JP2002107073A - Laminated heat exchanger - Google Patents

Laminated heat exchanger

Info

Publication number
JP2002107073A
JP2002107073A JP2000296903A JP2000296903A JP2002107073A JP 2002107073 A JP2002107073 A JP 2002107073A JP 2000296903 A JP2000296903 A JP 2000296903A JP 2000296903 A JP2000296903 A JP 2000296903A JP 2002107073 A JP2002107073 A JP 2002107073A
Authority
JP
Japan
Prior art keywords
fluid
plate
flow path
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000296903A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsushima
松島  均
Mari Uchida
麻理 内田
Mitsugi Aoyama
貢 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000296903A priority Critical patent/JP2002107073A/en
Publication of JP2002107073A publication Critical patent/JP2002107073A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated heat exchanger that has high pressure-tight strength and is compact with satisfactory heat transfer performance. SOLUTION: A plate 1 is folded into a wave shape to form channels 3 and 5 on both surfaces. The projected part at the upper stage and the recessed part at the lower stage are butted, and the recessed part at the upper stage and the projected part at the lower stage are butted for lamination. The channels 3 and 5 are formed adjacent to the direction along the plate 1, and the channels 3 and 5 are also formed on the multistage in the direction of lamination. Fluids A and B flow alternately in the channels 3 and 5 adjacent to the direction and along the plate 1, and the same kind of fluid A or B flows in the channels 3 and 5, in the direction in which the plates 1 are laminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層型熱交換器に係
り、特にチラーユニット等の冷凍サイクルに好適な積層
型熱交換器に関する。
The present invention relates to a stacked heat exchanger, and more particularly to a stacked heat exchanger suitable for a refrigeration cycle of a chiller unit or the like.

【0002】[0002]

【従来の技術】一般に、積層型熱交換器では、積層した
複数のプレートの相互間に流路を形成し、これらの流路
に温度の異なる流体を交互に流すことにより熱交換を行
う構成となっており、多管式等の従来の熱交換器に比べ
て大幅にコンパクト化できるメリットがある。
2. Description of the Related Art In general, a laminated heat exchanger has a structure in which a flow path is formed between a plurality of stacked plates, and heat is exchanged by alternately flowing fluids having different temperatures through these flow paths. This has the advantage of being significantly more compact than conventional heat exchangers such as multi-tube heat exchangers.

【0003】積層型熱交換器として最も一般的なヘリン
ボーンタイプでは、プレート縦方向中心線から両方向へ
斜降したヘリンボーン状の波形伝熱面を有し、これを交
互に上下反転させて積層することによって熱交換器が形
成される。
The most common type of herringbone type heat exchanger has a herringbone-shaped wave-shaped heat transfer surface which is inclined down from both directions from the longitudinal centerline of the plate. Forms a heat exchanger.

【0004】上記積層型熱交換器では、積層されたプレ
ートでのヘリンボーン状の波形伝熱面の山同士の接触点
が多数形成され、最大3MPa(106パスカル)程度
の耐圧強度が得られているが、プレート一枚おきに高圧
部と低圧部とが構成されるため、プレート間を引き剥が
す方向に力が働き、R410A等の高圧冷媒の凝縮器と
して使用できるほどの耐圧強度(最大5MPa程度)を
確保することは困難であった。
In the above-mentioned laminated heat exchanger, a large number of contact points are formed between the peaks of the herringbone-shaped corrugated heat transfer surfaces of the laminated plates, and a pressure resistance of about 3 MPa (10 6 Pascal) at maximum is obtained. However, since a high-pressure part and a low-pressure part are formed every other plate, a force acts in the direction of peeling between the plates, and the pressure resistance strength (up to about 5 MPa) that can be used as a condenser for high-pressure refrigerant such as R410A ) Was difficult to secure.

【0005】また、上記従来技術では前記波形伝熱面の
山同士の接触点で流体の流れが絞られるため、特に流量
が大きくなると圧損が大きくなる。さらに、上記従来技
術では単相側の伝熱性能は十分に取れるものの、冷媒側
の相変化時の伝熱性能は単相側に比べて大幅に劣ってい
た。チラーユニット等の冷凍サイクルに、各コンポーネ
ントをコンパクト化することは、装置の小型化や省スペ
ース化のうえで様々なメリットがある。しかし、上記従
来技術の積層型熱交換器をこれ以上にコンパクト化する
ことは圧力損失の著しい増大を招くためと、冷媒側の伝
熱性能がネックとなるために、実用上困難であった。
[0005] In the above-mentioned prior art, the flow of the fluid is restricted at the contact point between the peaks of the corrugated heat transfer surface, so that the pressure loss increases particularly as the flow rate increases. Further, in the above prior art, although the heat transfer performance on the single-phase side can be sufficiently obtained, the heat transfer performance during the phase change on the refrigerant side is significantly inferior to that on the single-phase side. Reducing the size of each component in a refrigeration cycle such as a chiller unit has various advantages in reducing the size of the device and saving space. However, it has been practically difficult to make the above-described conventional heat exchanger more compact because the pressure loss is significantly increased and the heat transfer performance on the refrigerant side is a bottleneck.

【0006】[0006]

【発明が解決しようとする課題】水側圧損に対する低減
策としては、特開平7−260384号公報の従来技術
に述べられているように、前記波形伝熱面の山同士の接
触点の数が少なくなるよう波の角度を形成すれば良い。
しかし、この場合圧損を小さくすることは出来るが、今
度は耐圧強度が低下し、これに対して配慮が必要があっ
た。
As a measure for reducing the water side pressure loss, as described in the prior art of Japanese Patent Application Laid-Open No. Hei 7-260384, the number of points of contact between the peaks of the waveform heat transfer surface is determined. What is necessary is just to form the angle of a wave so that it may become small.
However, in this case, the pressure loss can be reduced, but the pressure resistance is reduced this time, and it is necessary to consider this.

