JP2572083Y2 - Evaporator - Google Patents
EvaporatorInfo
- Publication number
- JP2572083Y2 JP2572083Y2 JP1991030432U JP3043291U JP2572083Y2 JP 2572083 Y2 JP2572083 Y2 JP 2572083Y2 JP 1991030432 U JP1991030432 U JP 1991030432U JP 3043291 U JP3043291 U JP 3043291U JP 2572083 Y2 JP2572083 Y2 JP 2572083Y2
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- tank
- refrigerant
- edge
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】[0001]
【産業上の利用分野】この考案に係る蒸発器は、自動車
用空気調和装置に組み込んで空気を冷却するもので、本
考案は、この様な蒸発器に於ける冷媒の流れの均一化に
より、蒸発器を通過した空気の温度分布の均一化を図
り、この蒸発器の性能向上を図るものである。BACKGROUND OF THE INVENTION An evaporator according to the present invention is incorporated in an air conditioner for automobiles to cool air, and the present invention is based on the uniformization of the flow of refrigerant in such an evaporator. The purpose is to make the temperature distribution of the air passing through the evaporator uniform and improve the performance of the evaporator.
【0002】[0002]
【従来の技術】空気調和装置には、内部で冷媒を蒸発さ
せ、外部を流通する空気を冷却する蒸発器が組み込まれ
ている。この様な、空気調和装置に組み込まれる蒸発器
として従来から、例えば特開昭62−798号公報に記
載されている様な、複数枚の金属板を互いに積層して成
る、所謂積層型蒸発器が知られている。2. Description of the Related Art An air conditioner incorporates an evaporator for evaporating a refrigerant inside and cooling air flowing outside. As such an evaporator incorporated in an air conditioner, a so-called laminated evaporator in which a plurality of metal plates are laminated on each other as described in, for example, JP-A-62-798. It has been known.
【0003】この積層型蒸発器は、図4に示す様に、そ
れぞれが2枚の金属板1、1を最中状に組み合わせて成
るユニット2、2を複数個、互いに積層する事により構
成している。各金属板1、1には、図5〜6に示す様
に、各金属板1、1の全周を囲む平坦部3と、この平坦
部3の内側にU字形に形成された浅い第一凹部4と、こ
の第一凹部4の両端に形成された深い第二、第三凹部
5、6と、第二、第三凹部5、6の中央部に形成された
通孔7、8とを設けている。又、第一凹部4の内側には
複数の凸部9、9を設けて、この第一凹部4の内側に於
ける冷媒の流れを乱す様にしている。As shown in FIG. 4, this laminated evaporator is constructed by laminating a plurality of units 2, 2 each of which is composed of two metal plates 1, 1 in a middle state. ing. As shown in FIGS. 5 and 6, each metal plate 1, 1 has a flat portion 3 surrounding the entire circumference of each metal plate 1, 1, and a U-shaped shallow first portion formed inside the flat portion 3. The concave portion 4, deep second and third concave portions 5 and 6 formed at both ends of the first concave portion 4, and through holes 7 and 8 formed in the central portions of the second and third concave portions 5 and 6 are formed. Provided. Also, a plurality of convex portions 9 are provided inside the first concave portion 4 so as to disturb the flow of the refrigerant inside the first concave portion 4.
【0004】積層型蒸発器を構成する複数のユニット
2、2は、それぞれ上述の様な形状を有する金属板1を
2枚、各金属板の平坦部3同士を突き合わせ、最中状に
組み合わせる事で構成されており、第一凹部4により囲
まれるU字形の部分を、冷媒を流す扁平管部12とし、
第二、第三凹部5、6により囲まれる部分を、入口側タ
ンク、或は出口側タンクの一部として機能させる様にし
ている。[0004] A plurality of units 2 and 2 constituting a laminated evaporator are formed by abutting two metal plates 1 having the above-mentioned shapes and flat portions 3 of the respective metal plates, and combining them in the middle. The U-shaped portion surrounded by the first recess 4 is a flat tube portion 12 through which the refrigerant flows,
The portion surrounded by the second and third concave portions 5 and 6 functions as a part of the inlet-side tank or the outlet-side tank.
【0005】上述の様なユニット2、2は、図4に示す
様に複数個、各ユニット2、2を構成する金属板1、1
の第二、第三凹部5、6の外面同士を突き合わせる事で
積層し、第二、第三凹部5、6により構成される1対の
空間のうちの一方の空間に入口管10を、他方の空間に
出口管11を、それぞれ接続している。As shown in FIG. 4, a plurality of the units 2 and 2 as described above are provided.
The outer surfaces of the second and third concave portions 5 and 6 are laminated by abutting each other, and the inlet pipe 10 is inserted into one of a pair of spaces formed by the second and third concave portions 5 and 6. The outlet pipes 11 are connected to the other spaces, respectively.
