JP2001141379A - Compound heat exchanger - Google Patents

Compound heat exchanger

Info

Publication number
JP2001141379A
JP2001141379A JP32162299A JP32162299A JP2001141379A JP 2001141379 A JP2001141379 A JP 2001141379A JP 32162299 A JP32162299 A JP 32162299A JP 32162299 A JP32162299 A JP 32162299A JP 2001141379 A JP2001141379 A JP 2001141379A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat exchange
header
module
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32162299A
Other languages
Japanese (ja)
Inventor
Hirobumi Horiuchi
博文 堀内
Shigeji Ichiyanagi
茂治 一柳
Toshinori Tokutake
敏則 徳竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP32162299A priority Critical patent/JP2001141379A/en
Publication of JP2001141379A publication Critical patent/JP2001141379A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/04Arrangements of conduits common to different heat exchange sections, the conduits having channels for different circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound heat exchanger that composes a series of refrigerant circuits over all modules while a plurality of heat exchanger modules are arranged in parallel overlappingly and has low pressure loss at a refrigerant side. SOLUTION: The heat exchange pipes of heat exchange modules M1-M3 consist of flat tubes 3... where flat surfaces are arranged opposing. The flat tube 3 of a module being located at the side of higher dryness of a refrigerant corresponding to a flow direction (a) of air is provided with tube width w3 that is larger than that of the flat tube 3 of a module being located at a side with lower dryness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車用、家庭
用、業務用等のエアコンシステムにおける蒸発器や凝縮
器に利用される複式熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double heat exchanger used for an evaporator and a condenser in an air conditioner system for automobiles, home use, business use, and the like.

【0002】[0002]

【従来の技術】エアコンシステムの熱交換器として、対
置した一対のヘッダータンク間に、熱交換管路をなす多
数本の偏平チューブが両端を両ヘッダータンクに各々連
通接続して平行配置してコア部を構成し、隣合う偏平チ
ューブの間に蛇行状フィンを介在させた積層型熱交換器
が汎用されている。そして、特に蒸発器においては、こ
のような積層型熱交換器を熱交換モジュールとし、その
複数の熱交換モジュールを重なる形に並列配置して、全
モジュールにわたる一連の冷媒回路を構成した複式熱交
換器が多用されている。
2. Description of the Related Art As a heat exchanger of an air conditioner system, a number of flat tubes forming a heat exchange conduit are connected in parallel to both header tanks at both ends thereof, and are arranged in parallel between a pair of opposed header tanks. A stacked heat exchanger is generally used, which constitutes a part and has meandering fins interposed between adjacent flat tubes. And especially in the evaporator, such a stacked heat exchanger is used as a heat exchange module, and a plurality of the heat exchange modules are arranged in parallel in an overlapping manner to form a series of heat exchange circuits over all modules. Vessels are heavily used.

【0003】図9は3基の熱交換モジュール(M1)
(M2)(M3)よりなる従来の複式熱交換器の構成例
を示す。この複式熱交換器の熱交換モジュール(M1)
〜(M3)は、上下一対の丸パイプ状のヘッダータンク
(21)(22)と、両ヘッダータンク(21)(22)間に平
行配置してコア部(20)を形成する多数本の偏平チュー
ブ(23)…とからなる同じ構造及び大きさを有してお
り、互いの隣接したヘッダータンク(21)(21)同士な
らびに(22)(22)同士を適所で連通(図示省略)させ
て一連の冷媒回路を構成している。(24)は隣合う偏平
チューブ(23)(23)間に介在する蛇行状フィン、(2
5)はコア部(20)の両側に配置したカバーであり、両
者共に、並列した全モジュール(M1)〜(M3)にわ
たる共通部材としての広幅のものを使用する場合と、モ
ジュール(M1)〜(M3)の各々に対応する独立部材
としての狭幅のものを使用する場合とがある。
FIG. 9 shows three heat exchange modules (M1).
A configuration example of a conventional dual heat exchanger composed of (M2) and (M3) is shown. Heat exchange module (M1) for this double heat exchanger
(M3) are a pair of upper and lower round pipe-shaped header tanks (21) and (22), and a large number of flattened core parts (20) arranged in parallel between both header tanks (21) and (22). It has the same structure and size consisting of tubes (23) ..., and allows the adjacent header tanks (21) (21) and (22) (22) to communicate (not shown) at appropriate places. It constitutes a series of refrigerant circuits. (24) is a meandering fin interposed between adjacent flat tubes (23) and (23).
5) are covers arranged on both sides of the core portion (20). Both of the covers use a wide member as a common member covering all the parallel modules (M1) to (M3), and the modules (M1) to (M1). In some cases, a narrow member as an independent member corresponding to each of (M3) is used.

【0004】ところで、この種の複式熱交換器では、高
い熱交換効率を得る上で、空気の流通方向に対して冷媒
の流れがクロスカウンターフローとなるように冷媒回路
を設定するのが一般的である。すなわち、図9の例で
は、冷媒は、モジュール(M1)の下側ヘッダータンク
(22)に設けた冷媒入口(26)より流入し、同モジュー
ル(M1)のコア部(20)を下から上へ流れ、次いでモ
ジュール(M2)のコア部(20)を上から下へ流れ、更
にモジュール(M3)のコア部(20)を下から上へ流
れ、最後に同モジュール(M3)の上側ヘッダータンク
(21)に設けた冷媒入口(27)より流出し、この過程で
各コア部(20)をモジュール(M1)〜(M3)の並列
方向に流れる空気と熱交換するように設定される。
By the way, in this type of double heat exchanger, in order to obtain high heat exchange efficiency, it is general to set a refrigerant circuit so that the flow of the refrigerant becomes a cross counter flow in the direction of air flow. It is. That is, in the example of FIG. 9, the refrigerant flows in from the refrigerant inlet (26) provided in the lower header tank (22) of the module (M1), and flows through the core (20) of the module (M1) from below. Flow, then flow from top to bottom through the core (20) of the module (M2), further flow from bottom to top through the core (20) of the module (M3), and finally the upper header tank of the module (M3) The refrigerant flows out from the refrigerant inlet (27) provided in (21), and in this process, each core portion (20) is set to exchange heat with air flowing in the parallel direction of the modules (M1) to (M3).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、冷媒回
路を流れる冷媒が気相成分と液相成分とが混在した二相
流であるとき、熱交換に伴う乾き度(気相成分の割合)
の変化に応じて体積が増減するが、前記従来の複式熱交
換器では、空気の流れ方向に対する配置関係により、高
乾き度となる側の熱交換モジュールにおいてはコア部で
の冷媒の流速が速くなる一方、低乾き度となる側のモジ
ュールでは同流速が遅くなるため、冷媒側の圧力損失が
増大するという問題があった。
However, when the refrigerant flowing through the refrigerant circuit is a two-phase flow in which a gas phase component and a liquid phase component are mixed, the degree of dryness due to heat exchange (ratio of the gas phase component)
However, in the conventional double heat exchanger, the flow rate of the refrigerant in the core portion is high in the heat exchange module on the side where the dryness is high due to the arrangement relationship with respect to the air flow direction. On the other hand, in the module on the low dryness side, the flow velocity is slowed down, so that there is a problem that the pressure loss on the refrigerant side increases.

【0006】この発明は、上述の事情に鑑みて、複数の
熱交換モジュールが重なる形に並列配置して全モジュー
ルにわたる一連の冷媒回路を構成した複式熱交換器とし
て、冷媒側の圧力損失が小さいものを提供することを主
たる目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is a dual heat exchanger in which a plurality of heat exchange modules are arranged in parallel in an overlapping manner to form a series of refrigerant circuits for all modules, and the pressure loss on the refrigerant side is small. Its main purpose is to provide things.

【課題を解決するための手段】[Means for Solving the Problems]

【0007】上記目的を達成するために、請求項1の発
明に係る複式熱交換器は、対置した一対のヘッダータン
クと、両ヘッダータンクに両端を連通させて平行配置し
た多数本の熱交換管とを備えた複数の熱交換モジュール
からなり、これらモジュールが重なる形に並列配置して
一連の冷媒回路を構成し、各熱交換モジュールの熱交換
管が互いに偏平面を対向して配置した偏平チューブから
なり、空気の流れ方向に対応して冷媒の乾き度の高い側
にあるモジュールの偏平チューブが、同乾き度の低い側
にあるモジュールの偏平チューブよりも大きいチューブ
幅を有することを特徴としている。
In order to achieve the above object, a duplex heat exchanger according to the first aspect of the present invention comprises a pair of opposed header tanks and a plurality of heat exchange tubes arranged in parallel with both ends communicating with both header tanks. A flat tube in which these modules are arranged in parallel in an overlapping manner to form a series of refrigerant circuits, and the heat exchange tubes of each heat exchange module are arranged with their flat surfaces facing each other. The flat tube of the module on the side where the dryness of the refrigerant is high corresponding to the flow direction of air has a larger tube width than the flat tube of the module on the side where the dryness is low. .

