JPH11166795A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH11166795A
JPH11166795A JP33207497A JP33207497A JPH11166795A JP H11166795 A JPH11166795 A JP H11166795A JP 33207497 A JP33207497 A JP 33207497A JP 33207497 A JP33207497 A JP 33207497A JP H11166795 A JPH11166795 A JP H11166795A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
refrigerant
flow
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33207497A
Other languages
Japanese (ja)
Inventor
Masayuki Fujiwara
誠之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33207497A priority Critical patent/JPH11166795A/en
Publication of JPH11166795A publication Critical patent/JPH11166795A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure more efficient heat exchange by eliminating deviation of void rate among a plurality of channels provided for the heating tubes constituting a heat exchanger and making uniform the flow rate of refrigerant for respective channels thereby making uniform the pressure loss of refrigerant flowing through the heating tubes. SOLUTION: Temperature increases as the air flows through a heat exchanger having heating tubes 21. Temperature of refrigerant flowing through a channel 21a is constant at, all times and the temperature difference between the refrigerant and the air is large on time air flow-in side and the state is reversed on the flow-out side. Since the heating tube 21 has a larger quantity of exchanging heat on the air flow-in side, refrigerant begin to be condensed quicker and the liquid phase s strengthened for the refrigerant lowing on the air flow-in side whereas gas phase is strengthened on the air flow-out side. The strong liquid phase and gas phase are fed together into a mixing chamber 22 and mixed and then arranged into substantrally uniform state before being distributed to respective channels 21a. According to the arrangement, difference of void rate between the flow-in side and the flow-out side is decreased thus decreasing pressure loss among respective channels 21a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばカーエアコ
ン等の空気調和機を構成する熱交換器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger constituting an air conditioner such as a car air conditioner.

【0002】[0002]

【従来の技術】カーエアコン等の空気調和機を構成する
熱交換器のうち、コンデンサはコンプレッサから送り込
まれてきた高温・高圧のガス冷媒と空気との間で熱交換
を行わせることでガス冷媒を冷却し凝縮液化させるもの
である。
2. Description of the Related Art Among heat exchangers constituting an air conditioner such as a car air conditioner, a condenser performs a heat exchange between a high-temperature and high-pressure gas refrigerant sent from a compressor and air, thereby performing a gas refrigerant. Is cooled and condensed and liquefied.

【0003】コンデンサの一例を図7に示す。このコン
デンサは伝熱管1と放熱フィン2とを交互に積層して構
成されたコア部3、ガス冷媒の入口側パイプ4と出口側
パイプ5とを有しコア部3の一側部に設けられたヘッダ
6、コア部3の他側部に設けられてガス冷媒の流れを逆
方向に導くヘッダ7等を備えて構成されている。
FIG. 7 shows an example of a capacitor. The condenser has a core portion 3 formed by alternately stacking heat transfer tubes 1 and radiation fins 2, an inlet pipe 4 and an outlet pipe 5 for gas refrigerant, and is provided on one side of the core portion 3. And a header 7 provided on the other side of the core portion 3 to guide the flow of the gas refrigerant in the opposite direction.

【0004】ヘッダ6の内部には仕切板8が設けられて
おり、このコンデンサにおいて入口側パイプ4からヘッ
ダ6に流入したガス冷媒は仕切板8よりも上に位置する
伝熱管1内をヘッダ7に向けて流通し、コア部3におい
て放熱フィン2の間を流れる空気との間で熱交換を行
う。そして、ヘッダ7に流入してターンした後、仕切板
8よりも下に位置する伝熱管1内をヘッダ6に向けて流
通し、コア部3において再び熱交換を行う。ガス冷媒は
コア部3を流通する過程で空気と熱交換を行って液冷媒
となり、ヘッダ6に流入して出口側パイプ5から流出す
る。
[0004] A partition plate 8 is provided inside the header 6, and the gas refrigerant flowing into the header 6 from the inlet pipe 4 in the condenser passes through the heat transfer tube 1 located above the partition plate 8 in the header 7. , And exchange heat with the air flowing between the radiation fins 2 in the core portion 3. Then, after flowing into the header 7 and turning, the heat flows through the heat transfer tube 1 located below the partition plate 8 toward the header 6, and heat exchange is performed again in the core portion 3. The gas refrigerant exchanges heat with air in the course of flowing through the core portion 3 to become a liquid refrigerant, flows into the header 6, and flows out of the outlet pipe 5.

【0005】コンデンサの平断面を図8に示す。伝熱管
1の内部には、伝熱管1の長さ方向に沿って複数の流路
1aが設けられている。各流路1aは、隣接する流路を
流れる冷媒が混合するようなことがないように個別に独
立して形成されている。
FIG. 8 shows a plan cross section of the capacitor. A plurality of flow paths 1 a are provided inside the heat transfer tube 1 along the length direction of the heat transfer tube 1. Each flow path 1a is individually formed independently so that the refrigerant flowing in the adjacent flow path does not mix.

