low-concentration drain region 1a is increased, because the effective area of the semiconductor element is significantly reduced and the effect of the return current on the parasitic transistor is increased. Although a sufficient function could not be achieved in terms of strength, this embodiment can avoid the conventional limitation.

なお、第1図中には凸部21の記載がないが、凸部には
Rを下げるという効果もあるので、ダイオード領域9よ
りも浅い或る範囲で全体として最も良好な特性を示す凸
部21のサイズがあると考えられ、この実施例は凸部の有
無にこだわるものではない。
Although the protrusion 21 is not shown in FIG. 1, the protrusion has an effect of lowering R, so that the protrusion having the best overall characteristics in a certain range shallower than the diode region 9 is obtained. It is considered that there are 21 sizes, and this embodiment is not limited to the presence or absence of the protrusion.

また、従来の基本ユニットは凸部の占有面積によって
60ミクロン角程度のサイズ以下にすることは難しかった
が、この実施例によれば、基本ユニットを40ミクロン角
程度まで小さくすることができ、電流容量を50%改善す
ることができる。
In addition, the conventional basic unit depends on the area occupied by the protrusion.
Although it was difficult to reduce the size to about 60 μm square or less, according to this embodiment, the basic unit can be reduced to about 40 μm square, and the current capacity can be improved by 50%.

第2図は、この発明の基礎となった類似の縦形パワー
MOS電界効果型半導体装置の断面図である。この場合に
は、ダイオード領域9の低濃度ドレイン領域1aへの深さ
の制限が特になく、ダイオード領域9に接して、第1導
電形の低濃度ドレイン領域1aと同じ導電形でより不純物
濃度の高い高不純物濃度領域10が形成されている。第1
図の実施例は低濃度ドレイン領域1aの幅の差でMOSFET部
分とダイオード領域9の降伏電圧に差をつけようとした
のに対し、この実施例は不純物濃度の差で同じ効果を得
ようとするもので、この点以外は第1図の実施例と基本
的に同じ原理に基づいている。
FIG. 2 shows a similar vertical power base on which the invention is based.
FIG. 3 is a cross-sectional view of a MOS field-effect semiconductor device. In this case, the depth of the diode region 9 to the low-concentration drain region 1a is not particularly limited, and is in contact with the diode region 9 and has the same conductivity type as the low-concentration drain region 1a of the first conductivity type and has a higher impurity concentration. A high high impurity concentration region 10 is formed. First
In the embodiment shown in the drawing, the breakdown voltage of the MOSFET portion and the diode region 9 is made different by the difference in the width of the low-concentration drain region 1a, whereas in this embodiment, the same effect is obtained by the difference in the impurity concentration. Except for this point, the principle is basically the same as that of the embodiment shown in FIG.

第3A図は、この発明の一実施例である縦形パワーMOS
電界効果型半導体装置の電極パターン図であり、第3B図
は第3A図のX−X線部分断面図であり、第3C図は第3A図
のY−Y線部分断面図である。12はゲート電極配線であ
り、30はゲート・ボンディングパッドである。第3C図に
示すように、ダイオード領域9はソース・ボンディング
パッド31の直下に形成するのが最も効率的であるが、第
3B図に示すように、ゲート電極配線12の下の部分にも形
成することができる。これによって、MOSFET部分に対す
るダイオード領域の比率を大きくでき、MOSFET部分への
還流電流の影響を小さくできる。このため、電界効果型
半導体装置の高電圧における動作時の安定性が向上す
る。内蔵ダイオードの面積を大きくすることは、特に外
部に高速の還流ダイオードを接続する場合は一般的に好
ましくないが、内蔵ダイオードが高速であるために外部
に還流ダイオードを接続せずに内蔵ダイオードを還流ダ
イオードとして使用する場合等に必要になってくる。
FIG. 3A is a vertical power MOS according to an embodiment of the present invention.
FIG. 3B is a partial sectional view taken along line XX of FIG. 3A, and FIG. 3C is a partial sectional view taken along line YY of FIG. 3A of the field-effect semiconductor device. Reference numeral 12 denotes a gate electrode wiring, and reference numeral 30 denotes a gate bonding pad. As shown in FIG. 3C, it is most efficient that the diode region 9 is formed immediately below the source bonding pad 31.
As shown in FIG. 3B, it can be formed also in a portion below the gate electrode wiring 12. Thus, the ratio of the diode region to the MOSFET portion can be increased, and the effect of the return current on the MOSFET portion can be reduced. Therefore, the stability of the field-effect semiconductor device during operation at high voltage is improved. It is generally not preferable to increase the area of the built-in diode, especially when a high-speed freewheeling diode is connected to the outside, but since the built-in diode is high-speed, the built-in diode can be returned without connecting the external freewheeling diode. It becomes necessary when it is used as a diode.