【0008】上記構成によれば、空気の流れ方向に対す
る位置関係で各モジュールのコア部を流れる冷媒の乾き
度に違いができ、これによって冷媒の体積が変化して
も、高乾き度側のモジュールでは熱交換管路の流路断面
積が大きく、逆に低乾き度側のモジュールでは同流路断
面積が小さいことから、各モジュールのコア部における
冷媒の流速が均等化され、もって冷媒側の圧力損失が低
減する。しかして、3以上の熱交換モジュールからなる
複式熱交換器では、モジュール配列の一側から他側へ偏
平チューブのチューブ幅が順次増大又は縮小するよう
に、各モジュール毎に異なるチューブ幅の偏平チューブ
を用いればよい。
According to the above configuration, the degree of dryness of the refrigerant flowing through the core of each module can be different depending on the positional relationship with respect to the direction of air flow. In this case, since the cross-sectional area of the flow passage of the heat exchange pipeline is large, and the cross-sectional area of the same flow passage is small in the module on the low dryness side, the flow velocity of the refrigerant in the core portion of each module is equalized, thereby Pressure loss is reduced. However, in a composite heat exchanger including three or more heat exchange modules, the flat tubes having different tube widths for each module are arranged so that the tube width of the flat tubes sequentially increases or decreases from one side of the module array to the other side. May be used.

【0009】請求項2の発明では、上記請求項1の複式
熱交換器において、複数の熱交換モジュールは、相互の
ヘッダータンクの並び方向が偏平チューブの長手方向に
対して斜交するように位置をずらせて配置してなるもの
としている。この構成においては、複式熱交換器を空気
の流れ方向に対して傾斜状態で設置する場合に、ヘッダ
ータンクの並び方向を空気の流れ方向に合わせれば、コ
ア部における空気の有効流路幅が広くなる。また、各熱
交換モジュールがパイプ状のヘッダータンクに各偏平チ
ューブの端部を挿入して連結した構造であるとき、偏平
チューブよりも幅(外径)の大きいヘッダータンク同士
が複式熱交換器の厚み方向には重なりを生じる配置とな
り、その重なり分だけ隣接するモジュールの偏平チュー
ブ同士の間隔が縮まるから、複式熱交換器全体として薄
型になる。
According to a second aspect of the present invention, in the double heat exchanger of the first aspect, the plurality of heat exchange modules are positioned such that the arrangement direction of the header tanks is oblique to the longitudinal direction of the flat tubes. Are shifted from each other. In this configuration, when the dual heat exchanger is installed in an inclined state with respect to the flow direction of air, if the arrangement direction of the header tank is adjusted to the flow direction of air, the effective flow path of air in the core portion is wide. Become. When each heat exchange module has a structure in which the end of each flat tube is inserted and connected to a pipe-shaped header tank, the header tanks having a larger width (outer diameter) than the flat tubes are connected to each other by a double heat exchanger. The arrangement is such that an overlap occurs in the thickness direction, and the interval between the flat tubes of the adjacent modules is reduced by the overlap, so that the overall composite heat exchanger becomes thin.

【0010】請求項3の発明では、上記請求項1の複式
熱交換器において、内部が長手方向に連続する複数の中
空部に区切られたヘッダー部材を備え、該ヘッダー部材
の各中空部が各熱交換モジュールのヘッダータンクを構
成するものとしている。この場合、複数の熱交換モジュ
ールのヘッダータンクを単一のヘッダー部材にて構成で
きるから、部材点数が少なくなり、組立製作の作業性が
向上すると共に製作コストも低減する。
According to a third aspect of the present invention, in the double heat exchanger according to the first aspect, a header member is provided which is divided into a plurality of hollow portions whose insides are continuous in the longitudinal direction. It constitutes the header tank of the heat exchange module. In this case, since the header tanks of the plurality of heat exchange modules can be constituted by a single header member, the number of members is reduced, the workability of assembling and manufacturing is improved, and the manufacturing cost is reduced.

【0011】請求項4の発明では、上記請求項3の複式
熱交換器において、ヘッダー部材は、少なくとも最も広
幅の中空部に、偏平チューブ連結側の壁部とこれに対向
する壁部との間を繋ぐ中間壁部を有すると共に、この中
間壁部の両側空間が当該中間壁部の開口部で連通した構
成としている。この場合、ヘッダー部材の最も広幅の中
空部がある部分は、本来は強度的に弱くなるが、中間壁
部による補強で必要な強度を確保できる。
According to a fourth aspect of the present invention, in the double heat exchanger of the third aspect, the header member is provided at least in the widest hollow portion between the wall portion on the flat tube connecting side and the wall portion opposed thereto. Are connected to each other, and the spaces on both sides of the intermediate wall are connected to each other through the opening of the intermediate wall. In this case, the portion of the header member having the widest hollow portion is originally weak in strength, but the necessary strength can be secured by reinforcement with the intermediate wall portion.

【0012】請求項5の発明では、上記請求項1〜4の
いずれかの複式熱交換器において、各熱交換モジュール
の偏平チューブは、ヘッダータンク内への挿入深さがチ
ューブ毎に順次異なるように取り付けられたものとして
いる。この構成によると、各モジュールのヘッダータン
ク内からコア部の各偏平チューブへ冷媒を分配する領域
において、当該ヘッダータンクへの冷媒流入口に対する
各チューブの開口端の距離の違いによって本来は冷媒分
配量が不均等になり易いが、冷媒流入口から遠い位置の
チューブほどヘッダータンク内への挿入深さを大きくし
て冷媒分配量を均等化できる。
According to a fifth aspect of the present invention, in the double heat exchanger of any one of the first to fourth aspects, the flat tubes of each heat exchange module are so arranged that the insertion depth into the header tank is sequentially different for each tube. It has been attached to. According to this configuration, in the area where the refrigerant is distributed from the inside of the header tank of each module to each flat tube of the core portion, the difference in the distance between the opening end of each tube and the inlet of the refrigerant to the header tank causes the amount of refrigerant to be distributed. However, the tube farther from the refrigerant inlet can increase the depth of insertion into the header tank, thereby equalizing the amount of refrigerant distribution.

【0013】[0013]

【発明の実施の形態】以下、この発明に係る複式熱交換
器の実施例について、図面を参照して具体的に説明す
る。図1は第一及び第二実施例、図2は第三実施例、図
3〜図5は第四及び第五実施例、図6及び図7は第六実
施例、図8は第七実施例、をそれぞれ示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a double heat exchanger according to an embodiment of the present invention. 1 is a first and a second embodiment, FIG. 2 is a third embodiment, FIGS. 3 to 5 are fourth and fifth embodiments, FIGS. 6 and 7 are sixth embodiments, and FIG. 8 is a seventh embodiment. Examples are shown below.

【0014】第一実施例の複式熱交換器は、蒸発器に適
用するものであり、図1(イ)(ロ)に示すように、3
基の熱交換モジュール(M1)(M2)(M3)が重な
る形に並列配置して一体化している。これらモジュール
(M1)〜(M3)の各々は、上下に対置した一対の丸
パイプ状のヘッダータンク(1)(2)間に、熱交換管
路をなす多数本の偏平チューブ(3)…が互いに偏平面
を対向して平行配置してコア部(10)を構成している。
しかして、各偏平チューブ(3)は、両端を両ヘッダー
タンク(1)(2)の周面のスリット状開口部(1a)
(2a)に各々挿嵌している。また、隣合う偏平チュー
ブ(3)(3)の間には、モジュール(M1)〜(M
3)にわたる共通部材としての幅広の蛇行状フィン
(4)が介在している。(5)はコア部(10)の両側に
配置したカバーである。
The double heat exchanger of the first embodiment is applied to an evaporator, and as shown in FIGS.
The base heat exchange modules (M1), (M2), and (M3) are arranged in parallel in an overlapping manner and integrated. In each of these modules (M1) to (M3), a number of flat tubes (3) forming a heat exchange conduit are provided between a pair of round pipe-shaped header tanks (1) and (2) opposed to each other. The core portion (10) is configured by arranging the deflected planes in parallel to face each other.
Thus, each flat tube (3) has a slit-shaped opening (1a) in the peripheral surface of both header tanks (1) and (2) at both ends.
(2a). Modules (M1) to (M1) are located between adjacent flat tubes (3) and (3).
A wide meandering fin (4) as a common member extending over 3) is interposed. (5) are covers arranged on both sides of the core (10).

【0015】3基のモジュール(M1)〜(M3)は、
各々に使用されている偏平チューブ(3)のチューブ幅
が異なっている。すなわち、図1の(ロ)の如く、偏平
チューブ(3)は、矢印(a)で示す空気の流れ方向に
対し、風下側のモジュール(M1)が最小幅(w1 )、
中間に位置するモジュール(M2)が中間幅(w2 )、
風上側のモジュール(M3)が最大幅(w3 )となって
いる。そして、このチューブ幅の違いに対応して、上下
のヘッダータンク(1)(2)の径も、モジュール(M
1)が最小で、モジュール(M3)が最大となってい
る。
The three modules (M1) to (M3)
The tube width of the flat tube (3) used for each is different. That is, as shown in FIG. 1 (b), the flat tube (3) has the minimum width (w1) of the module (M1) on the leeward side in the air flow direction indicated by the arrow (a).
The intermediate module (M2) has an intermediate width (w2),
The module (M3) on the windward side has the maximum width (w3). According to the difference in the tube width, the diameter of the upper and lower header tanks (1) and (2) is also changed by the module (M
1) is the smallest and the module (M3) is the largest.