【0006】この様に複数のユニット2、2を積層した
状態で、隣り合うユニット2、2の扁平管部12、12
の間には、コルゲート型のフィン13、13を挟持し、
隣り合う扁平管部12、12の間を流れる空気と、各扁
平管部12、12の内側を流れる冷媒との間の熱交換が
良好に行なわれる様にしている。[0006] In the state where the plurality of units 2 and 2 are stacked, the flat tube portions 12 and 12 of the adjacent units 2 and 2 are stacked.
In between, sandwich the corrugated fins 13, 13,
The heat exchange between the air flowing between the adjacent flat tube portions 12 and the refrigerant flowing inside the flat tube portions 12 is preferably performed.
【0007】上述の様な積層型蒸発器の使用時には、入
口管10から入口側タンクとして機能する一方の空間
に、気液2相状態の冷媒を送り込む。この冷媒は、複数
のユニット2、2の扁平管部12、12を流れる間に、
扁平管部12、12の外に設けたフィン13、13の間
を流通する空気との間で熱交換を行なう事により蒸発す
る。そして、出口側タンクとして機能する他方の空間に
送られ、出口管11を通じて排出される。When the above-described stacked evaporator is used, a refrigerant in a gas-liquid two-phase state is sent from the inlet pipe 10 to one space functioning as an inlet-side tank. While the refrigerant flows through the flat tube portions 12 of the units 2, 2,
Evaporation occurs by performing heat exchange with air flowing between the fins 13 provided outside the flat tube portions 12. And it is sent to the other space which functions as an outlet side tank, and is discharged through the outlet pipe 11.
【0008】ところで、上述の様に構成され作用する積
層型蒸発器の製造を容易にする為、2枚の金属板を重ね
合わせて成るユニットとタンクとを別体にする事が、特
開昭61−27496号公報に開示されている。即ち、
図4〜6に示した従来構造の場合、各ユニット2、2の
端部にタンクを一体に形成する為、各ユニット2、2を
構成する金属板1、1の端部に深い第二、第三凹部5、
6を形成している。ところが、これら第二、第三凹部
5、6を形成する為のプレス作業は、浅い第一凹部4を
形成するのと同時に行なう必要がある為、プレス作業の
際に大きな力が必要となり、金属板1をプレス成形する
為の設備が大型化して、設備費が嵩む事が避けられな
い。Incidentally, in order to facilitate the manufacture of a laminated evaporator configured and operating as described above, it has been proposed to separate a tank and a unit formed by laminating two metal plates from each other. No. 61-27496. That is,
In the case of the conventional structure shown in FIGS. 4 to 6, since the tank is integrally formed at the end of each unit 2, 2, the deep second, Third recess 5,
6 are formed. However, since the pressing operation for forming the second and third concave portions 5 and 6 needs to be performed simultaneously with the formation of the shallow first concave portion 4, a large force is required at the time of the pressing operation. It is inevitable that the equipment for press-forming the plate 1 becomes large and the equipment cost increases.
【0009】この様な問題を解決する為、タンク別体型
の積層型蒸発器の場合、図7〜9に示す様に、一端縁に
互いに間隔をあけて1対の突出部14a、14bを形成
した金属板15の片面にU字形の凹部16を、この凹部
16の両端を上記1対の突出部14a、14bの端縁に
迄連続させた状態で形成している。上記凹部16の内側
には多数の突起17、17を形成し、凹部16により構
成される折り返し流路18の内側を流れる冷媒の流れを
乱し、この冷媒と金属板15との間の熱交換が効率良く
行なわれる様にしている。In order to solve such a problem, in the case of a laminated evaporator of a separate tank type, as shown in FIGS. 7 to 9, a pair of protruding portions 14a and 14b are formed at one edge at intervals. A U-shaped recess 16 is formed on one side of the metal plate 15 with both ends of the recess 16 continuing to the edges of the pair of protrusions 14a and 14b. A large number of protrusions 17 are formed inside the concave portion 16 to disturb the flow of the refrigerant flowing inside the return channel 18 formed by the concave portion 16, and heat exchange between the refrigerant and the metal plate 15 is performed. Is performed efficiently.