【0007】特開平7−260384号公報は、上記従
来技術の改良として、プレートの伝熱面に流体の流れ方
向に概ね沿う流動抵抗の小さい縦溝構造を形成したもの
である。これによれば耐圧強度を低下させることなく、
水側の圧力損失を低減させることができるが、流体の一
部が前記縦溝構造をバイパスして流れるため伝熱性能が
低下し、これに対する配慮が必要であった。
Japanese Patent Application Laid-Open No. 7-260384 discloses, as an improvement of the above-mentioned prior art, a vertical groove structure having a small flow resistance substantially along a flow direction of a fluid formed on a heat transfer surface of a plate. According to this, without lowering the pressure resistance,
Although the pressure loss on the water side can be reduced, since a part of the fluid flows by bypassing the vertical groove structure, the heat transfer performance is reduced, and it is necessary to consider this.

【0008】ヘリンボーンタイプ以外の伝熱面を有する
積層型熱交換器での伝熱性能の向上方法としては、特開
平6−123578号公報に記載の技術が挙げられる。
ここでは、2枚の成形プレートより成る熱交換媒体流路
の伝熱面積のより一層の拡大と伝熱促進を図るために、
前記流路の内面にエンボシングにより多数の微小突起を
設けている。しかし、耐圧強度を同時に向上させるに
は、さらに配慮が必要であった。
As a method for improving the heat transfer performance of a laminated heat exchanger having a heat transfer surface other than the herringbone type, there is a technique described in Japanese Patent Application Laid-Open No. Hei 6-123578.
Here, in order to further increase the heat transfer area of the heat exchange medium flow path composed of two forming plates and promote heat transfer,
A large number of minute projections are provided on the inner surface of the flow channel by embossing. However, further consideration was needed to simultaneously improve the pressure resistance.

【0009】本発明の目的は、高い耐圧強度を有し、か
つコンパクトで伝熱性能の良好な積層型熱交換器を提供
することである。
It is an object of the present invention to provide a compact heat exchanger having high pressure resistance, compactness and good heat transfer performance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の積層型熱交換器に係る発明の構成は、プレ
ートを複数枚積層し、A,B二つの熱交換流体を流す積
層型熱交換器において、流体Aの流れる流路と、流体B
の流れる流路とを同一プレートに形成したものである。
Means for Solving the Problems In order to achieve the above object, the invention according to the stacked heat exchanger of the present invention comprises a stack of a plurality of plates, and a stack of plates A and B for flowing two heat exchange fluids. In the heat exchanger, the flow path of the fluid A and the fluid B
Are formed on the same plate.

【0011】上記目的を達成するために、本発明の積層
型熱交換器に係る他の発明の構成は、プレートを複数枚
積層し、A,B二つの熱交換流体を流す積層型熱交換器
において、前記プレートを波状の折り曲げ構造として両
面に流路を形成し、上段の凸部と下段の凹部、上段の凹
部と下段の凸部とを突き合わせて積層し、プレートに沿
う方向に隣接して流路を形成すると共に、積層する方向
にも多段に流路を形成し、プレートに沿う方向に隣接す
る流路には流体Aと流体Bとが交互に流れ、プレートの
積層する方向の流路にはAもしくはBの同一種の流体が
流れるものである。
In order to achieve the above object, another aspect of the invention relates to a laminated heat exchanger according to the present invention. The laminated heat exchanger comprises a plurality of plates laminated and A and B heat exchange fluids flowing therethrough. In the above, forming a flow path on both sides as a wavy bent structure of the plate, the upper convex portion and the lower concave portion, the upper concave portion and the lower convex portion are abutted and laminated, and are adjacent in the direction along the plate. In addition to forming a flow path, a flow path is formed in multiple stages also in the laminating direction, and fluid A and fluid B alternately flow in the flow path adjacent in the direction along the plate, and the flow path in the laminating direction of the plate Are fluids of the same type A or B.

【0012】上記目的を達成するために、本発明の積層
型熱交換器に係るさらに他の発明の構成は、流体流入も
しくは流出のための開口部を有するプレートを複数枚積
層し、A,B二つの熱交換流体を流す積層型熱交換器に
おいて、前記プレートの上下両面に溝状流路を形成し、
上段の凸部と下段の凹部、上段の凹部と下段の凸部とを
突き合わせて積層し、プレートに沿う方向に隣接して流
路を形成すると共に、積層する方向にも多段に流路を形
成し、プレートに沿う方向に隣接する流路には流体Aと
流体Bとが交互に流れ、プレートの積層する方向の流路
にはAもしくはBの同一種の流体が流れるものであっ
て、プレートの両端に前記一方の流体の流れる流路に通
じる開口部を設けると共にこの開口部にヘッダを取り付
け、前記ヘッダ間に前記他方の流体の流れる流路に通じ
るヘッダを取り付けるものである。
In order to achieve the above object, a still further aspect of the stacked heat exchanger according to the present invention is to stack a plurality of plates having openings for fluid inflow or outflow, and A, B In a stacked heat exchanger that allows two heat exchange fluids to flow, forming groove-shaped channels on both upper and lower surfaces of the plate,
The upper convex part and the lower concave part, and the upper concave part and the lower convex part are abutted and laminated, and a flow path is formed adjacent to the direction along the plate, and a multi-stage flow path is also formed in the laminating direction. The fluid A and the fluid B alternately flow in the flow path adjacent in the direction along the plate, and the same type of fluid A or B flows in the flow path in the direction in which the plates are stacked. Openings are provided at both ends of the fluid passage, and a header is attached to the opening, and a header is attached between the headers, which communicates with the flow passage of the other fluid.