第4A図は、この発明の他の一実施例である縦形パワー
MOS電界効果型半導体装置の基本構成単位の断面図であ
り、第4B図は第4A図のZ部の部分上面図である。ダイオ
ード領域9は周辺の深いダイオード領域9aとその内側の
浅いダイオード領域9bとからなっているとともに、ダイ
オード領域9とソース電極6の接続が浅いダイオード領
域9bのほぼ中央から狭い電極形成部110で行なわれてい
る。浅いダイオード領域9bはダイオード部分に直列に入
っている抵抗となるので、第8図のような回路におい
て、半導体素子に逆並列に還流ダイオードを接続してい
る場合には、還流時に半導体素子に流れる総電流を下げ
ることかできるので、半導体素子の発熱を低減でき、熱
的原因で発生する半導体素子の破壊に対する耐量が増大
する。
FIG. 4A shows another embodiment of the present invention.
FIG. 4B is a cross-sectional view of a basic structural unit of the MOS field-effect semiconductor device, and FIG. 4B is a partial top view of a portion Z in FIG. 4A. The diode region 9 comprises a peripheral deep diode region 9a and a shallow diode region 9b inside the peripheral region, and the connection between the diode region 9 and the source electrode 6 is made by a narrow electrode forming portion 110 from substantially the center of the shallow diode region 9b. Have been. Since the shallow diode region 9b becomes a resistor that is in series with the diode portion, in the circuit as shown in FIG. 8, when a freewheeling diode is connected in antiparallel to the semiconductor element, it flows to the semiconductor element at the time of freewheeling. Since the total current can be reduced, the heat generation of the semiconductor element can be reduced, and the resistance to breakdown of the semiconductor element caused by a thermal cause increases.

また、従来の電界効果型半導体装置においては、ダイ
オード部分へのライフ・タイム・キラーの導入が、近接
するMOSFET部分の電流経路のライフ・タイムまでも小さ
くし、半導体素子の電流容量を低減させるという結果を
必然的に招いたが、上記実施例のようにMOSFET部分とダ
イオード領域が分離している構造をとれば、この悪影響
を大幅に低減できることは明らかである。
In addition, in conventional field-effect semiconductor devices, the introduction of a lifetime killer into the diode portion also shortens the lifetime of the current path in the adjacent MOSFET portion, thereby reducing the current capacity of the semiconductor element. Although the result was inevitably brought about, it is clear that this adverse effect can be greatly reduced by adopting a structure in which the MOSFET portion and the diode region are separated as in the above embodiment.

なお、上記実施例では、MOSFETについての説明を専ら
行なってきたが、パワーMOSFETの低抵抗領域である高濃
度ドレイン領域1bにあたる部分の導電性を反対にした構
造を有する絶縁ゲート・トランジスタの最大の問題であ
るサイリスタ動作も、パワーMOSFETの寄生トランジスタ
にあたる部分の動作を抑制することが鍵であることか
ら、この発明がそのまま有効な効果を上げることは明ら
かである。
In the above embodiment, the description of the MOSFET has been made exclusively.However, the largest insulated gate transistor having a structure in which the conductivity of the portion corresponding to the high-concentration drain region 1b which is the low-resistance region of the power MOSFET is reversed. Since the key to controlling the thyristor operation, which is the problem, is to suppress the operation of the portion corresponding to the parasitic transistor of the power MOSFET, it is clear that the present invention can provide an effective effect as it is.