【0010】この様な凹部16や突起17、17を有す
る金属板15は、特開平2−169127号公報に示さ
れている様に、長尺な金属板を1対のロールの間を通過
させる事で、上記凹部16や突起17、17を成形した
後、上記長尺な金属板の適当箇所を切断する事で造れる
為、製造装置が比較的簡単なもので済む様になる。そし
て、この様な金属板15を用いて造る、タンク別体型の
積層型蒸発器の場合、この金属板15、15を2枚1組
とし、互いの凹部16、16同士を対向させた状態で最
中状に重ね合わせて互いに液密に接合する事により、U
字形の折り返し流路18と、この折り返し流路18の両
端に位置して端縁部から突出した1対の接合部19a、
19bとを有する素子20、20とする。The metal plate 15 having such recesses 16 and projections 17 and 17 allows a long metal plate to pass between a pair of rolls as shown in Japanese Patent Application Laid-Open No. 2-169127. Then, since the concave portion 16 and the projections 17 and 17 can be formed by cutting appropriate portions of the long metal plate, the manufacturing apparatus can be relatively simple. Then, in the case of a laminated evaporator of a separate tank type, which is manufactured using such a metal plate 15, the metal plates 15, 15 are formed as a pair, and the recesses 16, 16 of each other are opposed to each other. By overlapping in the middle and joining each other in a liquid-tight manner,
A pair of joints 19a that are located at both ends of the folded channel 18 and protrude from the edge,
19b, and 20b.
【0011】そして、複数の素子20、20のそれぞれ
の接合部19a、19bを、第一、第二のタンク21、
22の側面にそれぞれ形成した、スリット状の接続孔2
3、23に挿入すると共に、各接合部19a、19bの
外周面と各接続孔23、23の内周縁とを互いに液密に
ろう付け接合する。各タンク21、22は、それぞれ図
7に示す様な底板33と天板34とを最中状に組み合わ
せ、互いに液密にろう付けする事で構成されており、上
記接続孔23、23は、底板33の底面に形成されてい
る。これと共に、隣り合う素子20、20の間にフィン
(図示せず)を設ける。上記第一のタンク21の内側
は、中間部に固定した隔壁24により仕切る事で、入口
室25と出口室26とに分割し、入口室25の側に冷媒
送り込み口27を、出口室26の側に冷媒取り出し口2
8を、それぞれ設けている。Then, the joints 19a, 19b of the plurality of elements 20, 20 are connected to the first and second tanks 21,
22, slit-shaped connection holes 2 formed on the side surfaces
3 and 23, and the outer peripheral surfaces of the joints 19a and 19b and the inner peripheral edges of the connection holes 23 and 23 are brazed to each other in a liquid-tight manner. Each of the tanks 21 and 22 is constituted by combining a bottom plate 33 and a top plate 34 in the middle state as shown in FIG. 7 and brazing them in a liquid-tight manner with each other. It is formed on the bottom surface of the bottom plate 33. At the same time, fins (not shown) are provided between the adjacent elements 20. The inside of the first tank 21 is divided into an inlet chamber 25 and an outlet chamber 26 by being partitioned by a partition wall 24 fixed to an intermediate portion. Refrigerant outlet 2 on the side
8 are provided respectively.
【0012】上述の様に構成するタンク別体型の積層型
蒸発器の場合、第一、第二のタンク21、22と複数の
素子20、20に設けた折り返し流路18とから成る空
間の内側を、図10に示す様に、第一、第二、第三、第
四の四室に分割する事ができる。即ち、第一のタンク2
1の片半部(図8の右半部)に存在する入口室25と一
部(同図の右半分)の素子20、20の上流側半部とか
ら成る第一室29と、この第一室29の下流側に設けら
れ、上記一部の素子20、20の下流側半部と第二のタ
ンク22の片半部(同図の右半部)とから成る第二室3
0と、この第二室30の下流側(同図の左側)に設けら
れ、第二のタンク22の他半部(同図の左半部)と残部
(同図の左半分)の素子20、20の上流側半部とから
成る第三室31と、この第三室31の下流側に設けら
れ、第一のタンク21の他半部(同図の左半部)と残部
の素子20、20の下流側半部とから成る第四室32と
である。In the case of the stacked evaporator of the separate tank type configured as described above, the inside of the space formed by the first and second tanks 21 and 22 and the return flow channel 18 provided in the plurality of elements 20 and 20 is formed. Can be divided into first, second, third and fourth chambers as shown in FIG. That is, the first tank 2
A first chamber 29 comprising an inlet chamber 25 existing in one half (the right half of FIG. 8) and an upstream half of the elements 20 and 20 in a part (the right half of FIG. 8). The second chamber 3 is provided downstream of the one chamber 29 and includes a downstream half of the partial elements 20, 20 and a half of the second tank 22 (the right half of the figure).
0 and the element 20 provided on the downstream side (left side in the figure) of the second chamber 30 and in the other half (left half in the figure) and the remaining part (left half in the figure) of the second tank 22. , 20 on the downstream side of the third chamber 31 and the other half of the first tank 21 (the left half of FIG. 2) and the remaining element 20. , 20 on the downstream half.