【0013】上記目的を達成するため、本発明の積層型
熱交換器に係るさらに他の発明の構成は、流体流入もし
くは流出のための開口部を有するプレートを複数枚積層
し、A,B二つの熱交換流体を流す積層型熱交換器にお
いて、前記プレートの上下両面に溝状流路を形成し、上
段の凸部と下段の凹部、上段の凹部と下段の凸部とを突
き合わせて積層し、プレートに沿う方向に隣接して流路
を形成すると共に、積層する方向にも多段に流路を形成
し、プレートに沿う方向に隣接する流路には流体Aと流
体Bとが交互に流れ、プレートの積層する方向の流路に
はAもしくはBの同一種の流体が流れるものであって、
プレートの一端に前記一方の流路に通じる開口部を設け
ると共にこの開口部にヘッダを取り付け、プレートの他
端に前記他方の流路に通じる開口部を設けると共に、こ
の開口部にヘッダを取り付けるものである。
In order to achieve the above object, a still further aspect of the present invention according to the stacked heat exchanger of the present invention is that a plurality of plates having openings for fluid inflow or outflow are laminated, and A, B In a stacked heat exchanger that allows two heat exchange fluids to flow, groove-shaped channels are formed on the upper and lower surfaces of the plate, and the upper convex portion and the lower concave portion, and the upper concave portion and the lower convex portion are laminated by abutting each other. In addition, a flow path is formed adjacent to the direction along the plate, and a multi-stage flow path is also formed in the laminating direction. Fluid A and fluid B alternately flow in the flow path adjacent to the plate. And the same type of fluid of A or B flows through the flow path in the direction in which the plates are stacked,
An opening provided at one end of the plate and communicating with the one flow path and a header attached to the opening, and an opening communicating with the other flow path provided at the other end of the plate and a header attached to the opening. It is.

【0014】詳しくは、前記流路のうち、一方の流体の
流れる流路の上流端と下流端の間の底部に1個以上の開
口部を形成したものである。
More specifically, one or more openings are formed at the bottom between the upstream end and the downstream end of one of the flow paths through which the fluid flows.

【0015】また、前記流路のうち、少なくとも一方の
流体の流れる流路内壁に微細凹凸構造を形成したこもの
である。
Further, a fine uneven structure is formed on the inner wall of at least one of the flow paths through which the fluid flows.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1ないし図8は、本発明の積層型熱交換
器に係る第一の実施例であって、図1は、本実施例の積
層型熱交換器に使用するプレートの平面図であり、図2
は、その斜視図である。プレート1を複数枚積層し、
A,B二つの熱交換流体を流すために、前記プレート1
を波状(断面が概ねコ字形状)に折り曲げて、流体Aの
流れる流路と、流体Bの流れる流路とが同一プレートに
形成されるようにする。
FIGS. 1 to 8 show a first embodiment of the laminated heat exchanger of the present invention. FIG. 1 is a plan view of a plate used in the laminated heat exchanger of the present embodiment. Yes, Figure 2
Is a perspective view thereof. Laminate multiple plates 1
A, B The plate 1 is used for flowing two heat exchange fluids.
Is bent in a wave shape (the cross section is substantially U-shaped) so that the flow path of the fluid A and the flow path of the fluid B are formed on the same plate.

【0018】すなわち、上下両面に流路3,5を形成
し、上段プレート1の下向き凸部と下段プレート1の上
向き凹部、上段プレート1の下方き凹部と下段プレート
1の上向き凸部とを突き合わせて積層し、プレート1に
沿う方向に隣接して流路3,5を形成する。これと共
に、積層する上下方向にも多段に流路3,5を形成し、
プレート1に沿う方向に隣接する流路3,5には流体A
と流体Bとが交互に流れ、プレート1の積層する上下方
向の流路にはAもしくはBの同一種の流体が流れるよう
にするものである。
That is, the channels 3 and 5 are formed on both upper and lower surfaces, and the downward convex portion of the upper plate 1 and the upward concave portion of the lower plate 1, and the downward concave portion of the upper plate 1 and the upward convex portion of the lower plate 1 are abutted. The channels 3 and 5 are formed adjacent to each other in the direction along the plate 1. At the same time, channels 3 and 5 are formed in multiple stages also in the vertical direction of lamination,
Fluid A is supplied to the flow paths 3 and 5 adjacent to the direction along the plate 1.
And the fluid B alternately flow, so that the same type of fluid A or B flows in the vertical channel where the plates 1 are stacked.

【0019】本実施例の積層型熱交換器は、プレート1
を重ねた状態で、たとえば拡散接合、ろう付けなどの手
段によって接合して作られる。プレート1は、ステンレ
ス、アルミニウムなどの薄い(たとえば0.5mm)金
属板をプレス成形後、切削加工により微細凹凸構造2を
形成する。なお、プレート1は、全体を切削加工によっ
て製作することも可能である。また、プレート1の上面
側にはプレート1に沿って、微細凹凸構造2が形成され
断面がほぼコ字形状の流路3が複数本形成されており、
この流路3には任意の間隔をもって両端に位置する開口
部4(2個)と、流路中央の開口部4′(4個)とが設
けられている。
The laminated heat exchanger of the present embodiment has a plate 1
Are stacked and joined by means of, for example, diffusion bonding, brazing, or the like. The plate 1 is formed by pressing a thin (for example, 0.5 mm) metal plate such as stainless steel or aluminum, and then forming a fine uneven structure 2 by cutting. The entire plate 1 can be manufactured by cutting. On the upper surface side of the plate 1, a plurality of channels 3 having a fine concave-convex structure 2 and a substantially U-shaped cross section are formed along the plate 1.
The flow path 3 is provided with openings 4 (two) located at both ends at arbitrary intervals and an opening 4 '(four) at the center of the flow path.

【0020】この開口部4′は、冷媒のように温度上昇
にともなってガス化する度合いの大きい流体が流れる場
合、積層された上下のプレート1の流路間でガス化の度
合い意によって圧力が異なることが生じるのを緩和し、
各流体間での冷媒流量を均一化させるため形成するもの
である。
When a fluid such as a refrigerant, which has a high degree of gasification with a rise in temperature, flows through the opening 4 ′, the pressure is increased depending on the degree of gasification between the flow paths of the upper and lower plates 1. To mitigate the differences,
It is formed to equalize the flow rate of the refrigerant between the fluids.

【0021】たとえば水−水間の熱交換においては、こ
のような流量差は生じ難いので特に必要でないが、水−
冷媒間の熱交換においては、冷媒の流れる流路において
開口部は有功に働く。
For example, in the case of heat exchange between water and water, such a flow rate difference is hardly generated, so that it is not particularly necessary.
In heat exchange between the refrigerants, the opening works effectively in the flow path of the refrigerant.