[発明の効果] この発明に係る縦形パワーMOS電界効果型半導体装置
は、低不純物濃度の第1導電形半導体層の第2の主面の
一部に第1導電形半導体層を介してその辺縁が互いに隣
接して対向するようにその底部までの深さが一様な第1
の第2導電形半導体領域を複数配設し、この第1の第2
導電形半導体領域の表面にこの領域の辺縁と間隔をおい
て延在するように第1導電形半導体領域を配設し、この
第1導電形半導体領域と第1導電形半導体層の第2の主
面でこの第1導電形半導体領域に対向する第1導電形半
導体層との間に挟まれた第1の第2導電形半導体領域の
表面上に絶縁膜を介してゲート電極を配設するとともに
第1の第2導電形半導体領域の底部よりも第1導電形半
導体層の第1の主面に近接した底部を有し第1導電形半
導体層の一部を介して複数の第1の第2導電形半導体領
域を囲むように第1導電形半導体層の第2の主面に第2
の第2導電形半導体領域を配設し、この第2の第2導電
形半導体領域に沿うように第1導電形半導体層の第2の
主面上に絶縁膜を介してゲート電極と接続されたゲート
電極配線を配設し、さらに第1の第2導電形半導体領域
と第1導電形半導体領域と第2の第2導電形半導体領域
とを短絡しかつゲート電極配線と互いに入り込むように
ゲート電極及び第1導電形半導体層表面と絶縁層を介し
て第1の主電極を配設したので、電界効果により機能す
る部分に流れる還流電流はダイオード領域にも分かれて
流れ、電界効果により機能する部分の寄生トランジスタ
近辺を流れる還流電流が小さくなり、MOS電界効果型半
導体素子領域を広く確保しつつダイオード領域の面積比
率が大きくなり、MOS電界効果型半導体素子領域を高密
度に配置できるから、縦形パワーMOS電界効果型半導体
装置の2次破壊耐量を改善できるという顕著な効果に加
えて、MOS電界効果型半導体素子領域を広く確保しつつ
ダイオード領域の面積比率を大きくでき、MOS電界効果
型半導体素子領域への還流電流の影響を小さくできる、
延いては縦形パワーMOS電界効果型半導体装置の高電圧
における動作時の安定性が向上し、MOS電界効果型半導
体素子領域の高密度化が計れる。
[Effect of the Invention] In the vertical power MOS field-effect semiconductor device according to the present invention, a part of the second main surface of the low-impurity-concentration first conductivity-type semiconductor layer is provided on the side thereof via the first conductivity-type semiconductor layer. A first with a uniform depth to the bottom so that the edges are adjacent and opposed to each other
A plurality of second conductivity type semiconductor regions, and the first
A first conductivity type semiconductor region is provided on the surface of the conductivity type semiconductor region so as to extend at a distance from an edge of the region, and a second conductivity type semiconductor region and a second conductivity type semiconductor layer of the first conductivity type semiconductor layer. A gate electrode is disposed on the surface of the first second conductivity type semiconductor region sandwiched between the first conductivity type semiconductor layer opposed to the first conductivity type semiconductor region on the main surface of the first conduction type semiconductor region via an insulating film. And a bottom portion closer to the first main surface of the first conductivity type semiconductor layer than a bottom portion of the first second conductivity type semiconductor region. Is formed on the second main surface of the first conductivity type semiconductor layer so as to surround the second conductivity type semiconductor region.
Is disposed on the second main surface of the first conductive type semiconductor layer along the second second conductive type semiconductor region with a gate electrode via an insulating film. A gate electrode wiring is provided, and the first second conductivity type semiconductor region, the first conductivity type semiconductor region, and the second second conductivity type semiconductor region are short-circuited and the gate is formed so as to enter the gate electrode wiring. Since the first main electrode is provided via the electrode and the surface of the first conductivity type semiconductor layer and the insulating layer, the return current flowing to the portion functioning by the electric field effect flows also to the diode region and functions by the electric field effect. Since the return current flowing near the parasitic transistor in the portion becomes smaller, the area ratio of the diode region increases while securing a wide MOS field effect type semiconductor device region, and the MOS field effect type semiconductor device region can be arranged at high density. In addition to the remarkable effect of improving the secondary breakdown strength of the power MOS field-effect semiconductor device, the area ratio of the diode region can be increased while securing a large MOS field-effect semiconductor element region, and the MOS field-effect semiconductor The effect of the return current on the element region can be reduced.