【0016】また、図1(イ)に示すように、モジュー
ル(M1)の下側ヘッダータンク(2)には冷媒導入口
(6a)が設けられると共に、モジュール(M3)の上
側ヘッダータンク(1)には冷媒導入口(6b)がそれ
ぞれ設けてある。そして、モジュール(M1)と(M
2)の上側ヘッダータンク(1)(1)同士、ならびに
モジュール(M2)と(M3)の下側ヘッダータンク
(2)(2)同士は、それぞれ接続管(図示省略)等を
介して連通接続され、これによってモジュール(M1)
〜(M3)にわたって冷媒の流れが空気の流れに対して
クロスカウンターフローとなる一連の冷媒回路を構成し
ている。
As shown in FIG. 1A, the lower header tank (2) of the module (M1) is provided with a refrigerant inlet (6a) and the upper header tank (1) of the module (M3). ) Are provided with refrigerant inlets (6b). Then, the modules (M1) and (M
The upper header tanks (1) and (1) of 2) and the lower header tanks (2) and (2) of the module (M2) and (M3) are connected to each other via a connection pipe (not shown) or the like. The module (M1)
A series of refrigerant circuits in which the flow of the refrigerant becomes a cross counter flow with respect to the flow of the air over (M3).

【0017】この第一実施例の複式熱交換器を蒸発器と
して用いた場合、冷媒導入口(6a)より流入する二相
流の冷媒は、当初は気相成分の割合が小さい低乾き度の
状態にあるが、図1(ロ)の矢印(r)で示すように、
各コア部(10)をモジュール(M1)では上向きに、モ
ジュール(M2)では下向きに、モジュール(M3)で
は上向きに順次流れ、この過程で矢印(a)方向に流れ
る空気から気化熱を奪って液相成分が蒸発するから、次
第に気相成分の割合が増し、最終的に高乾き度の状態で
冷媒導出口(6b)から流出する。
When the double heat exchanger of the first embodiment is used as an evaporator, the two-phase refrigerant flowing from the refrigerant inlet (6a) has a low dryness with a small proportion of gas phase components at first. Although it is in a state, as shown by an arrow (r) in FIG.
Each of the core portions (10) flows sequentially upward in the module (M1), downward in the module (M2), and upward in the module (M3). In this process, the vaporization heat is taken from the air flowing in the direction of the arrow (a). Since the liquid phase component evaporates, the proportion of the gas phase component gradually increases and finally flows out from the refrigerant outlet (6b) in a state of high dryness.

【0018】しかして、上記の熱交換による乾き度の上
昇に伴って二相流の冷媒としての体積は増加するが、モ
ジュール(M1)から(M3)へと乾き度の高い側の偏
平チューブ(3)ほどチューブ幅が大きく、それだけ流
路断面積が拡大しているから、モジュール(M1)〜
(M3)のコア部(10)における冷媒の流速が均等化さ
れる。従って、この複式熱交換器では、モジュール(M
1)〜(M3)の偏平チューブを同じチューブ幅とした
従来構成の複式熱交換器と比較して、冷媒側の圧力損失
が低減することになる。
Although the volume of the two-phase flow refrigerant increases as the degree of dryness increases due to the above heat exchange, the flat tube having the higher degree of dryness (from the module (M1) to (M3)). 3) The larger the tube width and the larger the cross-sectional area of the flow channel, the more the module (M1)-
The flow velocity of the refrigerant in the core part (10) of (M3) is equalized. Therefore, in this duplex heat exchanger, the module (M
The pressure loss on the refrigerant side is reduced as compared with the conventional double heat exchanger having the flat tubes 1) to (M3) having the same tube width.

【0019】上記第一実施例の複式熱交換器は蒸発器に
適用するものであるが、その熱交換モジュール(M1)
〜(M3)における偏平チューブ(3)のチューブ幅の
関係を逆にすれば、凝縮器に適用する複式熱交換器とな
る。すなわち、図1(ハ)に示す第二実施例の複式熱交
換器では、熱交換モジュール(M1)〜(M3)の基本
構成ならびに冷媒回路の構成は第一実施例と同様である
が、偏平チューブ(3)は風下側のモジュール(M1)
が最大幅(w3 )で、風上側のモジュール(M3)が最
小幅(w1 )と逆になっている。また、このチューブ幅
の違いに対応して、上下のヘッダータンク(1)(2)
の径も、モジュール(M1)が最大で、モジュール(M
3)が最小となっている。
The double heat exchanger of the first embodiment is applied to an evaporator, and its heat exchange module (M1)
If the relationship of the tube width of the flat tube (3) in (M3) is reversed, a double heat exchanger applied to the condenser is obtained. That is, in the duplex heat exchanger of the second embodiment shown in FIG. 1C, the basic configuration of the heat exchange modules (M1) to (M3) and the configuration of the refrigerant circuit are the same as those of the first embodiment, but are flat. Tube (3) is the leeward module (M1)
Is the maximum width (w3), and the module (M3) on the windward side is opposite to the minimum width (w1). Also, in response to this difference in tube width, the upper and lower header tanks (1) (2)
The maximum diameter of the module (M1) is
3) is the minimum.

【0020】上記第二実施例の複式熱交換器を凝縮器と
して用いた場合、モジュール(M1)の下側ヘッダータ
ンク(2)に導入される二相流の冷媒は、当初は気相成
分の割合が大きい高乾き度の状態にあるが、モジュール
(M1)〜(M3)の各コア部(10)を矢印(r)の如
く空気の流れに対するクロスカウンターフローで順次流
れる過程で、空気に潜熱を奪われて気相成分が凝縮する
から、次第に気相成分の割合が減り、低乾き度の状態で
モジュール(M3)の上側ヘッダータンク(1)から流
出する。この熱交換による乾き度の低下に伴って二相流
の冷媒体積は減少するが、モジュール(M1)から(M
3)へと流路断面積も縮小しているため、モジュール
(M1)〜(M3)のコア部(10)における冷媒の流速
が均等化され、第一実施例と同様に従来構成の複式熱交
換器と比較して冷媒側の圧力損失が低減することにな
る。
When the double heat exchanger of the second embodiment is used as a condenser, the two-phase refrigerant introduced into the lower header tank (2) of the module (M1) initially has a gas phase component. Although the ratio is high and the dryness is large, the latent heat is generated in the air while the cores (10) of the modules (M1) to (M3) sequentially flow in the cross counter flow with respect to the flow of the air as shown by the arrow (r). And the gas phase component is condensed, the proportion of the gas phase component gradually decreases, and flows out of the upper header tank (1) of the module (M3) in a state of low dryness. The refrigerant volume of the two-phase flow decreases with a decrease in the dryness due to the heat exchange.
Since the cross-sectional area of the flow path is also reduced to 3), the flow velocity of the refrigerant in the core portion (10) of the modules (M1) to (M3) is equalized, and the double heat of the conventional configuration is used as in the first embodiment. The pressure loss on the refrigerant side is reduced as compared with the exchanger.

【0021】なお、上記第一及び第二実施例では熱交換
モジュール(M1)〜(M3)の上下のヘッダータンク
(1)(2)の径を偏平チューブ(3)のチューブ幅の
違いに対応して異ならせているが、ヘッダータンク
(1)(2)については熱交換モジュール(M1)〜
(M3)で同径としてもよい。また、第一及び第二実施
例とは上下関係を逆にしたり、両ヘッダータンク(1)
(2)が左右に配置する構成としてもよい。
In the first and second embodiments, the diameter of the upper and lower header tanks (1) and (2) of the heat exchange modules (M1) to (M3) corresponds to the difference in the tube width of the flat tube (3). However, the header tanks (1) and (2) are different from the heat exchange module (M1).
(M3) may be the same diameter. Also, the vertical relationship between the first and second embodiments may be reversed, or both header tanks (1)
(2) may be arranged right and left.

【0022】図2(イ)に実線で示す第三実施例の複式
熱交換器(A)は、空気の流れ方向に対して傾斜状態で
設置する仕様であり、3基の熱交換モジュール(M1)
〜(M3)の各々の部材構成ならびに冷媒回路の構成は
前記第一及び第二実施例と同様である。この複式熱交換
器においては、モジュール(M1)〜(M3)の偏平チ
ューブ(3)のチューブ幅は、モジュール(M1)を最
大、モジュール(M3)を最小として順次異なるが、丸
パイプ状の一対のヘッダータンク(11)(11)は全モジ
ュール(M1)〜(M3)で同径となっている。
The double heat exchanger (A) according to the third embodiment, which is indicated by a solid line in FIG. 2 (a), is designed to be installed in an inclined state with respect to the direction of air flow, and has three heat exchange modules (M1). )
(M3) The configuration of each member and the configuration of the refrigerant circuit are the same as those in the first and second embodiments. In this duplex heat exchanger, the tube widths of the flat tubes (3) of the modules (M1) to (M3) are sequentially different with the module (M1) being the largest and the module (M3) being the smallest. The header tanks (11) and (11) have the same diameter in all the modules (M1) to (M3).