【0022】一方、プレート1の下面側にもプレート1
に沿って、それぞれが流路3と隣接するようにして複数
本の流路5が形成されている。またプレート1の両端に
は、流路3、5から離れた位置に開口部6が設けられて
いる。
On the other hand, the plate 1
, A plurality of flow paths 5 are formed so as to be adjacent to the flow paths 3 respectively. At both ends of the plate 1, openings 6 are provided at positions away from the flow paths 3, 5.

【0023】図3は、微細凹凸構造2の詳細図で、図1
のA−A線に沿う部分横断面図である。
FIG. 3 is a detailed view of the fine concavo-convex structure 2, and FIG.
FIG. 2 is a partial cross-sectional view taken along line AA of FIG.

【0024】同図に示す微細凹凸構造2は、流路3の内
壁面にキャビティ7を形成したものであり、その横断面
は表面から内部にかけて大きくなる楕円形状になってい
る。すなわち、内部横断面積が開口部横面積より広くな
っている。図4、図5は微細凹凸構造2の他の実施例の
詳細図で、図4は部分横断面図、図5はその斜視図であ
る。
The fine uneven structure 2 shown in FIG. 1 has a cavity 7 formed on the inner wall surface of the flow channel 3 and has a cross section having an elliptical shape that increases from the surface to the inside. That is, the internal cross-sectional area is larger than the opening horizontal area. 4 and 5 are detailed views of another embodiment of the fine concavo-convex structure 2, FIG. 4 is a partial cross-sectional view, and FIG. 5 is a perspective view thereof.

【0025】本実施例の微細凹凸構造8は、マイクロフ
ィン14の上部を半円弧状に2次溝15を切り欠き、さ
らに底面に円錐形状のキャビティ9を形成したものであ
る。なお、微細凹凸構造2は、これらの半円弧状の2次
溝15もしくは円錐形状のキャビティ9のいずれか一方
を形成したものでも良い。
The micro uneven structure 8 of the present embodiment has a structure in which a secondary groove 15 is cut out in a semi-circular shape at the upper part of a micro fin 14, and a conical cavity 9 is formed on the bottom surface. The fine uneven structure 2 may be formed by forming either the semicircular secondary groove 15 or the conical cavity 9.

【0026】本実施例では、流路3に冷媒(R410A
などのフロン)のように相変化を生じる流体を流し、流
路5に水のように単相の流体を流す。プレート1を積層
した状態では、流路3と流路5との間、および流路3と
外部との間は、破線で示すシール部16(図1参照)に
より隔てられてシールされている。図6は、積層型熱交
換器の全体斜視図であり、図7は図6のA−A線に沿う
縦断面図で流体A,Bの流れの方向を実線矢印で示して
いる。図8は、図6のB−B線に沿う横断面図である。
積層したプレート1の上下両端面には、ヘッダ側端板1
0および裏側端板11が取り付けられている。さらに、
ヘッダ側端板10には流体の流入口もしくは流出口とな
るヘッダ12,12´とヘッダ13,13´とが設けら
れている。
In the present embodiment, the refrigerant (R410A
(Freon, etc.), and a single-phase fluid such as water is passed through the flow path 5. In a state where the plates 1 are stacked, the space between the flow path 3 and the flow path 5 and the space between the flow path 3 and the outside are sealed by being separated by a seal portion 16 (see FIG. 1) indicated by a broken line. FIG. 6 is an overall perspective view of the stacked heat exchanger, and FIG. 7 is a vertical cross-sectional view along the line AA in FIG. 6, in which the flow directions of the fluids A and B are indicated by solid arrows. FIG. 8 is a cross-sectional view taken along the line BB of FIG.
The header side end plate 1 is provided on both upper and lower end surfaces of the laminated plate 1.
0 and the back end plate 11 are attached. further,
The header-side end plate 10 is provided with headers 12, 12 'and headers 13, 13' which serve as an inlet or outlet for the fluid.

【0027】流路3を流れる流体A(冷媒)と、流路5
を流れる流体B(水)とは完全対向流(向き合う方向に
流れる流れ)となるように流路が構成されている。本実
施例の積層型熱交換器を、たとえばチラーユニットの水
−冷媒熱交換器として使用する場合、流路構成は熱交換
性能や重力の影響を考慮して次のように設置する。
The fluid A (refrigerant) flowing through the flow path 3 and the flow path 5
The flow path is configured so as to be a completely opposed flow (a flow flowing in a facing direction) with the fluid B (water) flowing through the flow path. When the laminated heat exchanger of the present embodiment is used, for example, as a water-refrigerant heat exchanger of a chiller unit, the channel configuration is set as follows in consideration of the heat exchange performance and the influence of gravity.

【0028】図7に示すように、熱交換器をヘッダ1
2,13´が下側に、ヘッダ12´,13が上側になる
ように垂直(もしくは垂直に近い状態)に立て、蒸発器
として使用する場合には、冷媒を下側のヘッダ12から
流入させ、上側のヘッダ12'から流出させるようにす
る。また水は上側のヘッダ13から流入させ、下側のヘ
ッダ13'から流出させるようにする。逆に、凝縮器と
して使用する場合には、冷媒は上側のヘッダ12から流
入させ、下側のヘッダ12'から流出させる。また水は
下側のヘッダ13から流入させ、上側のヘッダ13'か
ら流出させるようにする。
As shown in FIG. 7, the heat exchanger is connected to the header 1.
When used as an evaporator, a refrigerant is allowed to flow from the lower header 12 so that the refrigerant 2 and 13 'are on the lower side and the headers 12' and 13 are on the upper side. , From the upper header 12 '. Water is allowed to flow in from the upper header 13 and to flow out from the lower header 13 '. Conversely, when used as a condenser, the refrigerant flows in from the upper header 12 and flows out from the lower header 12 '. Water is allowed to flow in from the lower header 13 and to flow out from the upper header 13 '.

【0029】なお、流れを完全対向流とすることは、冷
媒がR407C等の非共沸混合冷媒を用いた場合の冷凍
サイクルの効率向上に対して特に有効に働く。
It should be noted that making the flow completely countercurrent is particularly effective in improving the efficiency of the refrigeration cycle when a non-azeotropic mixed refrigerant such as R407C is used as the refrigerant.