【0013】この様な第一〜第四室29〜32に分割さ
れる積層型蒸発器に、図10に矢印aで示す様に、冷媒
送り込み口27から冷媒を送り込むと、この冷媒は、同
図に矢印bで示す様に第一室29内を流れ、一部の素子
20、20の折り返し流路18の折り返し部分を、同図
に矢印cで示す様に流れて、第二室30に進入する。第
二室30内を矢印dで示す様に流れ、この第二室30の
下流側端部に迄流れた冷媒は、次いで、第二のタンク2
2内を、このタンク22の軸方向に亙って図10の矢印
e方向に流れて、第三室31内に進入した後、この第三
室31を構成する残部の素子20、20の折り返し流路
18内を、同図に矢印fで示す様に流れる。更に冷媒
は、同図に矢印gで示す様に、残部の素子20、20の
折り返し流路18の折り返し部分を流れて、第四室32
に進入し、この第四室32内を矢印hで示す様に流れ
る。そして、この第四室32の下流側端部に存在する、
第一のタンク21の他半部(図8の左半部)に迄流れた
冷媒は、次いで冷媒取り出し口28から、同図に矢印i
で示す様に流出する。When a refrigerant is fed from the refrigerant inlet 27 into the stacked evaporator divided into the first to fourth chambers 29 to 32 as shown by an arrow a in FIG. As shown by an arrow b in the drawing, it flows in the first chamber 29, and a part of the turn-back channel 18 of some of the elements 20, 20 flows as shown by an arrow c in FIG. enter in. The refrigerant flowing in the second chamber 30 as indicated by the arrow d, and flowing to the downstream end of the second chamber 30 is then discharged to the second tank 2.
After flowing through the inside of the tank 2 in the direction of arrow e in FIG. 10 along the axial direction of the tank 22 and entering the third chamber 31, the remaining elements 20, 20 constituting the third chamber 31 are turned back It flows through the flow path 18 as shown by an arrow f in FIG. Further, the refrigerant flows through the folded portion of the folded flow path 18 of the remaining elements 20 and 20, as indicated by an arrow g in FIG.
And flows in the fourth chamber 32 as shown by an arrow h. And it exists at the downstream end of the fourth chamber 32.
The refrigerant that has flowed to the other half of the first tank 21 (the left half of FIG. 8) then flows from the refrigerant outlet 28 to the arrow i in FIG.
Outflow as indicated by.
【0014】[0014]
【考案が解決しようとする課題】ところが、上述の様に
構成され作用する、特開平2−169127号公報に開
示された積層型蒸発器の場合も、依然として、次に述べ
る様な解決すべき問題点が存在する。即ち、互いに平行
な複数の流路(折り返し流路18に相当する。)を有す
る蒸発器に、十分な性能を発揮させる為には、各流路内
を流れる冷媒の量が均一である事が必要である。互いに
平行な複数の流路のうちの一部に多量の冷媒が流れ、残
りの流路に流れる冷媒の量が少なくなった場合には、蒸
発器全体としての熱交換量が確保できず、蒸発器の性能
が悪くなってしまう。However, the stacked evaporator disclosed in Japanese Patent Application Laid-Open No. 2-169127, which is constructed and operates as described above, still has the following problems to be solved. There is a point. That is, in order for an evaporator having a plurality of parallel flow paths (corresponding to the folded flow path 18) to exhibit sufficient performance, the amount of refrigerant flowing in each flow path must be uniform. is necessary. If a large amount of refrigerant flows through some of the plurality of parallel flow paths and the amount of refrigerant flowing through the remaining flow paths decreases, the amount of heat exchange of the entire evaporator cannot be secured, and The performance of the vessel will deteriorate.
【0015】これに対し、前述の様に構成され作用する
積層型蒸発器の場合には、必ずしも各流路内を流れる冷
媒の量を均一化する事ができない。例えば、冷媒送り込
み口27は、前記第一のタンク21の片半部の中央部分
に設けられているが、この冷媒送り込み口27から上記
片半部内に送り込まれた冷媒は、冷媒送り込み口27に
近い、片半部中央部分に開口した流路に多く流入する。
そして、冷媒送り込み口27から遠い、片半部両端寄り
に開口した流路への流入量は少なくなってしまう。On the other hand, in the case of the stacked evaporator configured and operated as described above, the amount of the refrigerant flowing in each flow path cannot always be equalized. For example, the refrigerant inlet 27 is provided at the center of one half of the first tank 21, and the refrigerant sent from the refrigerant inlet 27 into the one half is connected to the refrigerant inlet 27. A large amount of water flows into a flow path that is close to the one-half central portion.
Then, the amount of inflow into the flow path that is far from the refrigerant inlet 27 and that is opened near both ends of the one-half portion is reduced.
【0016】又、第二室30の下流端に達した冷媒が、
図10に矢印eで示す様に流れて、第三室31の上流端
に達する際、矢印e方向に流れる冷媒の圧力は下流側程
高くなる。この為、第三室31を構成する複数の折り返
し流路18、18に送り込まれる冷媒の量は、図11に
示す様に、下流側(図10、11の右側)に存在する折
り返し流路18程多くなってしまう。The refrigerant that has reached the downstream end of the second chamber 30 is
When the refrigerant flows as shown by the arrow e in FIG. 10 and reaches the upstream end of the third chamber 31, the pressure of the refrigerant flowing in the direction of the arrow e becomes higher toward the downstream side. For this reason, as shown in FIG. 11, the amount of the refrigerant sent into the plurality of return flow paths 18 constituting the third chamber 31 depends on the return flow path 18 existing on the downstream side (right side in FIGS. 10 and 11). It will be more.