As a result, the stability of the vertical power MOS field-effect semiconductor device during operation at high voltage is improved, and the density of the MOS field-effect semiconductor element region can be increased.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の基礎となった縦形パワーMOS電界
効果型半導体装置の断面図である。 第2図は、この発明の基礎となった類似の縦形パワーMO
S電界効果型半導体装置の断面図である。 第3A図は、この発明の一実施例である縦形パワーMOS電
界効果型半導体装置の電極パターン図であり、第3B図は
第3A図のX−X線部分断面図であり、第3C図は第3A図の
Y−Y線部分断面図である。 第4A図は、他の一実施例である縦形パワーMOS電界効果
型半導体装置の基本構成単位の断面図であり、第4B図は
第4A図のZ部の部分上面図である。 第5図は、従来のパワーMOSFETの断面図である。 第6図は、従来のパワーMOSFETの出力特性を示す図であ
る。 第7A図は、第2導電形半導体領域に凸部がない場合のMO
SFETの基本構成単位の断面図であり、第7B図は、第7A図
の等価回路を示す図である。 第8図は、パワーMOSFETを使ったインバータ回路図であ
る。 第9図は、第8図における還流ダイオードの電圧Vd波形
とパワーMOSFETに流れる電流Im波形を示す図である。 図において、1aは第1導電形の低濃度ドレイン領域、1b
は第1導電形の高濃度ドレイン領域、2は第2導電形半
導体領域、21は凸部、3は第1導電形のソース領域、4
は絶縁膜、5はゲート電極、6はソース電極、7はチャ
ンネル形成領域、8はドレイン電極、9はダイオード領
域、9aは深いダイオード領域、9bは浅いダイオード領
域、10は第1導電形の高不純物濃度領域、11は電極形成
部、12はゲート電極配線、110は狭い電極形成部、30は
ゲート・ボンディングパッド、31はソース・ボンディン
グパッドである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view of a vertical power MOS field-effect semiconductor device on which the present invention is based. FIG. 2 shows a similar vertical power MO on which the invention is based.
FIG. 3 is a sectional view of an S field effect type semiconductor device. FIG. 3A is an electrode pattern diagram of a vertical power MOS field-effect semiconductor device according to an embodiment of the present invention, FIG. 3B is a partial cross-sectional view taken along line XX of FIG. 3A, and FIG. FIG. 3B is a partial sectional view taken along line YY of FIG. 3A. FIG. 4A is a cross-sectional view of a basic structural unit of a vertical power MOS field-effect semiconductor device according to another embodiment, and FIG. 4B is a partial top view of a portion Z in FIG. 4A. FIG. 5 is a sectional view of a conventional power MOSFET. FIG. 6 is a diagram showing output characteristics of a conventional power MOSFET. FIG. 7A shows the MO when the second conductivity type semiconductor region has no projection.
FIG. 7B is a sectional view of a basic structural unit of the SFET, and FIG. 7B is a diagram showing an equivalent circuit of FIG. 7A. FIG. 8 is an inverter circuit diagram using a power MOSFET. FIG. 9 is a diagram showing the waveform of the voltage Vd of the freewheel diode and the waveform of the current Im flowing through the power MOSFET in FIG. In the figure, 1a is a low-concentration drain region of the first conductivity type, 1b
Is a high-concentration drain region of the first conductivity type, 2 is a semiconductor region of the second conductivity type, 21 is a convex portion, 3 is a source region of the first conductivity type, 4
Is an insulating film, 5 is a gate electrode, 6 is a source electrode, 7 is a channel formation region, 8 is a drain electrode, 9 is a diode region, 9a is a deep diode region, 9b is a shallow diode region, and 10 is a first conductive type high region. An impurity concentration region, 11 is an electrode forming portion, 12 is a gate electrode wiring, 110 is a narrow electrode forming portion, 30 is a gate bonding pad, and 31 is a source bonding pad. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の主面と第2の主面とを有する高不純
物濃度の第1導電形の半導体基板と、 この第1導電形半導体基板の第1の主面に接する第1の
主面及びこの第1の主面と互いに対向する第2の主面を
有する低不純物濃度の第1導電形半導体層と、 この第1導電形半導体層の第2の主面の一部にその底部
までの深さが一様で上記第1導電形半導体層を介してそ
の辺縁が互いに隣接して対向するように複数配設された
第1の第2導電形半導体領域と、 この第1の第2導電形半導体領域の表面にこの領域の辺
縁と間隔をおいて延在するように配設された第1導電形
半導体領域と、 この第1導電形半導体領域と上記第1導電形半導体層の
第2の主面でこの第1導電形半導体領域に対向する上記
第1導電形半導体層との間に挟まれた上記第1の第2導