【0006】ここで、伝熱管1における空気の流れ方向
(伝熱管の幅方向)距離に対する空気温度を表すグラフ
を図9に示す。このグラフによると、空気の流入面から
流出面に向けて空気の流れ方向に進むに従い空気温度が
上昇することが解るが、流路1aを流れる冷媒温度は常
に一定(飽和温度)であるので、空気の流入面側で冷媒
と空気との温度差が大きく、流出面側で温度差が小さい
状態となってしまう。これにより、伝熱管1においては
空気の流入面側の方が流出面側よりも交換熱量が大き
く、冷媒が早く凝縮し始めてしまい、空気の流入面側の
流路1aを流れる冷媒は液相が強く(液リッチ)、流出
面側の流路1aを流れる冷媒はガス相が強くなる(ガス
リッチ)といった現象が起きる。
FIG. 9 is a graph showing the air temperature with respect to the distance in the air flow direction (width direction of the heat transfer tube) in the heat transfer tube 1. According to this graph, it can be seen that the temperature of the air rises as the air proceeds from the inflow surface to the outflow surface in the flow direction of the air. However, the temperature of the refrigerant flowing through the flow path 1a is always constant (saturation temperature). The temperature difference between the refrigerant and the air is large on the inflow surface side of the air, and the temperature difference is small on the outflow surface side. As a result, in the heat transfer tube 1, the amount of exchange heat is larger on the inflow surface side of the air than on the outflow surface side, and the refrigerant starts to condense earlier, and the refrigerant flowing through the flow path 1a on the inflow surface side of the air has a liquid phase. A phenomenon occurs in which the refrigerant flowing through the flow path 1a on the outflow surface side becomes strong (liquid rich) and the gas phase becomes strong (gas rich).

【0007】この現象はコンデンサに限らず、同じよう
な構成を有する熱交換器であるエバポレータについても
起きることが解っている。エバポレータはコンデンサで
液化され膨張弁を通過する過程で低温・低圧の状態にな
った液冷媒を蒸発させることにより、外部を流れる空気
から熱を奪って冷却するものである。
It has been found that this phenomenon occurs not only in the condenser but also in the evaporator which is a heat exchanger having a similar configuration. The evaporator evaporates the liquid refrigerant which has been liquefied by the condenser and has become a low-temperature and low-pressure state in the process of passing through the expansion valve, thereby removing heat from the air flowing outside and cooling it.

【0008】エバポレータの一例を図10に示す。この
エバポレータは伝熱管11と放熱フィン12とを交互に
積層して構成されたコア部13、コア部13の上部に設
けられたガス冷媒の入口側ヘッダ14、同じくコア部1
3の上部に設けられたガス冷媒の出口側ヘッダ15、コ
ア部13の下部に設けられてガス冷媒の流れを逆方向に
導く下部ヘッダ16等を備えて構成されている。
FIG. 10 shows an example of an evaporator. The evaporator includes a core portion 13 formed by alternately stacking heat transfer tubes 11 and radiation fins 12, a gas refrigerant inlet-side header 14 provided above the core portion 13, and a core portion 1.
3 is provided with a gas refrigerant outlet header 15 provided above the core 3, a lower header 16 provided below the core 13 to guide the flow of the gas refrigerant in the opposite direction, and the like.

【0009】このエバポレータにおいて、入口側ヘッダ
14に流入した液冷媒は入口側ヘッダ14の下に位置す
る伝熱管11内を下部ヘッダ16に向けて流通し、コア
部13において放熱フィン12の間を流れる空気との間
で熱交換を行って気液二相の冷媒となる。そして、下部
ヘッダ16に流入してターンした後、出口側ヘッダ15
の下に位置する伝熱管1内を出口側ヘッダ15に向けて
流通し、コア部13において再び熱交換を行ってガス冷
媒となり、出口側ヘッダ15から流出する。
In this evaporator, the liquid refrigerant flowing into the inlet header 14 flows through the heat transfer tube 11 located below the inlet header 14 toward the lower header 16, and flows between the radiation fins 12 in the core 13. The refrigerant exchanges heat with the flowing air to become a gas-liquid two-phase refrigerant. After flowing into the lower header 16 and turning, the outlet header 15
Flows through the heat transfer tube 1 located below the heat transfer tube 1 toward the outlet header 15, performs heat exchange again in the core 13, turns into a gas refrigerant, and flows out of the outlet header 15.

【0010】エバポレータの縦断面を図11に示す。伝
熱管11の内部には、コンデンサの伝熱管1と同様に複
数の流路11aが設けられている。各流路は、隣接する
流路を流れる冷媒が混合するようなことがないように個
別に独立して形成されている。
FIG. 11 shows a vertical section of the evaporator. Inside the heat transfer tube 11, a plurality of flow paths 11a are provided similarly to the heat transfer tube 1 of the condenser. Each flow path is individually formed independently so that the refrigerant flowing in the adjacent flow path does not mix.