【0017】特に、前述の様に構成される積層型蒸発器
の場合、図12に示す様に、各素子20に形成した接合
部19a(19b)の先端部が、第一(第二)のタンク
21(22)内に突出し、この突出部分が堰として機能
する。そして、この突出部分が冷媒の流れに対する抵抗
となる為、積層型蒸発器内を冷媒が流れる抵抗が大き
く、この積層型蒸発器内を流れる冷媒の量を多くできな
いだけでなく、冷媒の流れが偏る傾向が強い。In particular, in the case of the stacked evaporator configured as described above, as shown in FIG. 12, the tip of the joint 19a (19b) formed on each element 20 is the first (second). The protrusion protrudes into the tank 21 (22), and the protruding portion functions as a weir. And since this protruding portion becomes a resistance against the flow of the refrigerant, the resistance of the refrigerant flowing through the laminated evaporator is large, and not only the amount of the refrigerant flowing through the laminated evaporator cannot be increased, but also the flow of the refrigerant is reduced. Strong tendency to bias.
【0018】冷媒の偏りを解消する為には、第一のタン
ク21の入口室25に通じる冷媒送り込み口27の取付
位置や流路面積、出口室26に通じる冷媒取り出し口2
8の取付位置や流路面積を工夫したり、或は第一のタン
ク21内に固定する隔壁24の位置を工夫する事で、或
る程度対応する事はできる。但し、素子20、20の積
層数を多くした、比較的大型の蒸発器の場合、これらの
処置では十分に流量の偏りを少なくする事ができない。
本考案の蒸発器は、上述の様な不都合を解消するもので
ある。In order to eliminate the bias of the refrigerant, the mounting position and the flow path area of the refrigerant inlet 27 communicating with the inlet chamber 25 of the first tank 21 and the refrigerant outlet 2 communicating with the outlet chamber 26 are required.
To some extent, this can be achieved by devising the mounting position of 8 and the flow path area, or devising the position of the partition 24 fixed in the first tank 21. However, in the case of a relatively large evaporator in which the number of stacked elements 20 and 20 is increased, these measures cannot sufficiently reduce the deviation in the flow rate.
The evaporator of the present invention solves the above-mentioned disadvantages.
【0019】[0019]
【課題を解決する為の手段】本考案の蒸発器は、一端縁
に、互いに間隔をあけて1対の突出部を形成した金属板
の片面にU字形の凹部を、この凹部の両端を上記1対の
突出部の端縁に迄連続させた状態で形成すると共に、こ
の金属板を2枚1組とし、互いの凹部同士を対向させた
状態で最中状に重ね合わせて互いに液密に接合する事に
より、U字形の折り返し流路と、この流路の両端に位置
して端縁部から突出した1対の接合部とを有する素子と
し、複数の素子のそれぞれの接合部を、第一、第二のタ
ンクの側面にそれぞれ形成したスリット状の接続孔に挿
入して、各接合部の外周面と各接続孔の内周縁とを互い
に液密に接合すると共に、隣り合う素子の間にフィンを
設け、中間部を隔壁により仕切った第一のタンクの一方
の側に冷媒送り込み口を、他方の側に冷媒取り出し口
を、それぞれ設ける事で構成された蒸発器に於いて、上
記接合部の端縁で第一、第二のタンクの内側に挿入され
た部分を、円弧状に切り欠いた事を特徴としている。The evaporator according to the present invention has a U-shaped recess formed on one side of a metal plate having a pair of protruding portions formed at one edge and spaced from each other. The metal plates are formed in a state of being continued to the edges of the pair of projecting portions, and the metal plates are formed as a pair, and are superposed in the middle while the concave portions are opposed to each other to be liquid-tight with each other. By joining, an element having a U-shaped folded flow path, and a pair of joints located at both ends of the flow path and protruding from an edge portion, each joint of the plurality of elements is referred to as a second joint. First, the outer peripheral surface of each joint and the inner peripheral edge of each connection hole are liquid-tightly joined to each other by inserting into the slit-shaped connection holes formed on the side surfaces of the second tank, respectively, and between the adjacent elements. Fins are provided, and the refrigerant is fed to one side of the first tank whose middle part is partitioned by a partition. In the evaporator constituted by providing a port and a refrigerant take-out port on the other side, respectively, a portion inserted into the inside of the first and second tanks at the edge of the joint is arc-shaped. It is characterized by being cut out.