電形半導体領域の表面上に絶縁膜を介して配設されたゲ
ート電極と、 上記第1の第2導電形半導体領域の底部よりも上記第1
導電形半導体層の第1の主面に近接した底部を有し上記
第1導電形半導体層の一部を介して複数の上記第1の第
2導電形半導体領域を囲むように上記第1導電形半導体
層の第2の主面に配設された第2の第2導電形半導体領
域と、 この第2の第2導電形半導体領域に沿うように上記第1
導電形半導体層の第2の主面上に絶縁膜を介して配設さ
れるとともに上記ゲート電極と接続されたゲート電極配
線と、 上記第1の第2導電形半導体領域と上記第1導電形半導
体領域と上記第2の第2導電形半導体領域とを短絡する
とともに上記ゲート電極配線と互いに入り込むように上
記ゲート電極及び上記第1導電形半導体層表面と絶縁層
を介して配設された第1の主電極と、 上記半導体基板の第2の主面上に配設された第2の主電
極と、 を備えた縦形パワーMOS電界効果型半導体装置。
A first conductive type semiconductor substrate having a high impurity concentration having a first main surface and a second main surface; and a first conductive type semiconductor substrate in contact with the first main surface of the first conductive type semiconductor substrate. A low-impurity-concentration first-conductivity-type semiconductor layer having a main surface and a second main surface opposed to the first main surface; and a part of the second main surface of the first-conductivity-type semiconductor layer. A plurality of first second-conductivity-type semiconductor regions arranged so that the depth to the bottom is uniform and the edges of the first second-conductivity-type semiconductor layers are adjacent to and opposed to each other via the first-conductivity-type semiconductor layer; A first conductivity type semiconductor region disposed on the surface of the second conductivity type semiconductor region so as to extend at a distance from an edge of the second conductivity type semiconductor region; and the first conductivity type semiconductor region and the first conductivity type. The first conductive type semiconductor layer opposed to the first conductive type semiconductor region on the second main surface of the semiconductor layer; A gate electrode disposed on the surface of the second conductivity type semiconductor region via an insulating film;
The first conductive type semiconductor layer has a bottom portion close to the first main surface, and has a first conductive type semiconductor layer surrounding a plurality of the first second conductive type semiconductor regions through a part of the first conductive type semiconductor layer. A second second conductivity type semiconductor region provided on a second main surface of the first semiconductor layer, and the first first semiconductor region extending along the second second conductivity type semiconductor region.
A gate electrode wiring provided on the second main surface of the conductive type semiconductor layer via an insulating film and connected to the gate electrode; the first second conductive type semiconductor region and the first conductive type A short-circuit between the semiconductor region and the second second-conductivity-type semiconductor region and a gate electrode and a first-conductivity-type semiconductor layer provided on the surface of the first-conductivity-type semiconductor layer via an insulating layer so as to enter each other. 1. A vertical power MOS field-effect semiconductor device comprising: a first main electrode; and a second main electrode disposed on a second main surface of the semiconductor substrate.
JP59247522A 1984-11-20 1984-11-20 Vertical power MOS field effect semiconductor device Expired - Lifetime JP2572210B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59247522A JP2572210B2 (en) 1984-11-20 1984-11-20 Vertical power MOS field effect semiconductor device
DE19853540433 DE3540433A1 (en) 1984-11-20 1985-11-14 Integrated MOSFET component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247522A JP2572210B2 (en) 1984-11-20 1984-11-20 Vertical power MOS field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS61124178A JPS61124178A (en) 1986-06-11
JP2572210B2 true JP2572210B2 (en) 1997-01-16

Family

ID=17164740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247522A Expired - Lifetime JP2572210B2 (en) 1984-11-20 1984-11-20 Vertical power MOS field effect semiconductor device

Country Status (2)

Country Link
JP (1) JP2572210B2 (en)
DE (1) DE3540433A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439069A (en) * 1987-04-14 1989-02-09 Nec Corp Field-effect transistor
JP2724146B2 (en) * 1987-05-29 1998-03-09 日産自動車株式会社 Vertical MOSFET
EP0293846A1 (en) * 1987-06-05 1988-12-07 Siemens Aktiengesellschaft MIS power transistor
JPH01236656A (en) * 1988-03-16 1989-09-21 Rohm Co Ltd Semiconductor device
JP2692350B2 (en) * 1990-04-02 1997-12-17 富士電機株式会社 MOS type semiconductor device
JP2817536B2 (en) * 1991-09-27 1998-10-30 日本電気株式会社 Semiconductor device
FR2698486B1 (en) * 1992-11-24 1995-03-10 Sgs Thomson Microelectronics Direct overvoltage protection structure for vertical semiconductor component.
JP3216743B2 (en) * 1993-04-22 2001-10-09 富士電機株式会社 Protection diode for transistor
JP5317413B2 (en) * 2007-02-06 2013-10-16 株式会社東芝 Semiconductor switch and power converter using the semiconductor switch
JP4240140B1 (en) * 2007-09-10 2009-03-18 トヨタ自動車株式会社 Power supply apparatus and driving method thereof
CN102224593A (en) * 2008-11-27 2011-10-19 飞思卡尔半导体公司 Power mos transistor device and switch apparatus comprising the same
WO2010061245A1 (en) 2008-11-27 2010-06-03 Freescale Semiconductor, Inc. Power mos transistor device
CN107134478A (en) * 2017-03-22 2017-09-05 深圳深爱半导体股份有限公司 Power semiconductor and its manufacture method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658261A (en) * 1979-10-18 1981-05-21 Toshiba Corp Semiconductor device
JPS58124275A (en) * 1982-01-12 1983-07-23 シ−メンス・アクチエンゲゼルシヤフト Mis field effect transistor
DE3245762A1 (en) * 1982-03-13 1983-09-22 Brown, Boveri & Cie Ag, 6800 Mannheim Modular semiconductor device
US4532534A (en) * 1982-09-07 1985-07-30 Rca Corporation MOSFET with perimeter channel
JPS5994873A (en) * 1982-11-22 1984-05-31 Nissan Motor Co Ltd Metal oxide semiconductor transistor
JPS59149056A (en) * 1983-02-15 1984-08-25 Nissan Motor Co Ltd Vertical metal oxide semiconductor transistor
US4789882A (en) * 1983-03-21 1988-12-06 International Rectifier Corporation High power MOSFET with direct connection from connection pads to underlying silicon
NL8302092A (en) * 1983-06-13 1985-01-02 Philips Nv SEMICONDUCTOR DEVICE CONTAINING A FIELD-EFFECT TRANSISTOR.
JPS6084881A (en) * 1983-10-17 1985-05-14 Toshiba Corp High-power mos fet and manufacture thereof
JPS6115370A (en) * 1984-06-30 1986-01-23 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPS61124178A (en) 1986-06-11
DE3540433C2 (en) 1993-04-01
DE3540433A1 (en) 1986-05-22

Similar Documents

Publication Publication Date Title
JP3163820B2 (en) Semiconductor device
US4504847A (en) Static induction type semiconductor device
EP0697739B1 (en) Insulated gate bipolar transistor
US20060081919A1 (en) Semiconductor device
JPH11345969A (en) Power semiconductor device
JP2572210B2 (en) Vertical power MOS field effect semiconductor device
JPH0575110A (en) Semiconductor device
JP2766071B2 (en) Composite semiconductor device and power conversion device using the same
JP2946750B2 (en) Semiconductor device
JPH07169868A (en) Circuit pattern having at least one bipolar power device
US5621229A (en) Semiconductor device and control method
US6111278A (en) Power semiconductor devices having discontinuous emitter regions therein for inhibiting parasitic thyristor latch-up
US7173290B2 (en) Thyristor switch with turn-off current shunt, and operating method
JP2527160B2 (en) Field effect type semiconductor device
JPS6239069A (en) Field effect semiconductor device
US6965131B2 (en) Thyristor switch with turn-off current shunt, and operating method
JP2660001B2 (en) Conduction modulation type MOSFET
WO2023228586A1 (en) Semiconductor device and power conversion device using same
JP3200328B2 (en) Composite semiconductor device
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JP3755231B2 (en) Insulated gate bipolar transistor
JP4407172B2 (en) Horizontal insulated gate bipolar transistor
JPH0476219B2 (en)
JP3248383B2 (en) Semiconductor device
JP3271396B2 (en) Insulated gate bipolar transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term