【0030】すなわち、流体Aは入口側のヘッダ12か
ら開口部4を通して流入し、流路3を流れた後出口側の
ヘッダ12'から流出する。流体Bは入口側のヘッダ1
3から開口部6を通して流入し、流路5を流れた後出口
側のヘッダ13'から流出すると、流体Aと流体Bとの
間で熱交換がなされ、流体Aに相変化が生じる。
That is, the fluid A flows in from the header 12 on the inlet side through the opening 4 and flows out of the header 12 ′ on the outlet side after flowing through the flow path 3. Fluid B is the header 1 on the inlet side
When the fluid A flows through the opening 6 and flows out of the header 13 ′ on the outlet side after flowing through the flow path 5, heat exchange is performed between the fluid A and the fluid B, and a phase change occurs in the fluid A.

【0031】また、ヘッダ12の働きに加え、流路3の
途中に設けられた開口部4'(図7では代表して1個で
示している)を通って、相変化途中の冷媒が積層された
プレート1間を相変化状態の差異に起因した圧力差を解
消するように移動し、この移動によって、各流路3にお
ける冷媒分配は良好に保たれる(すなわち均圧化され
る)。
In addition to the function of the header 12, the refrigerant undergoing phase change passes through an opening 4 '(represented by one in FIG. 7) provided in the middle of the flow path 3. Between the plates 1 so as to eliminate the pressure difference caused by the difference in the phase change state, and this movement keeps the refrigerant distribution in each flow path 3 good (that is, equalizes the pressure).

【0032】本実施例のように、同一のプレート1内で
二つの流体A,Bが流れる場合には、流体A,B間の圧
力差が大きい場合でも、力は同一プレート1内の流路3
と流路5との境界部に働き(すなわち図8において図示
左右方向に働き)、プレート1間のシール部16を引き
剥がす方向には働かない。このため、高い耐圧強度を得
ることが出来る。
When two fluids A and B flow in the same plate 1 as in this embodiment, the force is applied to the flow path in the same plate 1 even if the pressure difference between the fluids A and B is large. 3
It acts on the boundary between the fluid and the flow path 5 (ie, acts in the horizontal direction in FIG. 8), and does not act in the direction in which the seal portion 16 between the plates 1 is peeled off. Therefore, a high pressure resistance can be obtained.

【0033】本実施例においては、微細凹凸構造2は、
切削加工により形成するため、複雑な形状を容易に作る
ことが出来る。
In the present embodiment, the fine uneven structure 2
Since it is formed by cutting, a complicated shape can be easily made.

【0034】上記実施例においては、プレート1間を流
れる冷媒は、微細凹凸構造2の働きにより良好な熱伝達
性能を得ることが出来る。
In the above embodiment, the refrigerant flowing between the plates 1 can obtain good heat transfer performance by the action of the fine uneven structure 2.

【0035】すなわち、蒸発面として使用される場合、
二相流状態の冷媒はキャピラリー効果によりマイクロフ
ィン14に沿って伝熱面のほぼ全域に広がり、伝熱面全
体が濡れた状態になるとともに、キャビティ9の働きに
より核沸騰が格段に促進される。
That is, when used as an evaporation surface,
The refrigerant in the two-phase flow state spreads over almost the entire heat transfer surface along the microfins 14 by the capillary effect, and the entire heat transfer surface becomes wet, and the nucleate boiling is remarkably promoted by the function of the cavity 9. .

【0036】また凝縮面として使用される場合、二相流
状態の冷媒は、表面張力が液をマイクロフィン14の隙
間側へ引っ張るように働き、2次溝15がマイクロフィ
ン14の先端部に薄い液膜を形成するように働く。これ
らの働きにより、冷媒側については極めて良好な熱伝達
性能が得られ、冷媒の蒸発性能ないし凝縮性能を最大限
に引き出すことが出来、積層型熱交換器のコンパクト化
に寄与する。
When used as a condensing surface, the refrigerant in the two-phase flow state has a surface tension acting so as to pull the liquid toward the gap side of the micro fin 14, and the secondary groove 15 is thin at the tip of the micro fin 14. It works to form a liquid film. With these functions, extremely good heat transfer performance can be obtained on the refrigerant side, and the evaporation performance or condensation performance of the refrigerant can be maximized, contributing to the downsizing of the stacked heat exchanger.

【0037】流体が水の際には、コンパクト化に伴う流
路5の寸法の微細化により流路の断面寸法が大幅に減少
するため、良好な伝熱性能が得られる。
When the fluid is water, the cross-sectional dimension of the flow path 5 is greatly reduced due to the miniaturization of the size of the flow path 5 accompanying the compactness, and thus good heat transfer performance can be obtained.

【0038】図9、図10は、本発明の積層型熱交換器
に係る第二の実施例を示し、図9は本実施例の積層型熱
交換器に使用するプレート1の平面図で、図10はその
斜視図である。
FIGS. 9 and 10 show a second embodiment of the stacked heat exchanger of the present invention. FIG. 9 is a plan view of a plate 1 used in the stacked heat exchanger of the present embodiment. FIG. 10 is a perspective view thereof.

【0039】本実施例においても積層型熱交換器は、プ
レート1を重ねた状態で拡散接合等の手段で接合され
る。本実施例では、プレート1は、薄い金属板をプレス
成形後、切削加工により微細凹凸構造2を形成すること
により作られる。あるいはプレート1全体をプレス加工
により形成してもよい。
Also in this embodiment, the stacked heat exchangers are joined by means such as diffusion joining with the plates 1 stacked. In this embodiment, the plate 1 is formed by press-forming a thin metal plate and then forming a fine uneven structure 2 by cutting. Alternatively, the entire plate 1 may be formed by press working.

【0040】プレート1上には、微細凹凸構造2を有す
る流路3が複数本形成されており、流路3の下端部には
流体Aの入口部として開口部4″が、流路中央には任意
の間隔で開口部4′(2個)が設けられている。また、
流路2の上方には出口部として開口部4が流路2の端部
から離れた位置に設けられている。さらに、それぞれが
流路3と隣接するようにして複数本の流路5が形成され
ており、流路5の両端には、流体Bの入口部もしくは出
口部として開口部6、6'が設けられている。微細凹凸
構造2は、図3もしくは図4及び図5に示すものと同様
にして作られる。
A plurality of channels 3 having a fine uneven structure 2 are formed on the plate 1, and an opening 4 ″ is formed at the lower end of the channel 3 as an inlet for the fluid A, and at the center of the channel. Are provided with openings 4 '(two) at arbitrary intervals.
An opening 4 is provided above the flow path 2 as an outlet at a position away from an end of the flow path 2. Further, a plurality of flow paths 5 are formed so as to be adjacent to the flow path 3, and openings 6 and 6 ′ are provided at both ends of the flow path 5 as inlets or outlets of the fluid B. Have been. The fine concavo-convex structure 2 is made in the same manner as that shown in FIG. 3 or FIG. 4 and FIG.

【0041】本実施例においても、流路3を冷媒のよう
に相変化が生じる流体が流れ、流路5を水のような単相
の流体が流れる。プレート1を積層した状態では、流路
3と流路5との間、および流路5と外部との間は、シー
ル部16により隔てられてシールされる。
Also in this embodiment, a fluid which undergoes a phase change like a refrigerant flows through the flow path 3 and a single-phase fluid such as water flows through the flow path 5. In a state where the plates 1 are stacked, the seal between the flow path 3 and the flow path 5 and between the flow path 5 and the outside are separated and sealed.

【0042】流体Aは、開口部4″を通して流入し、流
路3を矢示上向き方向に流れた後出口側の開口部4から
流出する。流体Bは、入口側の開口部6'を通して流入
し、流路5を矢示下向き方向に流れた後出口側の開口部
6から流出する。この際に、流体Aと流体Bの間で熱交
換がなされ、流体Aには相変化が生じる。
The fluid A flows in through the opening 4 ″, flows upward in the flow path 3, and then flows out of the opening 4 on the outlet side. The fluid B flows in through the opening 6 ′ on the inlet side. Then, after flowing in the flow channel 5 in the downward direction as indicated by the arrow, it flows out of the opening 6 on the outlet side.At this time, heat exchange is performed between the fluid A and the fluid B, and a phase change occurs in the fluid A.

【0043】なお、流路3の中央の開口部4を通して相
変化途中の冷媒がプレート1間の圧力差に応じて移動で
きるため、各流路3における冷媒分配は良好に保たれ
る。また、プレート1間を流れる冷媒の熱は、微細凹凸
構造2の働きにより良好に熱伝達される。
Since the refrigerant in the middle of the phase change can move in accordance with the pressure difference between the plates 1 through the central opening 4 of the flow path 3, the distribution of the refrigerant in each flow path 3 is kept good. Further, the heat of the refrigerant flowing between the plates 1 is favorably transferred by the action of the fine uneven structure 2.

【0044】流体が水の際には、コンパクト化に伴う流
路5の寸法の微細化により横断面の寸法が大幅に減少す
るため、良好な伝熱性能が得られる。
When the fluid is water, the cross-sectional dimension is greatly reduced due to the miniaturization of the dimensions of the flow path 5 accompanying the downsizing, so that good heat transfer performance can be obtained.

【0045】本実施例においても同一のプレート1内で
二つの流体A,Bが流れ、開口部4を設けることによっ
て、二つの流体A,B間の圧力差が大きい場合でも、力
は同一プレート1内の流路3と流路5との境界部に働
き、プレート1間のシール部16を引き剥がす方向には
働かない。このため、従来のようにプレート間の接触点
を多く取らなくても高い耐圧強度を得ることが出来る。
このことは、流路A,Bにおける流動抵抗の低減にも寄
与する。
Also in this embodiment, the two fluids A and B flow in the same plate 1 and the opening 4 is provided, so that even when the pressure difference between the two fluids A and B is large, the force is the same. 1 acts on the boundary between the flow path 3 and the flow path 5 and does not act in the direction in which the seal portion 16 between the plates 1 is peeled off. Therefore, high pressure resistance can be obtained without increasing the number of contact points between the plates as in the conventional case.
This also contributes to reducing the flow resistance in the flow paths A and B.

【0046】本発明の積層型熱交換器は、伝熱性能が良
好で、コンパクトなため、使用する冷媒量を少なくする
ことが出来る。このことは、HFC冷媒等の代替冷媒を
用いた際の地球温暖化防止やHC冷媒、アンモニア等の
自然系冷媒を用いた際の安全性向上に対して効果的であ
る。
The laminated heat exchanger of the present invention has good heat transfer performance and is compact, so that the amount of refrigerant to be used can be reduced. This is effective for preventing global warming when using an alternative refrigerant such as an HFC refrigerant and improving safety when using a natural refrigerant such as an HC refrigerant or ammonia.

【0047】また、冷凍サイクルの高性能かつコンパク
ト化に有効であり、広い設置面積を必要としないチラー
ユニット等の冷凍機サイクルを提供することが出来る。
Further, it is possible to provide a refrigerating machine cycle such as a chiller unit which is effective for making the refrigerating cycle high-performance and compact and does not require a large installation area.

【0048】さらに、本実施例の積層型熱交換器を冷凍
空調システムに用いることによっても同様の効果が得ら
れる。また、本実施例の積層型熱交換器は自然系冷媒を
用いた場合にも、同様の効果が得られる。
Further, similar effects can be obtained by using the laminated heat exchanger of this embodiment in a refrigeration / air-conditioning system. Further, the same effect can be obtained in the case of using a natural refrigerant in the laminated heat exchanger of this embodiment.

【0049】[0049]

【発明の効果】本発明によれば、高い耐圧強度を有し、
コンパクトで伝熱性能の良好な積層型熱交換器を提供す
ることができる。
According to the present invention, it has a high pressure resistance,
A laminated heat exchanger that is compact and has good heat transfer performance can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層型熱交換器に使用されるプレート
の第一の実施例の平面図である。
FIG. 1 is a plan view of a first embodiment of a plate used in a stacked heat exchanger of the present invention.

【図2】図1のプレートの斜視図である。FIG. 2 is a perspective view of the plate of FIG. 1;

【図3】図1のプレートのA−A線に沿う部分断面図で
ある。
FIG. 3 is a partial cross-sectional view of the plate of FIG. 1 taken along line AA.

【図4】プレートの微細凹凸構造の他の実施例の部分断
面図である。
FIG. 4 is a partial cross-sectional view of another embodiment of the fine concavo-convex structure of the plate.

【図5】図4の実施例の斜視図である。FIG. 5 is a perspective view of the embodiment of FIG.

【図6】本発明の積層型熱交換器に係る実施例の全体斜
視図である。
FIG. 6 is an overall perspective view of an embodiment according to the stacked heat exchanger of the present invention.

【図7】図7のA−A線に沿う縦断面図である。FIG. 7 is a longitudinal sectional view taken along the line AA of FIG. 7;

【図8】図7のB−B線に沿う横断面図である。FIG. 8 is a transverse sectional view taken along the line BB of FIG. 7;

【図9】本発明の積層型熱交換器に使用されるプレート
の第二の実施例の平面図である。
FIG. 9 is a plan view of a second embodiment of the plate used in the stacked heat exchanger of the present invention.

【図10】図9の実施例の斜視図である。FIG. 10 is a perspective view of the embodiment of FIG. 9;

【符号の説明】[Explanation of symbols]

1…プレート 2…微細凹凸構造 3,5…流路 4,4′,4″,6,6′…開口部 7,9…キャビティ 10…ヘッダ側端板 11…裏側端板 12,12′,13,13′…ヘッダ 14…マイクロフィン 15…2次溝 16…シール部 DESCRIPTION OF SYMBOLS 1 ... Plate 2 ... Fine uneven structure 3, 5 ... Flow path 4, 4 ', 4 ", 6, 6' ... Opening 7, 9 ... Cavity 10 ... Header end plate 11 ... Back end plate 12, 12 ', 13, 13 'header 14 microfin 15 secondary groove 16 seal part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 貢 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L103 AA05 AA11 BB42 CC02 CC28 DD03 DD55 DD57  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mitsugu Aoyama 390 Muramatsu, Shimizu-shi, Shizuoka F-term in Hitachi Air Conditioning Systems Shimizu Production Headquarters (reference) 3L103 AA05 AA11 BB42 CC02 CC28 DD03 DD55 DD57

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】プレートを複数枚積層し、A,B二つの熱
交換流体を流す積層型熱交換器において、 流体Aの流れる流路と、流体Bの流れる流路とを同一プ
レートに形成したことを特徴とする積層型熱交換器。
1. A stacked heat exchanger in which a plurality of plates are stacked and two heat exchange fluids A and B are flowed, wherein a flow path for the fluid A and a flow path for the fluid B are formed on the same plate. A stacked heat exchanger, comprising:
【請求項2】プレートを複数枚積層し、A,B二つの熱
交換流体を流す積層型熱交換器において、 前記プレートを波状の折り曲げ構造として両面に流路を
形成し、 上段の凸部と下段の凹部、上段の凹部と下段の凸部とを
突き合わせて積層し、プレートに沿う方向に隣接して流
路を形成すると共に、積層する方向にも多段に流路を形
成し、 プレートに沿う方向に隣接する流路には流体Aと流体B
とが交互に流れ、プレートの積層する方向の流路にはA
もしくはBの同一種の流体が流れるものであることを特
徴とする積層型熱交換器。
2. A stacked heat exchanger in which a plurality of plates are stacked and two heat exchange fluids A and B are flowed, wherein the plates are formed in a wave-like bent structure to form flow paths on both surfaces, The lower concave part, the upper concave part, and the lower convex part are laminated and abutted to form a flow path adjacent to the direction along the plate, and also form a multi-level flow path in the laminating direction, and follow the plate. Fluid A and fluid B
Flow alternately, and A
Alternatively, the laminated heat exchanger wherein the same type of fluid B flows.
【請求項3】流体流入もしくは流出のための開口部を有
するプレートを複数枚積層し、A,B二つの熱交換流体
を流す積層型熱交換器において、 前記プレートの上下両面に溝状流路を形成し、 上段の凸部と下段の凹部、上段の凹部と下段の凸部とを
突き合わせて積層し、プレートに沿う方向に隣接して流
路を形成すると共に、積層する方向にも多段に流路を形
成し、 プレートに沿う方向に隣接する流路には流体Aと流体B
とが交互に流れ、プレートの積層する方向の流路にはA
もしくはBの同一種の流体が流れるものであって、 プレートの両端に前記一方の流体の流れる流路に通じる
開口部を設けると共にこの開口部にヘッダを取り付け、 前記ヘッダ間に前記他方の流体の流れる流路に通じるヘ
ッダを取り付けることを特徴とする積層型熱交換器。
3. A laminated heat exchanger in which a plurality of plates having openings for fluid inflow or outflow are laminated, and A and B heat exchange fluids are flowed. The upper convex part and the lower concave part, the upper concave part and the lower convex part are abutted and laminated, and a flow path is formed adjacently in a direction along the plate, and the laminating direction is also multi-layered. A flow path is formed, and fluid A and fluid B are provided in flow paths adjacent in the direction along the plate.
Flow alternately, and A
Or, the same type of fluid of B flows, and an opening is provided at both ends of the plate to communicate with the flow path of the one fluid, and a header is attached to the opening, and the other fluid is interposed between the headers. A stacked heat exchanger comprising a header connected to a flowing channel.
【請求項4】流体流入もしくは流出のための開口部を有
するプレートを複数枚積層し、A,B二つの熱交換流体
を流す積層型熱交換器において、 前記プレートの上下両面に溝状流路を形成し、 上段の凸部と下段の凹部、上段の凹部と下段の凸部とを
突き合わせて積層し、プレートに沿う方向に隣接して流
路を形成すると共に、積層する方向にも多段に流路を形
成し、 プレートに沿う方向に隣接する流路には流体Aと流体B
とが交互に流れ、プレートの積層する方向の流路にはA
もしくはBの同一種の流体が流れるものであって、 プレートの一端に前記一方の流路に通じる開口部を設け
ると共にこの開口部にヘッダを取り付け、 プレートの他端に前記他方の流路に通じる開口部を設け
ると共に、この開口部にヘッダを取り付けることを特徴
とする積層型熱交換器。
4. A laminated heat exchanger in which a plurality of plates having openings for fluid inflow or outflow are stacked and A and B heat exchange fluids are flowed, wherein groove-shaped flow paths are formed on upper and lower surfaces of the plate. The upper convex part and the lower concave part, the upper concave part and the lower convex part are abutted and laminated, and a flow path is formed adjacently in a direction along the plate, and the laminating direction is also multi-layered. A flow path is formed, and fluid A and fluid B are provided in flow paths adjacent in the direction along the plate.
Flow alternately, and A
Alternatively, the same type of fluid B flows, and an opening is provided at one end of the plate to communicate with the one flow path, and a header is attached to the opening, and the other end of the plate is connected to the other flow path. A stacked heat exchanger having an opening and a header attached to the opening.
【請求項5】前記流路のうち、一方の流体の流れる流路
の上流端と下流端の底部に1個以上の開口部を形成した
ことを特徴とする請求項1ないし4のいずれかに記載の
積層型熱交換器。
5. The method according to claim 1, wherein one or more openings are formed at the bottom of the upstream end and the downstream end of one of the flow paths through which the fluid flows. A stacked heat exchanger as described.
【請求項6】前記流路のうち、少なくとも一方の流体の
流れる流路内壁に微細凹凸構造を形成したことを特徴と
する請求項2ないし4のいずれかに記載の積層型熱交換
器。
6. The stacked heat exchanger according to claim 2, wherein a fine uneven structure is formed on an inner wall of at least one of the flow paths through which the fluid flows.
JP2000296903A 2000-09-28 2000-09-28 Laminated heat exchanger Pending JP2002107073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296903A JP2002107073A (en) 2000-09-28 2000-09-28 Laminated heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296903A JP2002107073A (en) 2000-09-28 2000-09-28 Laminated heat exchanger

Publications (1)

Publication Number Publication Date
JP2002107073A true JP2002107073A (en) 2002-04-10

Family

ID=18779099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296903A Pending JP2002107073A (en) 2000-09-28 2000-09-28 Laminated heat exchanger

Country Status (1)

Country Link
JP (1) JP2002107073A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132805A (en) * 2004-11-02 2006-05-25 Calsonic Kansei Corp Plate type heat exchanger
JP2007095687A (en) * 2005-09-29 2007-04-12 Samsung Electro-Mechanics Co Ltd Reforming apparatus with superior heat characteristic for fuel cell
JP2007095699A (en) * 2005-09-29 2007-04-12 Samsung Electro-Mechanics Co Ltd Slim reformer
JP2007205648A (en) * 2006-02-02 2007-08-16 T Rad Co Ltd Heat exchanger
JP2008529953A (en) * 2005-04-01 2008-08-07 エルジー・ケム・リミテッド Hydrogen production apparatus and hydrogen production method using the same
KR101080236B1 (en) 2011-06-13 2011-11-08 한국기계연구원 Micro channel heat exchanger
JP2012220081A (en) * 2011-04-07 2012-11-12 Toyota Central R&D Labs Inc Condenser, and condensation system with the same
US20170023312A1 (en) * 2015-07-24 2017-01-26 Nicholas F. Urbanski Enhanced Heat Transfer In Printed Circuit Heat Exchangers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132805A (en) * 2004-11-02 2006-05-25 Calsonic Kansei Corp Plate type heat exchanger
JP4568581B2 (en) * 2004-11-02 2010-10-27 カルソニックカンセイ株式会社 Plate type heat exchanger
JP2008529953A (en) * 2005-04-01 2008-08-07 エルジー・ケム・リミテッド Hydrogen production apparatus and hydrogen production method using the same
JP2007095687A (en) * 2005-09-29 2007-04-12 Samsung Electro-Mechanics Co Ltd Reforming apparatus with superior heat characteristic for fuel cell
JP2007095699A (en) * 2005-09-29 2007-04-12 Samsung Electro-Mechanics Co Ltd Slim reformer
JP4643533B2 (en) * 2005-09-29 2011-03-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fuel cell reformer with excellent thermal characteristics
JP4722004B2 (en) * 2005-09-29 2011-07-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Thin reformer
JP2007205648A (en) * 2006-02-02 2007-08-16 T Rad Co Ltd Heat exchanger
JP2012220081A (en) * 2011-04-07 2012-11-12 Toyota Central R&D Labs Inc Condenser, and condensation system with the same
KR101080236B1 (en) 2011-06-13 2011-11-08 한국기계연구원 Micro channel heat exchanger
US20170023312A1 (en) * 2015-07-24 2017-01-26 Nicholas F. Urbanski Enhanced Heat Transfer In Printed Circuit Heat Exchangers

Similar Documents

Publication Publication Date Title
KR101263559B1 (en) heat exchanger
JP6504367B2 (en) Heat exchanger
JP2004144460A (en) Heat exchanger
US20050269066A1 (en) Heat exchanger
KR20060132645A (en) Brazed plate high pressure heat exchanger
JP6767620B2 (en) Heat exchanger and freezing system using it
JP6528283B2 (en) Heat exchanger
JP2023512425A (en) Brazed plate heat exchanger and its use
JP2001336896A (en) Heat exchanger and refrigerating cycle system
JP2002107073A (en) Laminated heat exchanger
US20040050531A1 (en) Heat exchanger
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JP3747780B2 (en) Heat exchanger
JP3658677B2 (en) Plate heat exchanger and refrigeration system
JPS6157991B2 (en)
WO2018074344A1 (en) Heat exchanger and refrigeration device using same
JP2002257488A (en) Heat exchanger
JPH05215482A (en) Heat exchanger
JP2018066535A (en) Heat exchanger and refrigeration system using the same
JPH0518635A (en) Refrigerant evaporater
JPH02106697A (en) Lamination type heat exchanger
JPH11166795A (en) Heat exchanger
JPH1082594A (en) Plate type heat exchanger and absorption cooling-heating apparatus using the same
JP6865354B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JPH08271170A (en) Plate-shaped heat exchanger