【0020】[0020]
【作用】上述の様に構成される本考案の蒸発器により、
蒸発器の内部を流れる冷媒と蒸発器の外部を流れる空気
との間で熱交換を行なう際の作用自体は、前述した従来
の蒸発器の場合と同様である。特に、本考案の蒸発器の
場合には、流通部の端縁部を円弧状に切り欠いている
為、上記流通部の端縁部による通液抵抗の増大が最小限
に抑えられる。この結果、蒸発器内を流れる冷媒の量を
多くできると共に、冷媒の流れが偏る傾向を小さくし
て、蒸発器の性能向上を図れる。With the evaporator of the present invention configured as described above,
The operation itself when performing heat exchange between the refrigerant flowing inside the evaporator and the air flowing outside the evaporator is the same as that of the above-described conventional evaporator. In particular, in the case of the evaporator of the present invention, since the edge of the flow portion is cut off in an arc shape, an increase in liquid flow resistance due to the edge of the flow portion is minimized. As a result, the amount of the refrigerant flowing in the evaporator can be increased, and the tendency of the flow of the refrigerant to be uneven is reduced, so that the performance of the evaporator can be improved.
【0021】[0021]
【実施例】図1〜3は、本考案の実施例を示している。
尚、本考案の特徴は、複数の素子20のそれぞれの接合
部19a(19b)の端縁を円弧状に切り欠いた点にあ
り、それ以外の構造及び作用は、前述した特開平2−1
69127号公報に開示された積層型蒸発器と同様であ
る為、重複する説明を省略し、以下本考案の特徴部分に
就いて説明する。1 to 3 show an embodiment of the present invention.
The feature of the present invention is that the edges of the joints 19a (19b) of the plurality of elements 20 are cut out in an arc shape.
Since it is the same as the stacked evaporator disclosed in Japanese Patent No. 69127, a duplicate description will be omitted, and only the features of the present invention will be described below.
【0022】積層型蒸発器のコア部を構成する複数の素
子20に設けられ、流通部である、各素子20の折り返
し流路18の両端に位置する接合部19a(19b)
は、スリット状の接続孔23を通じて、第一(第二)の
タンク21(22)内に挿入されている。そして、上記
接合部19a(19b)の端縁部には円弧状の切り欠き
35を設けて、第一(第二)のタンク21(22)内へ
の、上記接合部19a(19b)の突出量を少なくして
いる。Joining portions 19a (19b) provided at a plurality of elements 20 constituting a core portion of the stacked evaporator and located at both ends of a return flow path 18 of each element 20 as distribution parts.
Is inserted into the first (second) tank 21 (22) through the slit-shaped connection hole 23. An arc-shaped notch 35 is provided at the edge of the joint 19a (19b) to project the joint 19a (19b) into the first (second) tank 21 (22). The amount has been reduced.
【0023】この様に、折り返し流路18の端部に存在
する接合部19a(19b)の端縁部に円弧状の切り欠
き35を設けた事により、上記接合部19a(19b)
の端縁部による通液抵抗の増大が最小限に抑えられる。
この結果、積層型蒸発器内を流れる冷媒の量を多くでき
ると共に、冷媒の流れが偏る傾向を小さくし、積層型蒸
発器を通過した空気の温度分布を均一化して、この積層
型蒸発器の性能向上を図れる。As described above, since the arc-shaped notch 35 is provided at the edge of the joint 19a (19b) existing at the end of the return flow path 18, the joint 19a (19b) is formed.
The increase of the liquid flow resistance due to the edge of the rim is minimized.
As a result, the amount of the refrigerant flowing in the stacked evaporator can be increased, the tendency of the flow of the refrigerant to be biased is reduced, and the temperature distribution of the air that has passed through the stacked evaporator is made uniform. Performance can be improved.
【0024】尚、各接合部19a(19b)に形成する
切り欠き35の大きさは、総て同じでも或る程度積層型
蒸発器の性能向上を図れるが、場所により切り欠き35
の大きさを異ならせれば、より性能向上を図る事ができ
る。例えば、第一のタンク21の一方の側に形成された
接続孔23内に挿入された接合部19aの端縁を、図2
に示した上記第一のタンク21の片半部中央に設けた冷
媒送り込み口27からの距離xが小さい程大きく切り欠
き、この冷媒送り込み口27からの距離xが大きくなる
に従って小さく切り欠く様にすれば、上記冷媒送り込み
口27から上記第一のタンク21の片半部内に送り込ま
れ、図2に矢印で示す方向に流れる冷媒が、この片半部
に一端を開口させた複数の折り返し流路18、18内
に、偏りなく流入する。The size of the notch 35 formed in each joint 19a (19b) can improve the performance of the laminated evaporator to some extent even if it is the same for all the joints 19a (19b).
If the size is different, the performance can be further improved. For example, the edge of the joint 19a inserted into the connection hole 23 formed on one side of the first tank 21 is shown in FIG.