【0011】ここで、伝熱管1における空気の流れ方向
(伝熱管の幅方向)距離に対する空気温度を表すグラフ
を図12に示す。このグラフによると、空気の流入面か
ら流出面に向けて空気の流れ方向に進むに従い空気の温
度が下降することが解るが、流路11aを流れる冷媒の
温度は常に一定(飽和温度)であるので、空気の流入面
側で冷媒と空気との温度差が大きく、流出面側で温度差
が小さい状態となってしまう。これにより、伝熱管1に
おいては空気の流入面側の方が流出面側よりも交換熱量
が大きく、冷媒が早く凝縮し始めてしまい、空気の流入
面側の流路11aを流れる冷媒はガス相が強く(ガスリ
ッチ)、流出面側の流路11aを流れる冷媒は液相が強
くなる(液リッチ)現象が起きる。
FIG. 12 is a graph showing the air temperature with respect to the distance in the air flow direction (width direction of the heat transfer tube) in the heat transfer tube 1. According to this graph, it can be seen that the temperature of the air decreases as the air proceeds from the inflow surface to the outflow surface in the flow direction of the air, but the temperature of the refrigerant flowing through the flow path 11a is always constant (saturation temperature). Therefore, the temperature difference between the refrigerant and the air is large on the air inflow surface side, and the temperature difference is small on the outflow surface side. As a result, in the heat transfer tube 1, the amount of exchange heat is larger on the inflow surface side of the air than on the outflow surface side, and the refrigerant starts to condense earlier, and the refrigerant flowing through the flow path 11a on the air inflow surface side has a gas phase. A strong (gas-rich) refrigerant flowing through the flow path 11a on the outflow surface side has a strong liquid phase (liquid-rich) phenomenon.

【0012】[0012]

【発明が解決しようとする課題】このように、従来のコ
ンデンサやエバポレータといった熱交換器においては、
伝熱管に設けられた流路を流れる冷媒の圧力損失が均一
にならず、それぞれの流路において冷媒の流量が不均一
となるため、効果的な熱交換が得られないといった問題
があった。
As described above, in a conventional heat exchanger such as a condenser or an evaporator,
There is a problem that the pressure loss of the refrigerant flowing through the flow path provided in the heat transfer tube is not uniform, and the flow rate of the refrigerant in each flow path is not uniform, so that effective heat exchange cannot be obtained.

【0013】本発明は上記の事情に鑑みてなされたもの
であり、熱交換器を構成する伝熱管に設けられる複数の
流路についてボイド率の偏りをなくし、各流路を流れる
冷媒の流量を均一化し、熱交換器の高性能化を図ること
を目的としている。
The present invention has been made in view of the above circumstances, and eliminates a bias in the void ratio of a plurality of flow paths provided in a heat transfer tube constituting a heat exchanger, and reduces the flow rate of refrigerant flowing through each flow path. The purpose is to make the heat exchanger uniform and improve the performance.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、次のように構成された熱交換器を採用
する。この熱交換器は、内部に長さ方向に沿って複数の
流路が設けられた伝熱管と、該伝熱管の一端に接続され
て流体の入口となる流入口と、伝熱管の他端に接続され
て流体の出口となる流出口と、伝熱管の外側面に接触し
て設けられて前記流体と伝熱管の外側を流れる気体との
間の熱交換効率を高めるフィンとを備える熱交換器であ
って、前記伝熱管の内部には、前記複数の流路が一同に
開通されて前記流体が混合される混合室が設けられてい
ることを特徴とするものである。
As means for solving the above-mentioned problems, a heat exchanger constructed as follows is employed. This heat exchanger has a heat transfer tube in which a plurality of flow paths are provided along the length direction, an inflow port connected to one end of the heat transfer tube to serve as a fluid inlet, and a heat transfer tube at the other end. A heat exchanger comprising: an outlet that is connected as a fluid outlet; and a fin that is provided in contact with the outer surface of the heat transfer tube to increase the heat exchange efficiency between the fluid and gas flowing outside the heat transfer tube. In the heat transfer tube, a mixing chamber is provided in which the plurality of flow paths are opened at the same time and the fluid is mixed.

【0015】この熱交換器においては、各流路を流れる
流体が混合室に流入することで混合され、その後再び各
流路に振り分けられて流れる。流体は混合室において混
合されるので、例えば各流路を流れる流体の状態がそれ
ぞれ異なっていても、混合室で混合されるため一様な状
態に整えられる。
In this heat exchanger, the fluid flowing through each flow path is mixed by flowing into the mixing chamber, and then is distributed again to each flow path. Since the fluids are mixed in the mixing chamber, for example, even if the states of the fluids flowing in the respective flow paths are different from each other, the fluids are mixed in the mixing chamber, so that a uniform state is provided.

【0016】この熱交換器には、前記伝熱管が、一側面
に長さ方向に沿って複数の溝が形成されるとともに該溝
が一同に合流する凹所が形成された一対の板状半体を、
前記一側面どうし貼り合わせて構成され、溝どうしを重
ね合わせて前記流路が設けられ、凹所どうしを重ね合わ
せて前記混合室が設けられていることを特徴とするもの
が含まれる。
In this heat exchanger, the heat transfer tube is formed by a pair of plate-like halves each having a plurality of grooves formed on one side surface along a length direction and having a recess where the grooves merge together. Body
The above-mentioned one side is bonded together, the channel is provided by overlapping grooves, and the mixing chamber is provided by overlapping recesses.

【0017】この熱交換器においては、複数の流路と混
合室とを備える伝熱管が、一対の板状半体を貼り合わせ
ることで構成される。
In this heat exchanger, a heat transfer tube having a plurality of flow paths and a mixing chamber is formed by bonding a pair of plate-shaped halves.