【0023】そして、これらモジュール(M1)〜(M
3)は、ヘッダータンク(11)同士の並び方向(O)
と、偏平チューブ(3)の長手方向(P)とが角度
(θ)で斜交するように、順次位置をずらせて配置して
いる。なお、モジュール(M1)〜(M3)のヘッダー
タンク(11)同士は要所で連通して前記第一及び第二実
施例同様のクロスカンウターフローの冷媒回路を構成し
ている。
The modules (M1) to (M1)
3) The alignment direction (O) of the header tanks (11)
And the longitudinal direction (P) of the flat tube (3) are arranged so as to be shifted sequentially so that they obliquely intersect at an angle (θ). The header tanks (11) of the modules (M1) to (M3) communicate with each other at important points to constitute a refrigerant circuit of the cross counter flow similar to the first and second embodiments.

【0024】この第三実施例の複式熱交換器(A)は、
例えば図2(ロ)に示すように、設置部位の周辺状況等
による空間的制約から、矢印(a)で示す空気の流れ方
向に直交する方向の設置可能幅(L0 )が通常の複式熱
交換器の全幅に満たない場合に、図中の実線で示すよう
にヘッダータンク(11)同士の並び方向(O)が空気の
流れ方向に沿う傾斜状態で設置する。すなわち、この設
置状態では、矢印(a)の流れ方向における空気の有効
流路幅は(L1 )となり、モジュール(M1)〜(M
3)の各コア部(10)の全域が有効流路幅(L1 )内に
納まるから、高い熱交換効率を確保できる。
The double heat exchanger (A) of the third embodiment is
For example, as shown in FIG. 2 (b), due to spatial restrictions due to the surrounding conditions of the installation site and the like, the installable width (L0) in the direction perpendicular to the air flow direction shown by the arrow (a) is a normal double heat exchange. When the width is less than the full width of the vessel, the header tanks (11) are installed in an inclined state along the direction of air flow as shown by the solid line in the figure. That is, in this installation state, the effective flow path width of the air in the flow direction of the arrow (a) is (L1), and the modules (M1) to (M1)
Since the entire area of each core section (3) of (3) falls within the effective flow path width (L1), high heat exchange efficiency can be secured.

【0025】しかるに、図中の仮想線で示す熱交換器
(B)のように、モジュール(M1)〜(M3)がヘッ
ダータンク(11)同士の並び方向(O)を偏平チューブ
(3)の長手方向と直交するように並列配置した通常の
構成では、偏平チューブ(3)が熱交換器(A)と同じ
長さであっても、設置可能幅(L0 )内で熱交換器
(A)よりも傾斜度合を大きくして設置する必要がある
上、風上側においてモジュール(M1)〜(M3)のヘ
ッダータンク(11)同士が並んだ部分が空気流路を遮断
する形になるため、空気の有効流路幅(L2 )は熱交換
器(A)の有効流路幅(L1 )よりも格段に狭くなって
熱交換効率が低下することになる。
However, like the heat exchanger (B) shown by the phantom line in the figure, the modules (M1) to (M3) change the direction (O) in which the header tanks (11) are arranged between the flat tubes (3). In a normal configuration in which the flat tubes (3) have the same length as the heat exchanger (A) in a normal configuration arranged in parallel so as to be orthogonal to the longitudinal direction, the heat exchanger (A) is within the installable width (L0). In addition, it is necessary to set the inclination tank to a greater degree than the above, and the part where the header tanks (11) of the modules (M1) to (M3) are arranged on the windward side blocks the air flow path. The effective flow path width (L2) of the heat exchanger (A) is much narrower than the effective flow path width (L1) of the heat exchanger (A), and the heat exchange efficiency is reduced.

【0026】また、第三実施例の複式熱交換器(A)の
ようにモジュール(M1)〜(M3)が偏平チューブ
(3)の長手方向(P)に順次位置をずらせて配置した
構造では、偏平チューブ(3)よりも幅(外径)の大き
い丸パイプ状のヘッダータンク(11)同士は複式熱交換
器の厚み方向には相互に重なりを生じる形になり、図2
(イ)の仮想線で示す熱交換器(B)のようにモジュー
ル(M1)〜(M3)の位置にずれのない通常の構成に
比較して、隣接するモジュール(M1)と(M2)の偏
平チューブ(3)(3)同士の間隔が(d3 )から(d
1 )へ、またモジュール(M1)と(M2)の同間隔が
(d4 )から(d2 )へとそれぞれ縮まるから、複式熱
交換器全体として薄型になるという利点がある。
Further, in the structure in which the modules (M1) to (M3) are sequentially shifted in the longitudinal direction (P) of the flat tube (3) as in the double heat exchanger (A) of the third embodiment. The round pipe-shaped header tanks (11) having a larger width (outer diameter) than the flat tubes (3) are overlapped with each other in the thickness direction of the double heat exchanger.
As compared with a normal configuration in which the positions of the modules (M1) to (M3) do not shift as in the heat exchanger (B) shown by the imaginary line in (A), the adjacent modules (M1) and (M2) The distance between the flat tubes (3) and (3) is (d3) to (d3).
1) and the same interval between the modules (M1) and (M2) is reduced from (d4) to (d2). Therefore, there is an advantage that the overall heat exchanger becomes thinner.

【0027】なお、上記の第三実施例ではモジュール
(M1)〜(M3)のヘッダータンク(11)を全て同じ
径としているが、モジュール(M1)〜(M3)を偏平
チューブ(3)の長手方向(P)に順次位置をずらせて
配置する構成においても、前記第一及び第二実施例と同
様にモジュール(M1)〜(M3)の各々のヘッダータ
ンクを偏平チューブ(3)の幅に対応して異なる径にし
てもよい。
In the third embodiment, the header tanks (11) of the modules (M1) to (M3) are all of the same diameter, but the modules (M1) to (M3) are formed in the longitudinal direction of the flat tube (3). In the configuration in which the positions are sequentially shifted in the direction (P), the header tanks of the modules (M1) to (M3) correspond to the width of the flat tube (3) as in the first and second embodiments. And different diameters.

【0028】上記第一〜第三実施例のような複式熱交換
器の組立製作においては、ヘッダータンク(1)(2)
(11)、偏平チューブ(3)、蛇行状フィン(4)、カ
バー(5)等の構成部材にブレージングシートを用いる
か、構成部材相互の接合部に別途にロウ材を介在させ、
これら構成部材を仮組みした状態で炉中ロウ付けによっ
て一括に接合一体化する手法が採用される。
In assembling and manufacturing the double heat exchanger as in the first to third embodiments, the header tanks (1) and (2) are used.
(11) A brazing sheet is used for components such as the flat tube (3), the meandering fins (4), and the cover (5), or a brazing material is separately provided at a joint between the components,
A method is adopted in which these constituent members are temporarily assembled and integrally joined by brazing in a furnace.

【0029】図3(イ)(ロ)で示す第四及び第五実施
例の複式熱交換器では、内部が長手方向に連続する3つ
の中空部(7a)〜(7c)に区切られたヘッダー部材
(7)を用い、中空部(7a)〜(7c)の各々を各モ
ジュール(M1)〜(M3)のヘッダータンク(12)と
している。そして、ヘッダー部材(7)の中空部(7
a)〜(7c)を区切る仕切り壁(70)(70)の要所に
連通部(図示省略)を設けることにより、前記第一〜第
三実施例と同様のクロスカウンターフローの冷媒回路を
構成している。
In the duplex heat exchangers of the fourth and fifth embodiments shown in FIGS. 3A and 3B, the header is divided into three hollow portions (7a) to (7c) whose insides are continuous in the longitudinal direction. Using the member (7), each of the hollow portions (7a) to (7c) is used as a header tank (12) of each module (M1) to (M3). Then, the hollow portion (7) of the header member (7)
A communication circuit (not shown) is provided at important points of the partition walls (70) and (70) for partitioning a) to (7c), thereby forming a cross counter flow refrigerant circuit similar to the first to third embodiments. are doing.

【0030】このヘッダー部材(7)は、中空押出型材
からなり、モジュール(M1)〜(M3)の偏平チュー
ブ(3)の異なるチューブ幅(w4 )〜(w6 )に対応
して、中空部(7a)が広幅、中空部(7b)が中間
幅、中空部(7c)が狭幅に設定されると共に、これら
(7a)〜(7c)の各々の片面側に、図5でも示すよ
うに長孔状のチューブ挿入孔(71a)〜(71c)が長手
方向一定間隔置きに形成されている。
The header member (7) is formed of a hollow extruded material, and corresponds to the different tube widths (w4) to (w6) of the flat tubes (3) of the modules (M1) to (M3). 7a) is set to be wide, the hollow portion (7b) is set to have an intermediate width, and the hollow portion (7c) is set to have a narrow width. Each of these (7a) to (7c) has a long side as shown in FIG. Hole-like tube insertion holes (71a) to (71c) are formed at regular intervals in the longitudinal direction.

【0031】しかして、図3(イ)に示す第四実施例の
複式熱交換器では、モジュール(M1)〜(M3)の各
々の偏平チューブ(3)が図4(イ)でも示すように独
立したチューブ材からなり、それぞれ絞り加工(サイジ
ング)した端部(3a)をヘッダー部材(7)のチュー
ブ挿入孔(71a)〜(71c)に挿嵌している。
Thus, in the duplex heat exchanger of the fourth embodiment shown in FIG. 3A, each of the flat tubes 3 of the modules M1 to M3 is connected as shown in FIG. End portions (3a) made of independent tube materials and drawn (sized) are inserted into the tube insertion holes (71a) to (71c) of the header member (7).

【0032】一方、図3(ロ)に示す第五実施例の複式
熱交換器では、モジュール(M1)〜(M3)に対応し
た異なるチューブ幅(w4 )〜(w6 )の3本の偏平チ
ューブ(3)が図4(ロ)でも示す一枚の中空押出プレ
ート材(30)として一体化されている。このプレート材
(30)の端部(3a)は、絞り加工(サイジング)され
ると共に、隣接する偏平チューブ(3)(3)間の偏平
な繋ぎ部(31)に切欠部(31a)を有しており、二箇所
の切欠部(31a)(31a)がヘッダー部材(7)のチュ
ーブ挿入孔(71a)(71b)間と(71b)(71c)間の
各境界部にそれぞれ跨嵌する形で、ヘッダー部材(7)
のチューブ挿入孔(71a)〜(71c)に挿嵌している。
On the other hand, in the double heat exchanger of the fifth embodiment shown in FIG. 3B, three flat tubes of different tube widths (w4) to (w6) corresponding to the modules (M1) to (M3) are used. (3) is integrated as one hollow extruded plate member (30) also shown in FIG. The end (3a) of the plate material (30) is drawn (sized) and has a notch (31a) at a flat connecting portion (31) between the adjacent flat tubes (3) and (3). The two notches (31a) and (31a) fit over the respective boundaries between the tube insertion holes (71a) (71b) and (71b) (71c) of the header member (7). And the header member (7)
Are inserted into the tube insertion holes (71a) to (71c).

【0033】これら第四及び第五実施例の構成では、単
一のヘッダー部材(7)にて3基のモジュール(M1)
〜(M3)の3つのヘッダータンク(12)を構成するか
ら、前記第一〜第三実施例のように各ヘッダータンクが
独立部材からなる場合に比較して部材点数が少なくな
り、組立製作の作業性が向上すると共に製作コストも低
減するという利点がある。また前記第一〜第三実施例で
用いた丸パイプ状のヘッダータンクはブレージングシー
トを円筒状にプレス加工して製作したものが多いが、円
筒状とした合わせ目のろう付不良が生じる恐れがある
上、高価なブレージングシートの使用によって材料コス
トが高く付くという難点があったが、ヘッダー部材
(7)には中空押出型材を利用できるので上記のような
冷媒漏れの懸念がないと共に材料コストも節減しうる。
In the constructions of the fourth and fifth embodiments, three modules (M1) are provided by a single header member (7).
Since the three header tanks (12) of (M3) to (M3) are configured, the number of members is reduced as compared with the case where each header tank is formed of an independent member as in the first to third embodiments, and the assembly and manufacturing process is reduced. There is an advantage that workability is improved and manufacturing cost is reduced. In addition, the round pipe-shaped header tank used in the first to third embodiments is often manufactured by pressing a brazing sheet into a cylindrical shape, but there is a possibility that defective brazing of the cylindrical seam may occur. In addition, the use of an expensive brazing sheet has the disadvantage that the material cost is high. However, since a hollow extruded material can be used for the header member (7), there is no fear of refrigerant leakage as described above, and the material cost is also low. Can save money.

【0034】また第四実施例の構成によれば、各偏平チ
ューブ(3)の端部(3a)が絞り加工されているか
ら、モジュール(M1)〜(M3)相互の偏平チューブ
(3)(3)間の隙間(d)を非常に小さくでき、前記
絞り加工の程度によっては隙間(d)をゼロにすること
も可能であり、もって複式熱交換器の薄型化が容易とな
る。更に第五実施例の構成では、第四実施例の場合より
も更に部材点数が少なくなるから、組立製作の作業性が
より向上する。
Further, according to the configuration of the fourth embodiment, since the ends (3a) of the flat tubes (3) are drawn, the flat tubes (3) (3) of the modules (M1) to (M3) are mutually formed. 3) The gap (d) between them can be made very small, and the gap (d) can be made zero depending on the degree of the drawing process, thereby facilitating the thinning of the dual heat exchanger. Further, in the configuration of the fifth embodiment, the number of members is further reduced as compared with the case of the fourth embodiment, so that the workability of assembling and manufacturing is further improved.

【0035】これら第四及び第五実施例の複式熱交換器
の製作に際しては、やはり構成部材を仮組みした状態で
炉中ロウ付けによって一括に接合一体化する手法が採用
される。この場合、ヘッダー部材(7)とモジュール
(M1)〜(M3)の各偏平チューブ(3)…もしくは
プレート材(30)…との接合は、図5に示すように、ヘ
ッダー部材(7)の接合側表面に、そのチューブ挿入孔
(71a)〜(71c)に対応したチューブ挿入孔(8a)
〜(8c)を有するブレージングシート(8)を配置し
て前記の炉中ロウ付けを行えばよい。これにより、高価
なブレージングシートの使用量が必要最小限に抑えら
れ、材料コストが低減する。また、このブレージングシ
ート(8)を用いる代わりに、ヘッダー部材(7)の接
合側表面にロウ材を溶射してロウ材層を形成してもよ
く、この方法によれば更に材料コストを低減することが
可能となる。
In the production of the composite heat exchangers of the fourth and fifth embodiments, a method of integrally joining together by brazing in a furnace in a state where the constituent members are temporarily assembled is also adopted. In this case, the joining of the header member (7) and the flat tubes (3)... Or the plate members (30) of the modules (M1) to (M3) is performed as shown in FIG. Tube insertion holes (8a) corresponding to the tube insertion holes (71a) to (71c) on the joint side surface.
What is necessary is just to arrange | position the brazing sheet (8) which has-(8c), and to perform the said brazing in a furnace. As a result, the amount of expensive brazing sheet used can be minimized, and material costs can be reduced. Instead of using the brazing sheet (8), a brazing material layer may be formed by spraying a brazing material on the joint side surface of the header member (7), and this method further reduces the material cost. It becomes possible.

【0036】図6で示す第六実施例の複式熱交換器は、
二つの熱交換モジュール(M1)(M2)より構成され
るが、前記第四及び第五実施例と同様に、内部が長手方
向に連続する二つの中空部(90)(91)に区切られたヘ
ッダー部材(9)を用い、両中空部(90)(91)の各々
をモジュール(M1)(M2)のヘッダータンク(13)
としている。そして、ヘッダー部材(9)の両中空部
(90)(91)の片面側にはそれぞれ長孔状のチューブ挿
入孔(92a)(92b)が一定間隔置きに設けられてお
り、これらチューブ挿入孔(92a)(92b)に、両モジ
ュール(M1)(M2)の異なるチューブ幅(w7 )
(w8 )を有する各偏平チューブ(3)の絞り加工した
端部(3a)が挿嵌されている。
The dual heat exchanger of the sixth embodiment shown in FIG.
It is composed of two heat exchange modules (M1) and (M2), but is divided into two hollow portions (90) and (91) that are continuous in the longitudinal direction as in the fourth and fifth embodiments. Using the header member (9), each of the hollow portions (90) and (91) is connected to the header tank (13) of the module (M1) (M2).
And Elongated tube insertion holes (92a) (92b) are provided at regular intervals on one side of both hollow portions (90) (91) of the header member (9). (92a) and (92b) have different tube widths (w7) of both modules (M1) and (M2).
The drawn end (3a) of each flat tube (3) having (w8) is inserted.

【0037】しかるに、このヘッダー部材(9)では、
チューブ幅(w7 )が大きいモジュール(M1)側に対
応した広幅の中空部(90)には、偏平チューブ連結側の
壁部(90a)とこれに対向する壁部(90b)との間を繋
ぐ中間壁部(93)を有すると共に、この中間壁部(93)
の両側空間が当該中間壁部(93)に一定間隔置きに設け
た開口部(93a)で連通している。従って、ヘッダー部
材(9)は、強度的に弱い広幅の中空部(90)を有する
部分が中間壁部(93)で補強され、もって全体的にヘッ
ダータンクとして充分に耐え得る強度を具備している。
However, in this header member (9),
A wide hollow portion (90) corresponding to the module (M1) side having a large tube width (w7) connects a flat tube connecting side wall portion (90a) and a wall portion (90b) opposed thereto. Having an intermediate wall (93) and the intermediate wall (93);
Are connected to the intermediate wall (93) by openings (93a) provided at regular intervals. Therefore, the header member (9) is provided with a strength capable of sufficiently withstanding as a header tank as a whole, a portion having a wide hollow portion (90) which is weak in strength is reinforced by the intermediate wall portion (93). I have.

【0038】このようなヘッダー部材(9)を製造する
には、図7に示すように、当該ヘッダー部材(9)を偏
平チューブ連結側の内側枠体(9a)と非連結側の外側
枠体(9b)とに分割構成し、両枠体(9a)(9b)
を押出型材より製作し、内側枠体(9a)とする押出型
材にチューブ挿入孔(92a)(92b)を穿設する一方、
外側枠体(9b)とする押出型材に設けた凸条片(94)
の要所を切除することにより、中間壁部(93)とその開
口部(93a)を形成した上で、両(9a)(9b)を溶
接やロウ付けによって接合一体化すればよい。なお、ヘ
ッダー部材(9)を両枠体(9a)(9b)に分割する
際の分割形状は図示以外に種々設定可能であり、中間壁
部(93)を内側枠体(9a)の側に設けたり、ヘッダー
部材(9)を厚み方向に均等に二分割する構成として両
枠体(9a)(9b)を同一の押出型材より製作するよ
うにしてもよい。
To manufacture such a header member (9), as shown in FIG. 7, the header member (9) is connected to an inner frame (9a) on the flat tube connecting side and an outer frame on the non-connecting side. (9b) and the two frames (9a) and (9b).
Is manufactured from an extruded mold, and tube insertion holes (92a) and (92b) are formed in the extruded mold to be used as the inner frame (9a).
A convex strip (94) provided on an extruded die material to be an outer frame (9b)
By cutting out the important points (1) and (2), the intermediate wall (93) and the opening (93a) thereof are formed, and then both (9a) and (9b) may be joined and integrated by welding or brazing. The dividing shape when dividing the header member (9) into the two frames (9a) and (9b) can be variously set other than shown, and the intermediate wall portion (93) can be set on the side of the inner frame (9a). The two frame bodies (9a) and (9b) may be manufactured from the same extruded material as a configuration in which the header member (9) is equally divided into two in the thickness direction.

【0039】なお、上記の第六実施例では二つの熱交換
モジュール(M1)(M2)からなる複式熱交換器を例
示したが、3以上のモジュールからなる複式熱交換器に
おいて同様の中空部を有するヘッダー部材を用いる場合
でも、広幅となる中空部には中間壁部を設けて補強すれ
ばよい。また、中間壁部は最も広幅となる中空部に限ら
ず、複数又は全部の中空部に設けるようにしてもよい。
In the above-described sixth embodiment, a double heat exchanger composed of two heat exchange modules (M1) and (M2) has been described as an example. Even when a header member is used, an intermediate wall portion may be provided in a wide hollow portion to reinforce the hollow portion. Further, the intermediate wall portion is not limited to the hollow portion having the widest width, and may be provided in a plurality or all of the hollow portions.

【0040】ところで、複式熱交換器における各熱交換
モジュールに冷媒が二相流として流れる場合、ヘッダー
タンク内で気相成分と液相成分の密度差や速度差によっ
て気液分離が発生し易く、このためヘッダータンク内か
ら偏平チューブへの冷媒分配量が不均等になり、本来生
じ得る筈の熱交換量が得られにくくなる傾向がある。そ
こで、上記の気液分離を抑制する対策として、図8に示
す第七実施例の構造が推奨される。なお、この第七実施
例の構造は、既述した第一〜第六実施例の複式熱交換器
の各熱交換モジュール(M1)〜(M3)に適用し得る
ものである。
When the refrigerant flows as a two-phase flow through each heat exchange module in the double heat exchanger, gas-liquid separation easily occurs in the header tank due to a difference in density and a difference in velocity between the gas phase component and the liquid phase component. For this reason, the distribution amount of the refrigerant from the inside of the header tank to the flat tubes becomes uneven, and it tends to be difficult to obtain the amount of heat exchange that should occur originally. Therefore, as a measure for suppressing the above-mentioned gas-liquid separation, the structure of the seventh embodiment shown in FIG. 8 is recommended. The structure of the seventh embodiment can be applied to each of the heat exchange modules (M1) to (M3) of the duplex heat exchanger of the first to sixth embodiments described above.

【0041】すなわち、図8に示すように、第七実施例
の複式熱交換器の各熱交換モジュール(M)では、一対
のヘッダータンク(14)(15)に両端を連通させて平行
配置した多数本の偏平チューブ(3)…は、冷媒流入側
のヘッダータンク(14)内への端部の挿入深さ(h1 )
がタンク一端側の冷媒流入口(14a)から遠くなるに従
って順次深くなるように設定されている。しかして、こ
れら偏平チューブ(3)…は同じ長さを有しているた
め、冷媒流出側のヘッダータンク(15)内への端部の挿
入深さ(h2 )は、前記冷媒流入口(14a)とは対角線
位置にある冷媒流出口(15b)から遠くなるに従って深
くなっている。つまり(h1 )+(h2 )は全部の偏平
チューブ(3)…で一定になっている。なお、図中の
(16)は両ヘッダータンク(14)(15)の両端を封止す
るキャップである。
That is, as shown in FIG. 8, in each heat exchange module (M) of the composite heat exchanger of the seventh embodiment, both ends are communicated with a pair of header tanks (14) and (15) and arranged in parallel. The number of flat tubes (3) is the insertion depth (h1) of the end into the header tank (14) on the refrigerant inflow side.
Are set so as to gradually become deeper as the distance from the refrigerant inlet (14a) at one end of the tank increases. Since the flat tubes (3) have the same length, the insertion depth (h2) of the end into the header tank (15) on the refrigerant outflow side is determined by the refrigerant inlet (14a). ) Is deeper as the distance from the refrigerant outlet (15b) at the diagonal position increases. That is, (h1) + (h2) is constant in all the flat tubes (3). (16) in the figure is a cap for sealing both ends of both header tanks (14) and (15).

【0042】この第七実施例の構成によれば、本来は冷
媒流入口(14a)から遠い位置にある偏平チューブ
(3)ほど冷媒が流入しにくくなるが、冷媒流入口(14
a)から遠くなるに従って挿入深さ(h1 )を大きくす
る偏平チューブ(3)…によってヘッダータンク(14)
内の冷媒流路が狭められることから、矢印(r)方向へ
向かう冷媒の圧力が低下せず、気相成分と液相成分の密
度差や速度差による気液分離が発生しにくくなり、もっ
て全部の偏平チューブ(3)…に均等に冷媒が分配され
る結果、高い熱交換効率が得られる。また、この場合に
は偏平チューブ(3)…が同じ長さでよいため、挿入深
さ(h1 )を順次異ならせるにも関わらず部品種の増加
を招かず、部材の製作及び管理上で有利であると共に、
熱交換器の組立製作の際に偏平チューブ(3)…の組み
付け順序を誤る懸念がない。
According to the configuration of the seventh embodiment, the flat tube (3) that is originally farther from the refrigerant inlet (14a) is more difficult for the refrigerant to flow in.
Header tank (14) by flat tubes (3) ... that increase insertion depth (h1) with distance from a)
Since the refrigerant flow path in the inside is narrowed, the pressure of the refrigerant in the direction of the arrow (r) does not decrease, and gas-liquid separation due to the density difference and the speed difference between the gas phase component and the liquid phase component becomes difficult to occur. As a result of the refrigerant being evenly distributed to all the flat tubes (3), high heat exchange efficiency can be obtained. In this case, since the flat tubes (3) can have the same length, the insertion depth (h1) is sequentially changed, but this does not increase the number of parts, and is advantageous in the production and management of members. And
When assembling and manufacturing the heat exchanger, there is no concern that the assembling order of the flat tubes (3)...

【0043】なお、ヘッダータンク(14)の冷媒流入口
(14a)は、タンク中間部に設けてもよいし、複数箇所
に設けてもよい。これらの場合でも、冷媒流入口(14
a)の位置を基準にして偏平チューブ(3)…の挿入深
さを順次異ならせる(遠くなるほど挿入を深くする)よ
うに設定すればよい。
The refrigerant inlet (14a) of the header tank (14) may be provided in the middle of the tank or at a plurality of locations. In these cases, the refrigerant inlet (14
The insertion depth of the flat tubes (3)... may be set to be sequentially different (the insertion depth increases as the distance increases) based on the position a).

【0044】以上の実施例では複式熱交換器として2又
は3の熱交換モジュールより構成されるものを例示した
が、この発明は4以上の熱交換モジュールからなる複式
熱交換器にも適用可能である。また、各モジュールにお
けるヘッダータンクの断面形状、偏平チューブの本数、
モジュール相互の偏平チューブの幅の比率、冷媒導出入
口の構造及び位置、冷媒回路構成等、細部構成について
は実施例以外に種々設計変更可能である。
In the above embodiment, a double heat exchanger constituted by two or three heat exchange modules has been exemplified. However, the present invention is also applicable to a double heat exchanger comprising four or more heat exchange modules. is there. The cross-sectional shape of the header tank in each module, the number of flat tubes,
The design of the detailed configuration such as the ratio of the width of the flat tube between the modules, the structure and position of the refrigerant outlet, the refrigerant circuit configuration, and the like can be variously changed in addition to the embodiment.

【0045】[0045]

【発明の効果】請求項1の発明によれば、複数の熱交換
モジュールが重なる形に並列配置して全モジュールにわ
たる一連の冷媒回路を構成した複式熱交換器として、空
気の流れ方向に対応して冷媒の乾き度の高い側にあるモ
ジュールほど偏平チューブの幅が大きいことから、冷媒
側の圧力損失が小さいものが提供される。
According to the first aspect of the present invention, a plurality of heat exchange modules are arranged in parallel in an overlapping manner to constitute a series of refrigerant circuits over all the modules. Since the width of the flat tube is larger in a module having a higher degree of dryness of the refrigerant, a module having a smaller pressure loss on the refrigerant side is provided.

【0046】請求項2の発明によれば、上記の複式熱交
換器として、複数の熱交換モジュールが相互のヘッダー
タンクの並び方向を偏平チューブの長手方向に対して斜
交するように位置をずらせて配置していることから、設
置部位の周辺状況による空間的制約のために熱交換器を
空気の流れ方向に対して傾斜状態で設置する必要がある
場合に、コア部を通過する空気の有効流路幅を広くでき
ると共に、複式熱交換器全体として薄型化に適したもの
が提供される。
According to the second aspect of the present invention, as the above-mentioned multiple heat exchanger, the plurality of heat exchange modules are displaced so that the arrangement direction of the header tanks is oblique to the longitudinal direction of the flat tubes. When the heat exchanger needs to be installed inclined with respect to the air flow direction due to space restrictions due to the surrounding conditions of the installation site, the air passing through the core is effective. A flow path width can be widened and a heat exchanger suitable for thinning as a whole of a double heat exchanger is provided.

【0047】請求項3の発明によれば、上記の複式熱交
換器において、複数の熱交換モジュールのヘッダータン
クが単一のヘッダー部材にて構成されることから、部材
点数が少なく、組立製作の作業性が向上すると共に製作
コストも低減するという利点がある。
According to the third aspect of the present invention, since the header tank of the plurality of heat exchange modules is constituted by a single header member in the above-mentioned multiple heat exchanger, the number of members is small, and the assembly and production are simplified. There is an advantage that workability is improved and manufacturing cost is reduced.

【0048】請求項4の発明によれば、上記のヘッダー
部材を用いる複式熱交換器において、該ヘッダー部材の
広幅の中空部に中間壁部を有することから、本来は強度
的に弱い中空部の部分が補強され、ヘッダータンクとし
て必要な強度を確保できるという利点がある。
According to the fourth aspect of the present invention, in the double heat exchanger using the above header member, the intermediate wall portion is provided in the wide hollow portion of the header member. There is an advantage that the part is reinforced and required strength as a header tank can be secured.

【0049】請求項5の発明によれば、上記の複式熱交
換器として、各熱交換モジュールの偏平チューブがヘッ
ダータンク内への挿入深さをチューブ毎に順次異なるよ
うに取り付けられていることから、多数の偏平チューブ
への冷媒分配量が均等化され、もって高い熱交換効率が
得られるものが提供される。
According to the fifth aspect of the present invention, since the flat tubes of each heat exchange module are mounted so that the insertion depth into the header tank is sequentially different for each tube as the above-mentioned double heat exchanger. In addition, the present invention provides an apparatus in which the amount of refrigerant distributed to a number of flat tubes is equalized, thereby achieving high heat exchange efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の第一及び第二実施例を示し、
(イ)図は第一実施例の複式熱交換器の斜視図、(ロ)
図は第一実施例の複式熱交換器の蛇行状フィンを省いて
示す縦断側面図、(ハ)図は第二実施例の複式熱交換器
の蛇行状フィンを省いて示す縦断側面図である。
FIG. 1 shows first and second embodiments of the present invention;
(A) is a perspective view of the duplex heat exchanger of the first embodiment, (B)
The figure is a vertical cross-sectional side view of the duplex heat exchanger of the first embodiment without the meandering fins, and the (c) diagram is a vertical cross-sectional view of the double heat exchanger of the second embodiment without the meandering fins. .

【図2】 同第三実施例を示し、(イ)図は複式熱交換
器全体の概略側面図、(ロ)図は複式熱交換器の設置状
態の概略側面図である。
FIGS. 2A and 2B show a third embodiment of the present invention, wherein FIG. 2A is a schematic side view of the entire double heat exchanger, and FIG. 2B is a schematic side view of the installed state of the double heat exchanger.

【図3】 同第四及び第五実施例を示し、(イ)図は第
四実施例の複式熱交換器の蛇行状フィンを省いて示す要
部の縦断側面図、(ロ)図は第五実施例の複式熱交換器
の蛇行状フィンを省いて示す要部の縦断側面図である。
FIGS. 3A and 3B show a fourth embodiment and a fifth embodiment, respectively. FIG. 3A is a longitudinal sectional side view of a main part of the compound heat exchanger of the fourth embodiment with the meandering fins omitted, and FIG. It is a longitudinal section side view of the important section which omits the meandering fin of the compound heat exchanger of a 5th embodiment.

【図4】 同第四及び第五実施例で用いる偏平チューブ
を示し、(イ)図は第四実施例の偏平チューブの横断面
図、(ロ)図は第五実施例の偏平チューブの横断面図で
ある。
FIGS. 4A and 4B show flat tubes used in the fourth and fifth embodiments. FIG. 4A is a cross-sectional view of the flat tube of the fourth embodiment, and FIG. 4B is a cross section of the flat tube of the fifth embodiment. FIG.

【図5】 同第四及び第五実施例で用いるヘッダー部材
とブレージングシートの斜視図である。
FIG. 5 is a perspective view of a header member and a brazing sheet used in the fourth and fifth embodiments.

【図6】 同第六実施例の複式熱交換器の蛇行状フィン
を省いて示す要部の縦断側面図である。
FIG. 6 is a vertical sectional side view of a main part of the duplex heat exchanger according to the sixth embodiment, with the meandering fins omitted.

【図7】 同第六実施例で用いるヘッダー部材を構成す
る内側枠体と外側枠体の斜視図である。
FIG. 7 is a perspective view of an inner frame and an outer frame constituting a header member used in the sixth embodiment.

【図8】 同第七実施例の複式熱交換器における熱交換
モジュールの縦断正面図である。
FIG. 8 is a vertical sectional front view of a heat exchange module in the compound heat exchanger of the seventh embodiment.

【図9】 従来の複式熱交換器の構成例を示す斜視図で
ある。
FIG. 9 is a perspective view showing a configuration example of a conventional double heat exchanger.

【符号の説明】[Explanation of symbols]

M,M1〜M3・・・熱交換モジュール 1,2・・・・・・・ヘッダータンク 3・・・・・・・・・偏平チューブ 4・・・・・・・・・蛇行状フィン 6a・・・・・・・・冷媒導入口 6b・・・・・・・・冷媒導出口 7・・・・・・・・・ヘッダー部材 7a〜7c・・・・・中空部 9・・・・・・・・・ヘッダー部材 90・・・・・・・・広幅の中空部 90a・・・・・・・偏平チューブ連結側の壁部 90b・・・・・・・対向する壁部 93・・・・・・・・中間壁部 93a・・・・・・・開口部 10・・・・・・・・コア部 11〜13・・・・・ヘッダータンク O・・・・・・・・・ヘッダータンクの並び方向 P・・・・・・・・・偏平チューブの長手方向 a・・・・・・・・・空気の流れ方向 r・・・・・・・・・冷媒の流れ方向 w1 〜w7 ・・・・・チューブ幅 h1 ,h2 ・・・・・挿入深さ M, M1 to M3: heat exchange module 1, 2, ... header tank 3 ... flat tube 4 ... meandering fin 6a ······· Refrigerant inlet 6b ······· Refrigerant outlet 7 ······ Header member 7a to 7c ······················ ····· Header member 90 ··································································································································· ······ Intermediate wall part 93a ·································································· Header tank Tank arrangement direction P: Longitudinal direction of flat tube a: Air flow direction r: Refrigerant flow ... Tube width h1, h2... Insertion depth

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳竹 敏則 堺市海山町6丁224番地 昭和アルミニウ ム株式会社内 Fターム(参考) 3L103 AA01 AA06 AA11 AA17 AA37 BB38 BB42 CC18 CC30 DD08 DD32 DD34 DD42 DD69  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshinori Tokutake 6, 224 Kaiyama-cho, Sakai-shi F-term in Showa Aluminum Co., Ltd. (Reference) 3L103 AA01 AA06 AA11 AA17 AA37 BB38 BB42 CC18 CC30 DD08 DD32 DD34 DD42 DD69

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 対置した一対のヘッダータンクと、両ヘ
ッダータンクに両端を連通させて平行配置した多数本の
熱交換管とを備えた複数の熱交換モジュールからなり、
これらモジュールが重なる形に並列配置して一連の冷媒
回路を構成する複式熱交換器において、 各熱交換モジュールの熱交換管が互いに偏平面を対向し
て配置した偏平チューブからなり、空気の流れ方向に対
応して冷媒の乾き度の高い側にあるモジュールの偏平チ
ューブが、同乾き度の低い側にあるモジュールの偏平チ
ューブよりも大きいチューブ幅を有することを特徴とす
る複式熱交換器。
1. A heat exchange module comprising a pair of header tanks opposed to each other and a plurality of heat exchange tubes arranged in parallel with both ends communicating with both header tanks,
In a composite heat exchanger in which these modules are arranged in parallel in an overlapping manner to form a series of refrigerant circuits, the heat exchange tubes of each heat exchange module are formed of flat tubes with their flat surfaces facing each other, and the air flow direction 2. The double heat exchanger according to claim 1, wherein the flat tubes of the module on the side with the higher dryness of the refrigerant have a larger tube width than the flat tubes of the module on the side with the lower dryness.
【請求項2】 複数の熱交換モジュールは、相互のヘッ
ダータンクの並び方向が偏平チューブの長手方向に対し
て斜交するように位置をずらせて配置してなる請求項1
記載の複式熱交換器。
2. The heat exchange module according to claim 1, wherein the positions of the header tanks are shifted from each other so that the arrangement direction of the header tanks is oblique to the longitudinal direction of the flat tubes.
The double heat exchanger as described.
【請求項3】 内部が長手方向に連続する複数の中空部
に区切られたヘッダー部材を備え、該ヘッダー部材の各
中空部が各熱交換モジュールのヘッダータンクを構成す
る請求項1記載の複式熱交換器。
3. The dual heat exchanger according to claim 1, further comprising a header member having an interior partitioned into a plurality of hollow portions continuous in the longitudinal direction, wherein each hollow portion of the header member constitutes a header tank of each heat exchange module. Exchanger.
【請求項4】 ヘッダー部材は、少なくとも最も広幅の
中空部に、偏平チューブ連結側の壁部とこれに対向する
壁部との間を繋ぐ中間壁部を有すると共に、この中間壁
部の両側空間が当該中間壁部の開口部で連通してなる請
求項3記載の複式熱交換器。
4. The header member has, at least in the widest hollow portion, an intermediate wall portion connecting a wall portion on the flat tube connecting side and a wall portion facing the flat tube connecting side portion, and a space on both sides of the intermediate wall portion. 4. The double heat exchanger according to claim 3, wherein the heat exchanger communicates with an opening of the intermediate wall.
【請求項5】 各熱交換モジュールの偏平チューブは、
ヘッダータンク内への挿入深さがチューブ毎に順次異な
るように取り付けられてなる請求項1〜4のいずれかに
記載の複式熱交換器。
5. The flat tube of each heat exchange module,
The double heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is mounted so that the insertion depth into the header tank is sequentially different for each tube.
JP32162299A 1999-11-11 1999-11-11 Compound heat exchanger Pending JP2001141379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32162299A JP2001141379A (en) 1999-11-11 1999-11-11 Compound heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32162299A JP2001141379A (en) 1999-11-11 1999-11-11 Compound heat exchanger

Publications (1)

Publication Number Publication Date
JP2001141379A true JP2001141379A (en) 2001-05-25

Family

ID=18134579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32162299A Pending JP2001141379A (en) 1999-11-11 1999-11-11 Compound heat exchanger

Country Status (1)

Country Link
JP (1) JP2001141379A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337084C (en) * 2003-09-16 2007-09-12 株式会社电装 Heat exchanger module
JP2008180479A (en) * 2007-01-26 2008-08-07 Showa Denko Kk Heat exchanger
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device
US7637314B2 (en) * 2005-01-27 2009-12-29 Halla Climate Control Corporation Heat exchanger
JP2013002758A (en) * 2011-06-17 2013-01-07 Denso Corp Cooling device for vehicle
KR101260780B1 (en) * 2010-12-23 2013-05-06 한라비스테온공조 주식회사 Cold reserving system for vehicle
EP2699863A1 (en) * 2011-04-21 2014-02-26 Valeo Systemes Thermiques Heat exchanger for a heating, ventilation and/or air-conditioning unit
KR101389666B1 (en) 2008-03-24 2014-04-28 한라비스테온공조 주식회사 External type oil cooler
KR101437055B1 (en) * 2012-03-19 2014-09-02 한라비스테온공조 주식회사 A heat exchanger equipped with cold reserving part
JP5665983B2 (en) * 2011-06-24 2015-02-04 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus
WO2015030173A1 (en) * 2013-09-02 2015-03-05 ダイキン工業株式会社 Heat recovery-type refrigeration device
CN107003088A (en) * 2014-11-26 2017-08-01 三电控股株式会社 Heat exchanger
CN107764082A (en) * 2016-08-18 2018-03-06 浙江盾安热工科技有限公司 A kind of micro-channel heat exchanger
CN111121516A (en) * 2018-10-31 2020-05-08 马勒国际有限公司 Heat exchanger for air conditioning system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337084C (en) * 2003-09-16 2007-09-12 株式会社电装 Heat exchanger module
US7637314B2 (en) * 2005-01-27 2009-12-29 Halla Climate Control Corporation Heat exchanger
JP2008180479A (en) * 2007-01-26 2008-08-07 Showa Denko Kk Heat exchanger
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device
KR101389666B1 (en) 2008-03-24 2014-04-28 한라비스테온공조 주식회사 External type oil cooler
KR101260780B1 (en) * 2010-12-23 2013-05-06 한라비스테온공조 주식회사 Cold reserving system for vehicle
EP2699863A1 (en) * 2011-04-21 2014-02-26 Valeo Systemes Thermiques Heat exchanger for a heating, ventilation and/or air-conditioning unit
JP2013002758A (en) * 2011-06-17 2013-01-07 Denso Corp Cooling device for vehicle
JP5665983B2 (en) * 2011-06-24 2015-02-04 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus
KR101437055B1 (en) * 2012-03-19 2014-09-02 한라비스테온공조 주식회사 A heat exchanger equipped with cold reserving part
WO2015030173A1 (en) * 2013-09-02 2015-03-05 ダイキン工業株式会社 Heat recovery-type refrigeration device
JP2015049000A (en) * 2013-09-02 2015-03-16 ダイキン工業株式会社 Heat recovery type refrigeration device
CN105492833A (en) * 2013-09-02 2016-04-13 大金工业株式会社 Heat recovery-type refrigeration device
US20160209084A1 (en) * 2013-09-02 2016-07-21 Daikin Industries, Ltd. Heat recovery refrigeration device
AU2014312825B2 (en) * 2013-09-02 2017-01-05 Daikin Industries, Ltd. Heat recovery refrigeration device
CN107003088A (en) * 2014-11-26 2017-08-01 三电控股株式会社 Heat exchanger
CN107764082A (en) * 2016-08-18 2018-03-06 浙江盾安热工科技有限公司 A kind of micro-channel heat exchanger
CN111121516A (en) * 2018-10-31 2020-05-08 马勒国际有限公司 Heat exchanger for air conditioning system

Similar Documents

Publication Publication Date Title
JP3814917B2 (en) Stacked evaporator
JP4122578B2 (en) Heat exchanger
US20050230090A1 (en) Layered heat exchangers
US20050223739A1 (en) Evaporator
JP2001141379A (en) Compound heat exchanger
JPH0712778U (en) Stacked heat exchanger
US20040134645A1 (en) Layered heat exchangers
JPH07280484A (en) Stacked type heat exchanger
KR100497847B1 (en) Evaporator
US20020153129A1 (en) Integral fin passage heat exchanger
JP3909401B2 (en) Stacked heat exchanger
JP3661275B2 (en) Stacked evaporator
JP2001041678A (en) Heat exchanger
JPH10111086A (en) Heat exchanger
JPH0894274A (en) Accumulated type heat exchanger
EP0935115B1 (en) Heat exchanger constructed by plural heat conductive plates
JPH051865A (en) Aluminum made condenser for air condioner
JPH0531432Y2 (en)
JPH08271167A (en) Heat exchanger
JPH0345301B2 (en)
JPH11337292A (en) Heat exchanger
JP3095540B2 (en) Stacked heat exchanger
JP2529066Y2 (en) Stacked evaporator
JP2540836B2 (en) Stacked heat exchanger
JP2542253Y2 (en) Heat exchanger