The larger the distance x from the refrigerant inlet 27 provided in the center of one half of the first tank 21 shown in (1), the larger the notch, and the smaller the distance x from the refrigerant inlet 27, the smaller the notch. Then, a plurality of folded flow paths having one end opened at one half of the first tank 21 through the refrigerant inlet 27 into the one half of the first tank 21 and flowing in the direction indicated by the arrow in FIG. 18, 18 flow evenly.
【0025】又、第二のタンク22(図8〜9)の下流
側半部(第三室31(図10)の上流端部)に形成され
た接続孔内に挿入された接合部19bの端縁を、上流側
程大きく切り欠く様にすれば、図3、10の矢印eで示
す様に、上記第二のタンク22を上流側から下流側に流
れる冷媒が、上記第二のタンク22の下流側半部に一端
を開口させた複数の折り返し流路18、18内に、偏り
なく流入する。Also, the connecting portion 19b inserted into the connecting hole formed in the downstream half portion (the upstream end portion of the third chamber 31 (FIG. 10)) of the second tank 22 (FIGS. 8 to 9). If the edge is cut away toward the upstream side, the refrigerant flowing from the upstream side to the downstream side in the second tank 22 flows through the second tank 22 as shown by an arrow e in FIGS. Flows into the plurality of return flow paths 18, 18 having one ends opened in the downstream half portion thereof without bias.
【0026】[0026]
【考案の効果】本考案の蒸発器は、以上に述べた通り構
成され作用するので、蒸発器を構成する、互いに並列な
複数の流路中に流れる冷媒の量を、ほぼ等しくする事が
できて、蒸発器を通過した空気の温度分布を均一化し、
蒸発器の性能向上を図れる。Since the evaporator of the present invention is constructed and operates as described above, it is possible to make the amounts of refrigerant flowing in a plurality of parallel flow paths constituting the evaporator substantially equal. To equalize the temperature distribution of the air passing through the evaporator,
The performance of the evaporator can be improved.
【図1】接合部に切り欠きを形成した図8の拡大A−A
断面に相当する図。FIG. 1 is an enlarged view AA of FIG.
FIG.
【図2】図10のB矢視に相当する図。FIG. 2 is a view corresponding to an arrow B in FIG. 10;
【図3】図10のC矢視に相当する図。FIG. 3 is a view corresponding to the view in the direction of arrow C in FIG. 10;
【図4】従来の積層型蒸発器の第1例を示す正面図。FIG. 4 is a front view showing a first example of a conventional laminated evaporator.
【図5】この蒸発器を構成する金属板の側面図。FIG. 5 is a side view of a metal plate constituting the evaporator.
【図6】図5のD−D断面図。FIG. 6 is a sectional view taken along line DD of FIG. 5;
【図7】従来の積層型蒸発器の第2例を示す部分分解斜
視図。FIG. 7 is a partially exploded perspective view showing a second example of a conventional laminated evaporator.
【図8】同じく組み立てた状態を示す平面図。FIG. 8 is a plan view showing an assembled state.
【図9】同じく側面図。FIG. 9 is a side view of the same.
【図10】冷媒の流れを示す略斜視図。FIG. 10 is a schematic perspective view showing the flow of a refrigerant.
【図11】冷媒が偏って流れる状態を示す、図10のE
−E断面に相当する図。11 shows a state in which the refrigerant flows unevenly, and FIG.
The figure corresponding to the -E cross section.