【0018】この熱交換器には、前記伝熱管が、長さ方
向に沿う両側縁が一側面に向けて屈曲された一対の板体
を前記一側面どうし対向させ、該板体の長さ方向に溝を
設けるように波状に屈曲された複数の波形板を板体の長
さ方向に離間配置した状態で一対の板体間に挟んで貼り
合わせて構成され、板体と波形板の溝との間で前記流路
が設けられ、各波形板の間に前記混合室が設けられてい
ることを特徴とするものが含まれる。
In this heat exchanger, the heat transfer tube is provided such that a pair of plate bodies whose both side edges along a length direction are bent toward one side face each other, and the heat transfer tubes are arranged in a longitudinal direction of the plate body. A plurality of corrugated plates that are bent in a wave shape so as to provide a groove are sandwiched between a pair of plate members in a state where they are separated from each other in the longitudinal direction of the plate member, and are configured by laminating the grooves of the plate member and the corrugated plate. And the mixing chamber is provided between the corrugated plates.

【0019】この熱交換器においては、複数の流路と混
合室とを備える伝熱管が、一対の板体の間に複数の波形
板を挟んで貼り合わせることで構成される。
In this heat exchanger, a heat transfer tube having a plurality of flow paths and a mixing chamber is formed by bonding a plurality of corrugated plates between a pair of plate members.

【0020】[0020]

【発明の実施の形態】本発明に係る熱交換器の第1の実
施形態を図1ないし図3に示して説明する。カーエアコ
ンを構成するコンデンサは、従来と同様に、伝熱管と放
熱フィンとを交互に積層して構成されたコア部、冷媒の
入口側パイプと出口側パイプとを有しコア部の一側部に
設けられたヘッダ、コア部の他側部に設けられてガス冷
媒の流れを逆方向に導くヘッダ等を備えて構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a heat exchanger according to the present invention will be described with reference to FIGS. The condenser constituting the car air conditioner has a core portion formed by alternately laminating heat transfer tubes and radiation fins, a refrigerant inlet pipe and an outlet pipe, and one side portion of the core portion as in the conventional case. And a header provided on the other side of the core to guide the flow of the gas refrigerant in the reverse direction.

【0021】図1にコア部を構成する伝熱管21を示
す。伝熱管21は外見は幅および厚さが均一な偏平管の
様相を呈しているが、その内部には冷媒(流体)が流通
する流路21aが長さ方向に沿って複数設けられ、さら
にその長さ方向のほぼ中央位置には各流路21aが一同
に開通されて冷媒が混合される混合室22が設けられて
いる。
FIG. 1 shows a heat transfer tube 21 constituting a core portion. The heat transfer tube 21 has the appearance of a flat tube having a uniform width and thickness, but a plurality of flow passages 21a through which a refrigerant (fluid) flows are provided along the length thereof. At a substantially central position in the length direction, a mixing chamber 22 in which the respective flow paths 21a are opened at the same time and the refrigerant is mixed is provided.

【0022】各流路21aは、図2(a)に示すように
断面形状がすべて等しく、伝熱管21の幅方向に離間し
て個別に配列されている。また、混合室22は図2
(b)に示すようにすべての流路21aに跨がる扁平な
空間として形成されている。
As shown in FIG. 2 (a), the flow paths 21a have the same cross-sectional shape, and are separately arranged in the width direction of the heat transfer tube 21. The mixing chamber 22 is shown in FIG.
As shown in (b), it is formed as a flat space straddling all the flow paths 21a.

【0023】伝熱管21は、図3に示すように一対の板
状半体23、23を貼り合わせて構成されている。ここ
で、伝熱管21を構成する一対の板状半体23、23は
双方同じ形状を有しており、押し出し成形により別々に
製作されている。板状半体23の一側面には、長さ方向
に沿って複数の溝24が形成されるとともに、長さ方向
のほぼ中央にはこれら溝が一同に合流する凹所25が形
成されている。
The heat transfer tube 21 is formed by bonding a pair of plate-like halves 23, 23 as shown in FIG. Here, the pair of plate-like halves 23 constituting the heat transfer tube 21 have the same shape, and are separately manufactured by extrusion molding. A plurality of grooves 24 are formed on one side surface of the plate-shaped half 23 along the length direction, and a recess 25 where these grooves merge together is formed at substantially the center in the length direction. .

【0024】伝熱管21は、一対の板状半体23、23
を一側面どうし対面させ、双方をろう付けにより接合す
ることで構成されているが、このとき、溝24どうしが
重なって流路21aが設けられ、凹所25どうしが重な
って混合室22が設けられるのである。
The heat transfer tube 21 includes a pair of plate-like halves 23, 23.
Are joined by brazing, but at this time, the channels 24 overlap each other to provide the flow path 21a, and the recesses 25 overlap each other to provide the mixing chamber 22. It is done.

【0025】上記のように構成された伝熱管21を備え
るコンデンサについて、冷媒は各流路21a中をすべて
同一方向に向けて流れ(図中矢印A方向)、空気はコン
デンサを通過して同一方向に向けて流れる(図中矢印B
方向)ものとする。
In the condenser provided with the heat transfer tube 21 configured as described above, the refrigerant flows in the respective flow paths 21a all in the same direction (the direction of arrow A in the figure), and the air passes through the condenser in the same direction. (Arrow B in the figure)
Direction).

【0026】このとき、コンデンサにおける空気の流入
面(図1中伝熱管21の左側面)から流出面(図1中伝
熱管21の右側面)に向けて空気の流れ方に進むに従い
空気の温度が上昇するが、流路21aを流れる冷媒の温
度は常に一定であるので、空気の流入面側で冷媒と空気
との温度差が大きく、流出面側で温度差が小さい状態と
なってしまう。これにより、伝熱管21においては空気
の流入面側の方が流出面側よりも交換熱量が大きく、冷
媒が早く凝縮し始めてしまい、空気の流入面側を流れる
冷媒は液相が強く(液リッチ)、流出面側を流れる冷媒
はガス相が強くなる(ガスリッチ)。
At this time, as the air proceeds from the inflow surface of the condenser (the left side of the heat transfer tube 21 in FIG. 1) to the outflow surface (the right side of the heat transfer tube 21 in FIG. 1), the temperature of the air increases. However, since the temperature of the refrigerant flowing through the flow path 21a is always constant, the temperature difference between the refrigerant and the air is large on the inflow surface side of the air, and the temperature difference is small on the outflow surface side. As a result, in the heat transfer tube 21, the amount of exchange heat is larger on the inflow surface side of the air than on the outflow surface side, and the refrigerant starts to condense earlier, and the refrigerant flowing on the inflow surface side of the air has a strong liquid phase (liquid rich). ), The refrigerant flowing on the outflow surface side has a strong gas phase (gas rich).

【0027】しかしながら、各流路21aを流れる冷媒
は液相が強いものもガス相が強いものもすべて混合室2
2に流入することで混合されてほぼ一様な状態に整えら
れ、その後再び各流路21aに振り分けられて流れる。
これにより、流入面側と流出面側のボイド率(ガス冷媒
と液冷媒との体積割合)の差が小さくなって各流路21
a間の圧力損失の差が小さくなる。
However, the refrigerant flowing through each flow path 21a has a strong liquid phase and a strong gas phase.
2, the mixture is mixed and adjusted to a substantially uniform state, and then distributed to the respective flow paths 21a again.
As a result, the difference in the void ratio (volume ratio between the gas refrigerant and the liquid refrigerant) between the inflow surface side and the outflow surface side is reduced, and each flow path 21
The difference in pressure loss between a becomes smaller.

【0028】したがって、上記のように構成された伝熱
管を採用すれば、伝熱管21内に設けられた複数の流路
21aを流れる冷媒の流量が均一化するので、より高性
能なコンデンサが得られる。
Therefore, if the heat transfer tube configured as described above is employed, the flow rate of the refrigerant flowing through the plurality of flow paths 21a provided in the heat transfer tube 21 becomes uniform, so that a higher performance condenser can be obtained. Can be

【0029】また、一対の板状半体23、23を貼り合
わせて接合することにより、内部に混合室22を備える
複雑な形状の伝熱管21を安価に製作することができ
る。
Further, by bonding and joining the pair of plate-like halves 23, 23, it is possible to manufacture the heat transfer tube 21 having a complicated shape having the mixing chamber 22 therein at low cost.

【0030】次に、本発明に係る熱交換器の第2の実施
形態を図4ないし図6に示して説明する。カーエアコン
を構成するエバポレータは、従来と同様に、伝熱管と放
熱フィンとを交互に積層して構成されたコア部、コア部
の上部に設けられたガス冷媒の入口側ヘッダ、同じくコ
ア部の上部に設けられたガス冷媒の出口側ヘッダ、コア
部の下部に設けられてガス冷媒の流れを逆方向に導く下
部ヘッダ等を備えて構成されている。
Next, a second embodiment of the heat exchanger according to the present invention will be described with reference to FIGS. The evaporator constituting the car air conditioner has a core portion formed by alternately stacking heat transfer tubes and radiation fins, a gas refrigerant inlet side header provided above the core portion, and a It is configured to include a gas refrigerant outlet header provided at an upper portion, a lower header provided at a lower portion of the core portion to guide a flow of the gas refrigerant in a reverse direction, and the like.

【0031】図4にコア部を構成する伝熱管31を示
す。伝熱管31は外見は幅および厚さが均一な偏平管の
様相を呈しているが、その内部には冷媒が流通する流路
31aが長さ方向に沿って複数設けられ、さらにその長
さ方向のほぼ中央位置には各流路31aが一同に開通さ
れて冷媒が混合される混合室32が設けられている。
FIG. 4 shows the heat transfer tube 31 constituting the core portion. The heat transfer tube 31 has the appearance of a flat tube having a uniform width and thickness, but a plurality of flow paths 31a through which a refrigerant flows are provided in the heat transfer tube 31 along the length direction. A mixing chamber 32 is provided at a substantially central position where the flow paths 31a are opened all at once and the refrigerant is mixed.

【0032】各流路31aは、図5(a)に示すように
断面形状が略三角形上で断面積が等しく、上下を互い違
いに組み合わせて伝熱管31の幅方向に配列されてい
る。また、混合室32は図5(b)に示すようにすべて
の流路31aに跨がる扁平な空間として形成されてい
る。
As shown in FIG. 5 (a), each of the flow paths 31a has a substantially triangular cross-sectional shape and an equal cross-sectional area, and is arranged in the width direction of the heat transfer tube 31 by alternately combining upper and lower parts. Further, the mixing chamber 32 is formed as a flat space extending over all the flow paths 31a as shown in FIG. 5B.

【0033】伝熱管31は、図6に示すように、長さ方
向に沿う両側縁33aが一側面に向けて屈曲された一対
の板体33、33を一側面どうし対向させ、これら板体
33の長さ方向に溝を設けるように波状に屈曲された2
枚の波形板34を板体33の長さ方向に離間配置したう
えで一対の板体33、33間に挟んで貼り合わせて構成
されている。このとき、板体33と波形板34の溝との
間で流路31aが設けられ、両波形板34の間隙に混合
室32が設けられるのである。
As shown in FIG. 6, the heat transfer tube 31 has a pair of plate members 33, 33 having both side edges 33a extending in the longitudinal direction bent toward one side surface facing each other. 2 which is bent in a wavy manner so as to provide a groove in the length direction of
A plurality of corrugated plates 34 are arranged in the longitudinal direction of the plate 33 so as to be spaced apart from each other, and then sandwiched between a pair of plates 33, 33 to be bonded. At this time, the flow path 31a is provided between the plate 33 and the groove of the corrugated plate 34, and the mixing chamber 32 is provided in the gap between the two corrugated plates 34.

【0034】上記のように構成された伝熱管31を備え
るエバポレータについて、冷媒は各流路31a中をすべ
て同一方向に向けて流れ(図中矢印C方向)、空気はエ
バポレータを通過して同一方向に向けて流れる(図中矢
印D方向)ものとする。
In the evaporator provided with the heat transfer tubes 31 configured as described above, the refrigerant flows in all the flow paths 31a in the same direction (the direction of arrow C in the figure), and the air passes through the evaporator in the same direction. (In the direction of arrow D in the figure).

【0035】エバポレータにおける空気の流入面(図4
中伝熱管の左側面)から流出面(図4中伝熱管の左側
面)に向けて空気の流れ方に進むに従い空気の温度が下
降するが、流路31aを流れる冷媒の温度は常に一定で
あるので、空気の流入面側で冷媒と空気との温度差が大
きく、流出面側で温度差が小さい状態となってしまう。
これにより、伝熱管31においては空気の流入面側の方
が流出面側よりも交換熱量が大きく、冷媒が早く凝縮し
始めてしまい、空気の流入面側を流れる冷媒はガス相が
強く(ガスリッチ)、流出面側を流れる冷媒は液相が強
くなる(液リッチ)。
The air inflow surface in the evaporator (FIG. 4)
The temperature of the air decreases from the middle heat transfer tube (left side surface) toward the outflow surface (left side surface of the heat transfer tube in FIG. 4), but the temperature of the refrigerant flowing through the flow path 31a is always constant. Therefore, the temperature difference between the refrigerant and the air is large on the inflow surface side of the air, and the temperature difference is small on the outflow surface side.
As a result, in the heat transfer tube 31, the amount of exchange heat is larger on the inflow surface side of the air than on the outflow surface side, and the refrigerant starts to condense quickly, and the refrigerant flowing on the inflow surface side of the air has a strong gas phase (gas rich). The refrigerant flowing on the outflow surface side has a strong liquid phase (liquid rich).

【0036】しかしながら、各流路31aを流れる冷媒
は液相が強いものもガス相が強いものもすべて混合室3
2に流入することで混合されてほぼ一様な状態に整えら
れ、その後再び各流路31aに振り分けられて流れる。
これにより、流入面側と流出面側のボイド率の差が小さ
くなって各流路31a間の圧力損失の差が小さくなる。
However, the refrigerant flowing through each flow passage 31a has a strong liquid phase and a strong gas phase.
2, the mixture is mixed and adjusted to a substantially uniform state, and then distributed to the respective flow paths 31a again.
Thereby, the difference in the void ratio between the inflow surface side and the outflow surface side is reduced, and the difference in pressure loss between the respective flow paths 31a is reduced.

【0037】したがって、上記のように構成された伝熱
管31を採用すれば、伝熱管31内に設けられた複数の
流路31aを流れる冷媒の流量が均一化するので、より
高性能なエバポレータが得られる。
Therefore, if the heat transfer tube 31 configured as described above is employed, the flow rate of the refrigerant flowing through the plurality of flow paths 31a provided in the heat transfer tube 31 becomes uniform, so that a more sophisticated evaporator can be provided. can get.

【0038】また、2枚の波形板34を一対の板体3
3、33で挟み、貼り合わせて接合することにより、内
部に混合室32を備える複雑な形状の伝熱管31を安価
に製作することができる。
The two corrugated plates 34 are connected to a pair of plate members 3.
By sandwiching and bonding between 3 and 33, the heat transfer tube 31 having a complicated shape and including the mixing chamber 32 therein can be manufactured at low cost.

【0039】ところで、上記の第1においてはコンデン
サを、第2の実施形態においてはエバポレータを例に挙
げて説明したが、本発明はカーエアコンに具備される各
種熱交換器に関わらず、その他の熱交換器に対しても適
用可能である。
Incidentally, the condenser is described in the first embodiment and the evaporator is described in the second embodiment. However, the present invention is not limited to various heat exchangers provided in a car air conditioner. It is also applicable to heat exchangers.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係る熱交
換器によれば、流路が複数設けられた伝熱管の内部に、
すべての流路が一同に開通された混合室が設けられてい
ることにより、ある流路を流れる液相の強い冷媒と他の
流路を流れるガス相の強い冷媒とが混合室で混合されて
一様な状態に整えられ、ボイド率の差が小さくなって各
流路管の圧力損失の差が小さくなり、伝熱管内に設けら
れた複数の流路を流れる冷媒の流量が均一化されるの
で、より高性能な熱交換器が得られる。
As described above, according to the heat exchanger of the present invention, a heat transfer tube provided with a plurality of flow paths is provided inside the heat transfer tube.
By providing a mixing chamber in which all the flow paths are opened at the same time, a strong liquid-phase refrigerant flowing in one flow path and a strong gas-phase refrigerant flowing in another flow path are mixed in the mixing chamber. It is arranged in a uniform state, the difference in void ratio is reduced, the difference in pressure loss in each flow pipe is reduced, and the flow rate of the refrigerant flowing through a plurality of flow paths provided in the heat transfer pipe is equalized. Therefore, a higher performance heat exchanger can be obtained.

【0041】本発明に係る熱交換器によれば、一対の板
状半体を貼り合わせて伝熱管を構成すること、もしくは
複数の波形板を一対の板体で挟み、貼り合わせて伝熱管
を構成することにより、内部に混合室を有する複雑な形
状の伝熱管を安価に製作することができる。
According to the heat exchanger of the present invention, a heat transfer tube is formed by bonding a pair of plate-like halves, or a plurality of corrugated plates are sandwiched between a pair of plate members and bonded to form a heat transfer tube. With this configuration, a heat transfer tube having a complicated shape having a mixing chamber therein can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る熱交換器の第1の実施形態を示
す図であって、コンデンサを構成する伝熱管の側面図で
ある。
FIG. 1 is a view showing a first embodiment of a heat exchanger according to the present invention, and is a side view of a heat transfer tube constituting a condenser.

【図2】 (a)は図1におけるIIa−IIa線矢視断面
図、(b)は図1におけるIIb−IIb線矢視断面図であ
る。
2A is a sectional view taken along line IIa-IIa in FIG. 1, and FIG. 2B is a sectional view taken along line IIb-IIb in FIG.

【図3】 図1の伝熱管の分解斜視図である。FIG. 3 is an exploded perspective view of the heat transfer tube of FIG.

【図4】 本発明に係る熱交換器の第2の実施形態を示
す図であって、エバポレータを構成する伝熱管の側面図
である。
FIG. 4 is a view showing a second embodiment of the heat exchanger according to the present invention, and is a side view of a heat transfer tube constituting an evaporator.

【図5】 (a)は図4におけるVa−Va線矢視断面
図、(b)は図4におけるVb−Vb線矢視断面図であ
る。
5A is a sectional view taken along line Va-Va in FIG. 4, and FIG. 5B is a sectional view taken along line Vb-Vb in FIG.

【図6】 図4の伝熱管の分解斜視図である。FIG. 6 is an exploded perspective view of the heat transfer tube of FIG.

【図7】 従来のコンデンサの一例を示す側面図であ
る。
FIG. 7 is a side view showing an example of a conventional capacitor.

【図8】 図7におけるVIII−VIII線矢視断面図であ
る。
8 is a sectional view taken along line VIII-VIII in FIG.

【図9】 図8の伝熱管1における空気の流れ方向の距
離に対する空気温度を表すグラフである。
9 is a graph showing the air temperature with respect to the distance in the air flow direction in the heat transfer tube 1 of FIG.

【図10】 従来のエバポレータの一例を示す側面図で
ある。
FIG. 10 is a side view showing an example of a conventional evaporator.

【図11】 図10におけるXI−XI線矢視断面図であ
る。
11 is a sectional view taken along line XI-XI in FIG.

【図12】 図11の伝熱管11における空気の流れ方
向の距離に対する空気温度を表すグラフである。
12 is a graph showing the air temperature with respect to the distance in the air flow direction in the heat transfer tube 11 of FIG.

【符号の説明】[Explanation of symbols]

21 伝熱管 21a 流路 22 混合室 23 板状半体 24 溝 25 凹所 Reference Signs List 21 heat transfer tube 21a flow path 22 mixing chamber 23 plate half 24 groove 25 recess

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部に長さ方向に沿って複数の流路が設
けられた伝熱管と、該伝熱管の一端に接続されて流体の
入口となる流入口と、伝熱管の他端に接続されて流体の
出口となる流出口と、伝熱管の外側面に接触して設けら
れて前記流体と伝熱管の外側を流れる気体との間の熱交
換効率を高めるフィンとを備える熱交換器において、 前記伝熱管の内部には、前記複数の流路が一同に開通さ
れて前記流体が混合される混合室が設けられていること
を特徴とする熱交換器。
1. A heat transfer tube having a plurality of flow paths provided therein along a length direction, an inflow port connected to one end of the heat transfer tube to serve as a fluid inlet, and connected to the other end of the heat transfer tube. And a fin provided in contact with the outer surface of the heat transfer tube to increase the heat exchange efficiency between the fluid and the gas flowing outside the heat transfer tube. A heat exchanger, wherein a mixing chamber in which the plurality of flow paths are opened at the same time and the fluid is mixed is provided inside the heat transfer tube.
【請求項2】 前記伝熱管は、一側面に長さ方向に沿っ
て複数の溝が形成されるとともに該溝が一同に合流する
凹所が形成された一対の板状半体を、前記一側面どうし
貼り合わせて構成され、溝どうしを重ね合わせて前記流
路が設けられ、凹所どうしを重ね合わせて前記混合室が
設けられていることを特徴とする請求項1記載の熱交換
器。
2. The heat transfer tube includes a pair of plate-like halves each having a plurality of grooves formed on one side surface along a length direction and having a recess where the grooves merge together. 2. The heat exchanger according to claim 1, wherein the side walls are bonded to each other, the channels are provided by overlapping grooves, and the mixing chamber is provided by overlapping recesses. 3.
【請求項3】 前記伝熱管は、長さ方向に沿う両側縁が
一側面に向けて屈曲された一対の板体を前記一側面どう
し対向させ、該板体の長さ方向に溝を設けるように波状
に屈曲された複数の波形板を板体の長さ方向に離間配置
した状態で前記一対の板体間に挟んで貼り合わせて構成
され、板体と波形板の溝との間で前記流路が設けられ、
各波形板の間に前記混合室が設けられていることを特徴
とする請求項1記載の熱交換器。
3. The heat transfer tube according to claim 1, wherein a pair of plate members whose both side edges along a length direction are bent toward one side face each other, and a groove is provided in a length direction of the plate member. A plurality of corrugated plates bent in a wavy shape are attached and sandwiched between the pair of plate members in a state where they are separated from each other in the longitudinal direction of the plate member. A flow path is provided,
The heat exchanger according to claim 1, wherein the mixing chamber is provided between the corrugated plates.
JP33207497A 1997-12-02 1997-12-02 Heat exchanger Withdrawn JPH11166795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33207497A JPH11166795A (en) 1997-12-02 1997-12-02 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33207497A JPH11166795A (en) 1997-12-02 1997-12-02 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH11166795A true JPH11166795A (en) 1999-06-22

Family

ID=18250861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33207497A Withdrawn JPH11166795A (en) 1997-12-02 1997-12-02 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH11166795A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078325A (en) * 2005-09-16 2007-03-29 Hitachi Densen Mekutekku Kk Multihole pipe for heat exchange and its manufacturing method
JP2008241095A (en) * 2007-03-27 2008-10-09 Tokyo Radiator Mfg Co Ltd Tube internal structure of oil cooler for construction machine
KR101220974B1 (en) 2006-03-28 2013-01-11 한라공조주식회사 Heat exchanger
EP2554031A1 (en) * 2010-12-31 2013-02-06 Huawei Technologies Co., Ltd. Method and device of heat transport
CN110736378A (en) * 2018-07-20 2020-01-31 浙江盾安热工科技有限公司 Micro-channel heat exchanger flat tube, micro-channel heat exchanger and heat exchange equipment
CN113432476A (en) * 2021-06-07 2021-09-24 北京科荣达航空科技股份有限公司 Inner finned tube for heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078325A (en) * 2005-09-16 2007-03-29 Hitachi Densen Mekutekku Kk Multihole pipe for heat exchange and its manufacturing method
KR101220974B1 (en) 2006-03-28 2013-01-11 한라공조주식회사 Heat exchanger
JP2008241095A (en) * 2007-03-27 2008-10-09 Tokyo Radiator Mfg Co Ltd Tube internal structure of oil cooler for construction machine
EP2554031A1 (en) * 2010-12-31 2013-02-06 Huawei Technologies Co., Ltd. Method and device of heat transport
EP2554031A4 (en) * 2010-12-31 2014-04-30 Huawei Tech Co Ltd Method and device of heat transport
CN110736378A (en) * 2018-07-20 2020-01-31 浙江盾安热工科技有限公司 Micro-channel heat exchanger flat tube, micro-channel heat exchanger and heat exchange equipment
CN113432476A (en) * 2021-06-07 2021-09-24 北京科荣达航空科技股份有限公司 Inner finned tube for heat exchanger

Similar Documents

Publication Publication Date Title
KR101263559B1 (en) heat exchanger
US5172759A (en) Plate-type refrigerant evaporator
US5137082A (en) Plate-type refrigerant evaporator
US8550153B2 (en) Heat exchanger and method of operating the same
US6047769A (en) Heat exchanger constructed by plural heat conductive plates
CN102980328B (en) Plate type heat exchanger
JP7045195B2 (en) Heat exchanger
CN109328291B (en) Heat exchanger and refrigerating apparatus using the same
US6814135B2 (en) Stacked-type evaporator
JP2980631B2 (en) Stacked heat exchanger
JPH0814702A (en) Laminate type evaporator
JPH11166795A (en) Heat exchanger
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JPH10288480A (en) Plate type heat-exchanger
JP7072790B2 (en) Heat exchanger
JPS6157991B2 (en)
JP3633030B2 (en) Evaporator for air conditioner
WO2018074344A1 (en) Heat exchanger and refrigeration device using same
JP2002107073A (en) Laminated heat exchanger
JP2804585B2 (en) Stacked heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JPH0531432Y2 (en)
JPH03117887A (en) Heat exchanger
JPH0894274A (en) Accumulated type heat exchanger
JPH0630680U (en) Stacked evaporator element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301