【図12】図8の拡大A−A断面図。FIG. 12 is an enlarged sectional view taken on line AA of FIG. 8;
1 金属板 2 ユニット 3 平坦部 4 第一凹部 5 第二凹部 6 第三凹部 7 通孔 8 通孔 9 凸部 10 入口管 11 出口管 12 扁平管部 13 フィン 14a 突出部 14b 突出部 15 金属板 16 凹部 17 突起 18 折り返し流路 19a 接合部 19b 接合部 20 素子 21 第一のタンク 22 第二のタンク 23 接続孔 24 隔壁 25 入口室 26 出口室 27 冷媒送り込み口 28 冷媒取り出し口 29 第一室 30 第二室 31 第三室 32 第四室 33 底板 34 天板 35 切り欠き REFERENCE SIGNS LIST 1 metal plate 2 unit 3 flat portion 4 first concave portion 5 second concave portion 6 third concave portion 7 through hole 8 through hole 9 convex portion 10 inlet tube 11 outlet tube 12 flat tube portion 13 fin 14a protrusion 14b protrusion 15 metal plate 16 Concave part 17 Projection 18 Turn-back channel 19a Joint 19b Joint 20 Element 21 First tank 22 Second tank 23 Connection hole 24 Partition wall 25 Inlet chamber 26 Outlet chamber 27 Refrigerant inlet 28 Refrigerant outlet 29 First chamber 30 Second room 31 Third room 32 Fourth room 33 Bottom plate 34 Top plate 35 Notch
Claims (3)
出部を形成した金属板の片面にU字形の凹部を、この凹
部の両端を上記1対の突出部の端縁に迄連続させた状態
で形成すると共に、この金属板を2枚1組とし、互いの
凹部同士を対向させた状態で最中状に重ね合わせて互い
に液密に接合する事により、U字形の折り返し流路と、
この流路の両端に位置して端縁部から突出した1対の接
合部とを有する素子とし、複数の素子のそれぞれの接合
部を、第一、第二のタンクの側面にそれぞれ形成したス
リット状の接続孔に挿入して、各接合部の外周面と各接
続孔の内周縁とを互いに液密に接合すると共に、隣り合
う素子の間にフィンを設け、中間部を隔壁により仕切っ
た第一のタンクの一方の側に冷媒送り込み口を、他方の
側に冷媒取り出し口を、それぞれ設ける事で構成された
蒸発器に於いて、上記接合部の端縁で第一、第二のタン
クの内側に挿入された部分を、円弧状に切り欠いた事を
特徴とする蒸発器。A U-shaped recess is formed on one side of a metal plate having a pair of protrusions formed at one end and spaced from each other, and both ends of the recess are continuous with the edges of the pair of protrusions. The U-shaped folded flow path is formed by forming these metal plates into a pair and overlapping them in the middle in a state where the concave portions are opposed to each other and liquid-tightly joining each other. When,
Slits formed at both ends of the flow path and having a pair of joints protruding from the edge, and each joint of the plurality of elements formed on the side surfaces of the first and second tanks, respectively. The outer peripheral surface of each connecting portion and the inner peripheral edge of each connecting hole are liquid-tightly joined to each other, fins are provided between adjacent elements, and the intermediate portion is partitioned by a partition wall. In an evaporator configured by providing a refrigerant inlet on one side of one tank and a refrigerant outlet on the other side, the first and second tanks are connected at the edge of the joint. An evaporator characterized in that the part inserted inside is cut out in an arc shape.
続孔内に挿入された接合部の端縁を、冷媒送り込み口に
近い程大きく切り欠いた、請求項1に記載の蒸発器。2. The evaporator according to claim 1, wherein the edge of the joint inserted into the connection hole formed on one side of the first tank is largely cut away closer to the refrigerant inlet. .
接続孔内に挿入された接合部の端縁を、上流側程大きく
切り欠いた、請求項1〜2の何れかに記載の蒸発器。3. An end portion of a joint portion inserted into a connection hole formed in a downstream half portion of the second tank, the edge of the joint portion being notched larger toward the upstream side. Evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991030432U JP2572083Y2 (en) | 1991-04-05 | 1991-04-05 | Evaporator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991030432U JP2572083Y2 (en) | 1991-04-05 | 1991-04-05 | Evaporator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04117363U JPH04117363U (en) | 1992-10-21 |
JP2572083Y2 true JP2572083Y2 (en) | 1998-05-20 |
Family
ID=31914038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991030432U Expired - Fee Related JP2572083Y2 (en) | 1991-04-05 | 1991-04-05 | Evaporator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2572083Y2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02122988U (en) * | 1989-03-11 | 1990-10-09 |
-
1991
- 1991-04-05 JP JP1991030432U patent/JP2572083Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04117363U (en) | 1992-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2737987B2 (en) | Stacked evaporator | |
JP3172859B2 (en) | Stacked heat exchanger | |
US5417280A (en) | Stacked heat exchanger and method of manufacturing the same | |
EP2929273B1 (en) | Plate heat exchanger | |
JP3814917B2 (en) | Stacked evaporator | |
JPH07280484A (en) | Stacked type heat exchanger | |
JP2980631B2 (en) | Stacked heat exchanger | |
JPH07167578A (en) | Lamination type heat exchanger | |
JP3909401B2 (en) | Stacked heat exchanger | |
JP2864173B2 (en) | Heat exchanger | |
JPH0933187A (en) | Laminated heat exchanger | |
JPS6157991B2 (en) | ||
JP2572083Y2 (en) | Evaporator | |
JPH04189A (en) | Counterflow type heat exchanger | |
JP2804585B2 (en) | Stacked heat exchanger | |
JP3403544B2 (en) | Heat exchanger | |
JP2518259Y2 (en) | Stacked heat exchanger | |
JPH0894274A (en) | Accumulated type heat exchanger | |
JPH08240395A (en) | Heat exchanger | |
JP2984481B2 (en) | Stacked heat exchanger | |
JP2000055573A (en) | Refrigerant evaporator | |
JPH0630680U (en) | Stacked evaporator element | |
JPH11166795A (en) | Heat exchanger | |
JPH0612377Y2 (en) | Stacked heat exchanger | |
JP2600547Y2 (en) | Aluminum heat exchanger header |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |