JP2568284B2 - Automatic operation method of air liquefaction separation device - Google Patents

Automatic operation method of air liquefaction separation device

Info

Publication number
JP2568284B2
JP2568284B2 JP1336236A JP33623689A JP2568284B2 JP 2568284 B2 JP2568284 B2 JP 2568284B2 JP 1336236 A JP1336236 A JP 1336236A JP 33623689 A JP33623689 A JP 33623689A JP 2568284 B2 JP2568284 B2 JP 2568284B2
Authority
JP
Japan
Prior art keywords
amount
product
air
separation device
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1336236A
Other languages
Japanese (ja)
Other versions
JPH03199881A (en
Inventor
博志 地作
計利 田代
伸彦 安東
健 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Steel Corp
Original Assignee
Fuji Electric Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP1336236A priority Critical patent/JP2568284B2/en
Publication of JPH03199881A publication Critical patent/JPH03199881A/en
Application granted granted Critical
Publication of JP2568284B2 publication Critical patent/JP2568284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、製鉄所内において使用される製品酸素
(O2),製品窒素(N2),廃窒素,アルゴン(Ar)等を
生成する空気分離液化装置(以下、酸素プラントともい
う)において、プラントの状況、つまり酸素純度,窒素
純度,現在の発生量等に応じ、オペレータ入力された目
標発生量を得るように自動的に増減操作する空気分離液
化装置の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to air used in a steel mill to produce product oxygen (O 2 ), product nitrogen (N 2 ), waste nitrogen, argon (Ar), etc. In a separation and liquefaction device (hereinafter also referred to as an oxygen plant), air that is automatically increased / decreased to obtain a target generation amount input by an operator, depending on plant conditions, that is, oxygen purity, nitrogen purity, current generation amount, etc. The present invention relates to a method of operating a separation / liquefaction device.

〔従来の技術〕[Conventional technology]

第5図は酸素プラントの概略を示すブロック図であ
る。
FIG. 5 is a block diagram showing an outline of an oxygen plant.

すなわち、原料となる空気は空気濾過器を経て空気圧
縮機で約5kg/cm2に圧縮加工された後,水洗冷却塔で冷
却洗浄される。次に熱交換器に入り製品酸素,製品窒素
および廃窒素と熱交換して約−170℃近くまで冷却さ
れ、精溜塔下塔に導かれる。下塔に導入された空気は予
備精溜され、下塔の頂部で窒素分に富んだ窒素ガスを得
るとともに下塔の底部で酸素成分約40%の液体空気とな
る。なお、下塔の中間部より抽出された気体空気は熱交
換器における原料空気との熱交換に用いられる後膨張タ
ービンに入り、ここで寒冷を発生した後上塔に導かれ
る。一方、下塔の底部に溜まった液体空気、頂部および
頂部近傍に溜まった窒素分を多く含む液体窒素は各々導
管を通って上塔の中部,上部および上部近傍へ導かれ
る。さらに、上塔で精溜分離され、上塔底部より製品酸
素ガス,頂部より製品窒素ガス、中部より廃窒素ガスと
して抽出され、上述の如く熱交換器内で原料空気と熱交
換後、外部へ供給される。一方、原料アルゴンガスは上
塔中部近傍より抽出され、導管を通って粗アルゴン塔へ
供給される。
That is, the air as a raw material is passed through an air filter, compressed into about 5 kg / cm 2 by an air compressor, and then cooled and washed in a washing and cooling tower. Next, it enters a heat exchanger and exchanges heat with product oxygen, product nitrogen, and waste nitrogen, is cooled to about -170 ° C, and is guided to the lower column of the rectification column. The air introduced into the lower tower is preliminarily rectified to obtain nitrogen gas rich in nitrogen at the top of the lower tower and becomes liquid air having an oxygen content of about 40% at the bottom of the lower tower. The gaseous air extracted from the middle part of the lower tower enters a post-expansion turbine used for heat exchange with the raw material air in the heat exchanger, where cold is generated and then guided to the upper tower. On the other hand, liquid air accumulated at the bottom of the lower tower and liquid nitrogen containing a large amount of nitrogen accumulated at the top and the vicinity of the top are introduced into the middle, upper and vicinity of the upper tower respectively through conduits. Further, it is rectified and separated in the upper tower, and is extracted as product oxygen gas from the bottom of the upper tower, product nitrogen gas from the top, and waste nitrogen gas from the middle. After heat exchange with the raw material air in the heat exchanger as described above, it is discharged to the outside. Supplied. On the other hand, the raw material argon gas is extracted from the vicinity of the middle part of the upper tower and supplied to the crude argon tower through a conduit.

従来、このような酸素プラントに対する発生量の増減
操作に当たっては、多くのプロセスデータをオペレータ
が判断して手動操作するのが一般的であるが、最近は計
算機を導入して自動化している例もある。
Conventionally, in the operation of increasing or decreasing the generation amount in such an oxygen plant, it is general that an operator judges a lot of process data and manually operates it, but recently, an example of introducing a computer and automating it is also available. is there.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、いずれの方法にも以下の如き問題があ
る。
However, both methods have the following problems.

オペレータ(人間)による運転の場合 (1)人手によることから、たとえ熟練者であっても多
くの情報をもとに判断する必要があるため誤操作も生じ
易く、しかも酸素プラント自体が大きな時定数を持つた
め長時間を要する。したがって、オペレータの精神的,
肉体的負担が大きくなる。
In the case of operation by an operator (human) (1) Even if it is a skilled person, it is necessary to make a judgment based on a lot of information because it is a manual operation, and it is easy for an erroneous operation to occur, and the oxygen plant itself has a large time constant. It takes a long time to hold. Therefore, the mental of the operator,
Physical burden increases.

(2)誤操作により、純度等の悪化が生じた場合、酸素
プラント自体が大きな時定数を持つため純度の回復安定
に多大の時間を要し、各使用先への安定供給に支障を来
す。
(2) When the purity or the like is deteriorated due to an erroneous operation, the oxygen plant itself has a large time constant, so that it takes a long time to recover and stabilize the purity, which hinders stable supply to each user.

(3)酸素製造量を変化させるには、熟練した手間のか
かる作業を必要とするため、使用量の変化に的確に追従
することが難しい。
(3) Since changing the oxygen production amount requires skilled and time-consuming work, it is difficult to accurately follow the change in the amount used.

(4)使用先に対して供給量の不足による操業上の支障
を及ぼしてはならないという事情を考慮して、使用先で
実際に必要とする以上の製造を行ない。余剰分は未使用
のまま放散させているため、無駄が多い。
(4) In consideration of the fact that the supply destination should not hinder the operation due to the shortage of the supply amount, the production is performed more than is actually required at the use destination. The surplus is used as it is and is diffused, so there is much waste.

(5)発生量変更に伴う純度以上を回避すべく余裕を見
込んだ操作を行なう傾向にあるため、未使用のまま放散
させるという無駄が生じる。
(5) Since there is a tendency to perform an operation with an allowance in order to avoid the purity or more due to the change in the amount of generation, there is a waste of dissipating it unused.

(6)比較的経験の浅いオペレータにとっては、充分な
熟練運転を期待することが難しい。
(6) It is difficult for a relatively inexperienced operator to expect sufficient skilled operation.

(7)たとえ、熟練したオペレータであっても、個人差
が生じる。
(7) Even a skilled operator has individual differences.

計算機による自動運転の場合 (1)酸素プラントにて得られる製品酸素のみまたはア
ルゴンのみに関する増減操作に限られ、それ以外の製品
窒素の増減を同時に逆方向の操作ができない。
In the case of automatic operation by computer (1) It is limited to the increase / decrease operation related to only product oxygen or only argon obtained in the oxygen plant, and other product nitrogen cannot be increased / decreased at the same time in the opposite direction.

したがって、この発明の課題は、 (1)自動化による作業の標準化および省略化 (2)余剰発生時の放散等のロス防止 (3)最適運転によるコスト低減 (4)誤操作の防止 (5)オペレータの負担軽減 などを図ることにある 〔課題を解決するための手段〕 上記課題解決のため、本発明による空気液化分離装置
の自動運転方法では、空気を原料として酸素、窒素等を
製品として製造し、需要側へ供給する空気液化分離装置
において、需要側から要求される製品の製造量が不規則
に変動するにもかかわらず、それに応じて該液化分離装
置を自動運転するに際して、 前記需要側から特定製品の製造量の不規則な増減要求
があったとき、その要求に応じることが、空気液化分離
装置の運転の現状から可能か否かを判定する増減操作可
否判定テーブルと、 前記空気液化分離装置の運転経験を基礎として、需要
側から要求される製品製造の増減量に関連して原料供給
量が適切であるか否かを前件部(if部)の変数とし、そ
れに対処する原料供給関連の操作端の選定、及び選定さ
れた操作端の操作量を後件部(then部)の変数として設
定された推論規則から成る第1の知識ベースと、 前記空気液化分離装置の運転経験を基礎として、該液
化分離装置の運転中に発生し得る製品の品質異常のデー
タを前件部(if部)の変数とし、それに対処する品質回
復のための調節操作を後件部(then部)の変数として設
定された推論規則から成る第2の知識ベースと、を設け
ることとした。
Therefore, the problems of the present invention are (1) standardization and omission of work by automation (2) prevention of loss such as emission when surplus occurs (3) cost reduction by optimal operation (4) prevention of erroneous operation (5) operator In order to solve the above problems, in the automatic operation method of the air liquefaction separation device according to the present invention, oxygen is used as a raw material to produce oxygen, nitrogen and the like as products, In the air liquefaction separation device to be supplied to the demand side, when the liquefaction separation device is automatically operated in response to the irregular fluctuations in the production amount of the product required from the demand side, the demand side specifies When there is an irregular increase / decrease request for the production amount of a product, it is judged whether it is possible to meet the request from the current operating condition of the air liquefaction separation device. Based on the operating experience of the air liquefaction separation device, the variable of the antecedent part (if part) is whether or not the raw material supply amount is appropriate in relation to the increase / decrease amount of product manufacturing requested from the demand side. And a first knowledge base consisting of an inference rule which is set as a variable of a consequent part (then part) by selecting an operation end related to raw material supply corresponding to it, and an operation amount of the selected operation end. Based on the operation experience of the liquefaction separation device, the data of the product quality abnormality that may occur during the operation of the liquefaction separation device is used as the variable of the antecedent part (if part), and the adjustment operation for the quality recovery to cope with it is taken. A second knowledge base consisting of inference rules set as variables of the consequent part (then part) is to be provided.

〔作用〕 そして前記増減操作可否判定テーブルにおいて増減操
作可と判定されたとき、次に前記第1の知識ベースを参
照することにより、要求された増減量に関連して原料供
給量が適切であるか否かに対応した最適な操作端及びそ
の操作量を判定して実行し、空気液化分離装置の操作中
に製品の品質異常が検出されたときは、その品質異常を
示すデータから、前記第2の知識ベースを参照すること
により、その品質異常を回復させるための調節操作を判
定して実行する。
[Operation] When it is determined in the increase / decrease operation propriety determination table that the increase / decrease operation is possible, the raw material supply amount is appropriate in relation to the requested increase / decrease amount by referring to the first knowledge base. If the product quality abnormality is detected during the operation of the air liquefaction separation device, the optimum operation end and its operation amount corresponding to whether or not the operation end is determined and executed. By referring to the knowledge base of No. 2, the adjustment operation for recovering the quality abnormality is determined and executed.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示すブロック図、第2図
は増減操作可否判定テーブルを示す構成図、第3図は製
品酸素発生量の変更を伴う原料空気量を説明するための
グラフ、第4図は原料空気量の変更に見合う還流液調節
弁の弁開度を説明するためのグラフである。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing an increase / decrease operation propriety determination table, and FIG. 3 is a graph for explaining a raw material air amount accompanying a change in product oxygen generation amount, FIG. 4 is a graph for explaining the valve opening degree of the reflux liquid control valve corresponding to the change of the raw material air amount.

第1図において、1は計算機システム、2は計測制御
装置、3は酸素プラント、4はCRT、5はプリンタであ
る。すなわち、計測制御装置2を介して制御される酸素
プラント3の運転を行なう計算機システム1はマン・マ
シンインタフェース11,増減操作可否判定テーブル12,定
数ファイル13,エキスパートシステム14,入力処理部15お
よび制御出力部16等より構成され、さらにエキスパート
システムは推論機構と、酸素プラントの運転のノウハウ
や手順を「〜の時に〜をする」という「ifデータの状態
then操作」のルール形式と「ifデータの状態」や「then
操作」の具体的な内容は比較論理式や四則演算などの数
式で表現した知識ベースとから構成されている。つま
り、推論機構により得られらた値、すなわち「ifデータ
の状態」が一致するルールを知識ベースから検索し、
「then操作」に定義された最適な操作端、および操作量
は計測制御装置に伝送されるのと同時に、推論を実施す
る毎に推論によって得られた値および操作量がオペレー
タに通知されるとともに、帳票に印字される 増減操作に関わるエキスパートシステム14は、オペレ
ータが運用監視画面4から製品酸素,製品窒素,粗アル
ゴンの発生量をいずれか1つ、または複数同時に発生量
指示値を入力することによって起動され、現在の流量
(原料空気量,製品酸素量,製品窒素量,粗アルゴン
量)や純度(製品酸素純度,製品窒素純度,粗アルゴン
中酸素濃度),上塔底部の液体酸素液位(レベル),下
塔から上塔への液体窒素(還流液)流量を調節する弁の
弁開度などのプロセスデータと、上記のように「ifデー
タの状態then操作」のルール形式で表現された知識ベー
スにおいて、「ifデータの状態」が一致するルールを知
識ベースから検索し、「then操作」に定義された操作端
や操作量を設定変更しながら増減操作を行なう。その概
略手順は以下のとおりである。
In FIG. 1, 1 is a computer system, 2 is a measurement control device, 3 is an oxygen plant, 4 is a CRT, and 5 is a printer. That is, the computer system 1 for operating the oxygen plant 3 controlled via the measurement control device 2 has a man-machine interface 11, an increase / decrease operation availability determination table 12, a constant file 13, an expert system 14, an input processing unit 15, and a control. The expert system is composed of the output unit 16 and so on, and the expert system has an inference mechanism and the know-how and procedure for operating the oxygen plant, which states "if the state of if data".
Rule format of "then operation" and "if data state" or "then
The concrete contents of "operation" are composed of a knowledge base expressed by a mathematical expression such as a comparison logical expression or four arithmetic operations. In other words, the value obtained by the inference mechanism, that is, the rule in which the "state of the if data" matches, is searched from the knowledge base,
The optimum operation end and operation amount defined in “then operation” are transmitted to the measurement control device, and at the same time, the operator is notified of the value and operation amount obtained by inference every time inference is performed. , The expert system 14 related to the increase / decrease operation is printed on the form. The operator must input any one of the product oxygen, product nitrogen, and crude argon generation amounts from the operation monitoring screen 4 or a plurality of emission amount instruction values at the same time. The current flow rate (amount of raw material air, amount of product oxygen, amount of product nitrogen, amount of crude argon), purity (product oxygen purity, product nitrogen purity, oxygen concentration in crude argon), liquid oxygen level at the top of the upper column (Level), process data such as the valve opening of the valve that regulates the flow rate of liquid nitrogen (reflux liquid) from the lower tower to the upper tower, and as described above in the rule format of "if data state then operation" In the created knowledge base, a rule matching the “state of if data” is searched from the knowledge base, and the increase / decrease operation is performed while changing the setting of the operation end and the operation amount defined in the “then operation”. The outline procedure is as follows.

オペレータが運用監視画面4を用いて製品酸素,製品
窒素,粗アルゴンの発生量設定値いずれか1つ(他は現
状発生量維持)、あるいは複数同時に入力する。
The operator uses the operation monitoring screen 4 to input any one of product oxygen, product nitrogen, and crude argon generation amount setting values (others maintain the current generation amount) or a plurality of values at the same time.

この入力された値に誤り(定常運転時の発生量上下限
値の範囲を越えている)があるか否かを判定し、設定値
に誤りがあればその旨をオペレータに通知し、再入力を
促す。設定値に誤りが無ければ現在の製品酸素,製品窒
素,粗アルゴンの発生量と比較して新たに入力された設
定値の方が大きければ増量操作、設定値の方が小さけれ
ば減量操作の如く各操作項目(操作パターン)を自動的
に判定し、次に進む。
It is judged whether or not there is an error in this input value (exceeding the upper and lower limits of the amount generated during steady operation), and if there is an error in the set value, the operator is notified of that fact and re-input. Encourage. If there is no mistake in the set value, it is compared with the current amount of product oxygen, product nitrogen, and crude argon generated, and if the newly entered set value is larger, it is an increase operation, and if the set value is smaller, it is a decrease operation. Each operation item (operation pattern) is automatically determined, and the process proceeds to the next.

現在のプラント状況(製品酸素純度,製品窒素純度,
粗アルゴン中酸素濃度,液体酸素レベルが良化傾向か悪
化傾向か安定領域なのか)に対して、指定操作(操作項
目)が可能か否かを第2図に示す如き増減操作可否判定
テーブル12を用いて判定する。例えば、酸素増量単独操
作(現在の製品酸素発生量のみを増量し、他の製品窒素
発生量や粗アルゴン発生量は現状維持とする操作)の場
合、製品酸素純度が安定(製品品質として管理されてい
る純度内で時間的な推移の中でも傾向の変化が見られず
安定な状態)あるいは良化傾向(製品品質として管理さ
れている純度内で時間的な推移の中で、製品酸素中の酸
素濃度が高くなる。つまり、100%方向へ濃度が良くな
っていく状態)であれば、第2図の増減操作可否判定テ
ーブルに照合して、「O2純度(%)の良化」と「O2
量」が交差する欄の判定は「可」であるため、現在の製
品酸素純度に関しては、酸素増量単独操作は可能と判定
される。さらに、製品窒素純度,粗アルゴン中酸素濃
度,液体酸素レベルについても第2図の増減操作可否判
定テーブルに照合して同様の判定を行い、全ての条件で
満足(可)となれば、その操作、この場合、酸素増量単
独操作を受け付ける。
Current plant status (product oxygen purity, product nitrogen purity,
Whether the specified operation (operation item) is possible or not with respect to the oxygen concentration in crude argon and the liquid oxygen level are in the improvement tendency, the deterioration tendency, or the stable region) is shown in FIG. To determine. For example, in the case of a single oxygen increase operation (an operation to increase only the current product oxygen generation amount and maintain the other product nitrogen generation amount and crude argon generation amount as it is), the product oxygen purity is stable (managed as product quality). Oxygen in the product oxygen during the time course within the purity controlled as product quality. If the concentration is high (that is, the concentration is improving in the 100% direction), then check the increase / decrease operation permission / prohibition determination table in FIG. 2 for “improvement of O 2 purity (%)” and Since the judgment in the column where "O 2 increase" intersects is "OK", it is judged that the oxygen increase single operation is possible for the current product oxygen purity. Further, the product nitrogen purity, the oxygen concentration in crude argon, and the liquid oxygen level are also compared with the increase / decrease operation permission / inhibition determination table of FIG. 2 and the same determination is performed, and if all conditions are satisfied (acceptable), the operation is performed. In this case, the oxygen increasing single operation is accepted.

判定の結果、第2図の増減操作可否判定テーブルの
(否)1つでも照合されたら、指定操作が現在のプラン
ト状況で実行不可(否)と判定し、その旨をオペレータ
に通知するとともに、指定操作の取り消しを行う。一
方、第2図の増減操作可否判定テーブルの「否」が1つ
も照合されず、全てが「可」であり、指定操作が可能
(可)と判定されたら次へ進む。また、この増減操作可
否判定テーブル12は運用監視画面4を切り換えることに
よって、同一のCRT上から対話形式にてその内容を変更
することができる。
As a result of the determination, if even one (no) of the increase / decrease operation availability determination table of FIG. 2 is collated, it is determined that the specified operation cannot be performed (no) in the current plant status, and the operator is notified of that fact. Cancel the specified operation. On the other hand, even if "No" in the increase / decrease operation permission / inhibition determination table of FIG. 2 is not collated and all are "OK", and it is determined that the designated operation is possible (OK), the process proceeds to the next step. Further, the contents of the increase / decrease operation permission / inhibition determination table 12 can be changed interactively from the same CRT by switching the operation monitoring screen 4.

製品発生量の1step量(1回の操作で設定変更する単
位操作量)の変更に見合う原料空気量であるか否かを判
定する。すなわち、現在の原料空気量(Air量)を製品
発生量を1step量の変更を見合う原料空気量(必要Air)
であるか否かを後述のルール1やルール2などを「ifデ
ータの状態」を利用して判定する。もし、ルール2の
「if Air量は必要Air量でない」が照合一致されたら、
その場合は、ルール2の「then Air量を1step増量す
る」に従って、それに見合う原料空気量にする。つま
り、ルール2の「then Air量を1step増量する」では、
例えば現在の原料空気量に原料空気量の変化分(=ΔO2
・C)を加算した値を製品酸素発生量の1step変更に見
合う原料空気量として、制御出力部を介して計測制御装
置に渡される。一方、ルール1の「if Air量は必要なAi
r量である」が照合一致されたら、その場合は、ルール
1の「then Air量は現状維持とする」に従って、原料空
気量は現状維持とする。この場合の知識ベースの例は以
下のようになる。
It is determined whether or not the amount of raw material air corresponds to the change in the amount of one step of the product generation amount (unit operation amount to change the setting in one operation). That is, the current amount of raw material air (Air amount) corresponds to the change in product generation amount by 1 step amount.
Whether or not is determined by using the “state of if data” of rule 1 or rule 2 to be described later. If the rule 2 "if Air amount is not required air amount" is matched,
In that case, follow the rule 2 "Increase the amount of then air by 1 step" to adjust the amount of raw material air accordingly. In other words, in Rule 2 “Increase the amount of then Air by 1 step”,
For example, the amount of change in the raw material air amount (= ΔO 2
The value obtained by adding C) is passed to the measurement control device via the control output unit as the amount of raw material air corresponding to one step change of the product oxygen generation amount. On the other hand, in Rule 1, “if Air amount is required Ai
If the “amount of r air” is collated and matched, in that case, the amount of raw material air is maintained according to Rule 1 “The amount of then air is maintained as is”. An example of the knowledge base in this case is as follows.

ルール1:Air量は現状維持と判定するルール IF Air量は必要Air量である THEN Air量は現状維持とする ルール2:Air量は1step増量と判定するルール IF Air量は必要Air量でない THEN Air量を1step増量する なお、ルール1の「if Air量は必要なAir量であ
る」、及びルール2の「if Air量は必要なAir量でな
い」などを判断するための判定式、例えば製品酸素発生
量の1step変更に見合う原料空気量は次のような数式に
て算出するものとする。例えばルール1の「if Air量は
必要なAir量である」は、次式にて算出FAir′の値と現
在の原料空気量とを比較して、原料空気量の方が大きけ
れば成立し真となる。一方、ルール2の「if Air量は必
要なAir量でない」は、FAir′の値と現在の原料空気量
とを比較して、FAir′の値の方が大きければ成立し真と
なる。また、この数式を用いるか否かはルール作成時に
任意に設定変更することができる。
Rule 1: Rule to judge that the amount of air is the current status IF Air amount is the necessary amount of air THEN The amount of air is to maintain the current status Rule 2: Rule to judge that the amount of air is increased by 1 step IF Air amount is not the necessary amount of air THEN Increase the amount of air by 1 step Note that the judgment formula for determining "if air amount is the required air amount" in rule 1 and "if air amount is not the required air amount" in rule 2, for example, product The raw material air amount corresponding to the one step change of the oxygen generation amount is calculated by the following formula. For example, the rule 1 "if air amount is the required air amount" is satisfied if the value of F Air ′ calculated by the following formula is compared with the current raw material air amount and the raw material air amount is larger. Be true. On the other hand, the rule 2, "an if Air amount is not an Air volume required" is 'compares the values and the current feed air quantity, F Air' F Air becomes true satisfied if is larger value of . In addition, whether or not to use this mathematical formula can be arbitrarily changed when creating the rule.

FAir′=FAir+C・ΔO2 FAir′:製品酸素発生量の1step変更に見合う原料空気
量(絶対値) FAir :現在の製品酸素発生量に見合った理論的原料空
気量 (Air/O2比) ΔO2 :製品酸素発生量の1step変更量 C :定数 ΔAir:Air量変化分(=C・ΔO2) 以上の関係をグラフにて示すと、第3図のようにな
る。そして、これらの数式も知識ベース中に格納されて
おり、このΔO2,Cなどは運用監視画面4を切り換えるこ
とによって、同一のCRT上から対話形式にてその内容を
変更することができる。
F Air ′ = F Air + C · ΔO 2 F Air ′: Raw material air amount (absolute value) corresponding to 1 step change of product oxygen generation amount F Air : Theoretical raw material air amount (Air / O 2 ratio) ΔO 2 : Change amount of one step of product oxygen generation amount C: Constant ΔAir: Air amount change amount (= C · ΔO 2 ). The above relationship is shown in FIG. These mathematical expressions are also stored in the knowledge base, and the contents of ΔO 2 , C, etc. can be changed interactively from the same CRT by switching the operation monitoring screen 4.

同時に、原料空気量の変更に見合った還流液調節弁の
弁開度を算出する。すなわち、第4図の如き製品酸素発
生量(O2量)の範囲と、そのときの原料空気量(Air
量),製品酸素発生量(O2量),製品窒素発生量(N
2量)と定数K11〜K13,K21〜k23,k31〜K33とから次式よ
り弁開度を算出する。なお、この数式を用いるか否かも
ルール作成時に任意に設定変更することができる。ま
た、K11〜K13は同図の範囲(I),K21〜K23は範囲(I
I),K31〜K33は範囲(III)における各量の定数を示
す。
At the same time, the valve opening of the reflux liquid control valve corresponding to the change of the raw material air amount is calculated. That is, the range of product oxygen generation amount (O 2 amount) as shown in FIG. 4 and the raw material air amount (Air
Amount), product oxygen generation amount (O 2 amount), product nitrogen generation amount (N
2 ) and constants K11 to K13, K21 to k23, k31 to K33, the valve opening is calculated from the following formula. Whether or not this mathematical expression is used can be arbitrarily changed when creating the rule. Further, K11 to K13 are in the range (I) and K21 to K23 are in the range (I).
I) and K31 to K33 are constants for each amount in the range (III).

弁開度=K11*Air量+K12*O2量+K13*N2量+定数 弁開度=K21*Air量+K22*O2量+K23*N2量+定数 弁開度=K31*Air量+K32*O2量+K33*N2量+定数 なお、これらの数式も知識ベース中に格納されてお
り、定数K11〜K13,K21〜K23,K31〜K33などは運用監視画
面4を切り換えることによって、同一のCRT上から対話
形式にてその内容を変更することができる。
Valve opening = K11 * Air volume + K12 * O 2 amount + K13 * N 2 + amount constant valve opening = K21 * Air volume + K22 * O 2 amount + K23 * N 2 + amount constant valve opening = K31 * Air volume + K32 * O 2 amount + K33 * N 2 + amount constant even these equations are stored in the knowledge base, constant K11~K13, K21~K23, by the like K31~K33 switching the operation monitoring screen 4, the same The contents can be changed interactively on the CRT.

同時に、製品量を1step量だけ変更する。例えば、製
品酸素発生量の場合であれば、「then O2量を1step増量
する」では、現在の製品酸素発生量に製品酸素発生量の
1step変更量(ΔO2)を加算した値を新しい製品酸素発
生量として、制御出力部を介して計測制御装置に渡され
る。この操作も前述のようなルールと数式によって記述
されている。
At the same time, the product quantity is changed by one step. For example, in the case of the product oxygen generation amount, "Increase the amount of then O 2 by 1 step" will change the product oxygen generation amount from the current product oxygen generation amount.
The value obtained by adding the 1step change amount (ΔO 2 ) is passed to the measurement control device via the control output unit as the new product oxygen generation amount. This operation is also described by the rules and mathematical formulas described above.

目標の発生量指示値になると処理を完了し、その旨を
オペレータに通知する。目標値になっていなければN分
間待機し、上記〜の操作を行なう。なお、待機時間
(N分間)も運用監視画面4を切り換えることによっ
て、同一のCRT上から対話形式にてその内容変更が可能
である。
When the target generation amount instruction value is reached, the process is completed and the operator is notified of that. If the target value is not reached, wait for N minutes and perform the above operations 1). The standby time (N minutes) can also be changed interactively from the same CRT by switching the operation monitoring screen 4.

一方、調整操作に関わるエキスパートシステム14は、
プラント状況を常時監視するプログラムにより、純度異
常(製品品質として管理されている純度の管理領域をは
ずれる)が検知されたら、まず、増減操作中であれば、
第2図に示す如き増減操作可否判定テーブルを用いて判
定する。例えば、酸素増量単独操作(現在の製品酸素発
生量のみを増量し、他の製品窒素発生量や粗アルゴン発
生量は現状維持とする操作)を実行中の場合、製品酸素
純度が良化(製品酸素中の酸素濃度が高くなる)傾向を
示し、製品窒素純度が良化(製品窒素中の酸素濃度ppmO
2が低くなる)傾向を示し、他の監視項目は異常なしを
示しても、第2図の増減操作可否判定テーブルに照合し
て、「O2純度(%)の良化」「O2増量」が交差する欄の
判定は「可」、「N2純度(ppmO2)の良化」と「O2
量」が交差する欄の判定も「可」であるため、現在の製
品酸素純度や製品窒素純度の良化(良くなり過ぎる)傾
向に対しては、純度の回復操作(調整操作)を実行する
ことなく監視のみを行い、また、増減操作に関しては中
断することなく操作を継続するものと判定する。もし、
判定の結果、第2図の増減操作可否判定テーブルの
「否」が1つでも照合一致されたら、現在のブラント状
況では、増減操作を接続することは不可能と判定し、そ
の旨をオペレータに通知するとともに、増減操作の取り
消しを行い、異常の調整(回復)操作を行う。一方、増
減操作中でなければ、純度異常が検知された時点で起動
される。すなわち、増減操作中であれば第2図の増減操
作可否判定テーブルを用いて増減操作の継続を判定し、
増減操作中でなければ現在の流量(原料空気量,製品酸
素量,製品窒素量,粗アルゴン量)や純度(製品酸素純
度,製品窒素純度,粗アルゴン中酸素濃度),上塔底部
の液体酸素液位(レベル),下塔から上塔への液体窒素
(還流液)流量を調節する弁の弁開度などのプロセスデ
ータと、上記のように「ifデータの状態then操作」のル
ール形式で表現された知識ベースにおいて、「ifデータ
の状態」が一致するルールを知識ベースから検索し、
「then操作」に定義された操作端や操作量を設定変更し
ながら、以下のような調整操作を行なう 純度異常の度合により調整操作が必要か否かを判定す
る。調整操作は不必要例えば、酸素純度の品質管理上の
安定領域の下限値を若干下まわっているのだけれども、
時間的推移の中で、回復に向かっている。つまり、もう
しばらくで安定領域内に戻りそうであると判定された
ら、調整操作として何もせずに監視のみを維持し、一
方、安定領域に戻る兆候が見られず調整操作が必要と判
定されたら次へ進む。
On the other hand, the expert system 14 related to adjustment operation
If a program that constantly monitors the plant status detects a purity abnormality (out of the purity management area managed as product quality), first, if the increase / decrease operation is in progress,
The determination is made using the increase / decrease operation availability determination table as shown in FIG. For example, when the oxygen increase single operation (the operation to increase only the current product oxygen generation amount and to maintain the other product nitrogen generation amount and crude argon generation amount as it is) is being performed, the product oxygen purity is improved (product Oxygen concentration in oxygen tends to increase, and product nitrogen purity improves (oxygen concentration in product nitrogen ppmO
(2 becomes low) and other monitoring items show no abnormality, the “O 2 purity (%) improvement” and “O 2 increase” are checked by collating with the increase / decrease operation availability determination table in FIG. 2. The column where "" intersects is judged as "OK", and the column where "N 2 purity (ppmO 2 ) is improved" and "O 2 increase" is judged as "OK". For product nitrogen purity improvement (too good) tendency, only monitoring is performed without performing purity recovery operation (adjustment operation), and increase / decrease operation is continued without interruption To determine. if,
As a result of the determination, if any one of “No” in the increase / decrease operation availability determination table in FIG. 2 is matched, it is determined that the increase / decrease operation cannot be connected in the current blunt condition, and the operator is notified to that effect. While notifying, the increase / decrease operation is canceled and the abnormality adjustment (recovery) operation is performed. On the other hand, if the increase / decrease operation is not being performed, it is activated at the time when the abnormality in purity is detected. That is, if the increase / decrease operation is in progress, it is determined whether the increase / decrease operation is continued using the increase / decrease operation availability determination table of FIG.
Current flow rate (raw material air amount, product oxygen amount, product nitrogen amount, crude argon amount), purity (product oxygen purity, product nitrogen purity, crude argon oxygen concentration), liquid oxygen at the bottom of the upper column Process data such as the liquid level (level), the valve opening of the valve that regulates the flow rate of liquid nitrogen (reflux liquid) from the lower tower to the upper tower, and the rule format of "state of if data then operation" as described above. In the expressed knowledge base, search the knowledge base for a rule that matches the “if data state”,
Perform the following adjustment operation while changing the setting of the operation end and the operation amount defined in “then operation”. Determine whether the adjustment operation is necessary according to the degree of purity abnormality. Adjustment is unnecessary.For example, although it is slightly lower than the lower limit of the stable region for quality control of oxygen purity,
It is heading for recovery in the course of time. In other words, if it is determined that it is likely to return to the stable region in a while, only monitoring is maintained without any adjustment operation, while if there is no sign of returning to the stable region and it is determined that the adjustment operation is necessary. Proceed to the next.

調整操作が必要と判定された場合は、異常を回復させ
るための操作を行なう。
When it is determined that the adjusting operation is necessary, the operation for recovering the abnormality is performed.

この場合の知識ベースの例を以下に示す。 An example of the knowledge base in this case is shown below.

ルール3:O2純度上昇時の操作 IF O2純度復帰でない O2純度下降でない THEN O2量を1step増量する この例では、酸素純度が安定領域をはずれ良化傾向、
つまりO2純度上昇時には、ルール3の「if O2純度復帰
でない」(すなわち、酸素純度が安定領域に入っていな
い)という条件項目と「if O2純度下降でない」(すな
わち、現在の酸素純度が前回データ収集時の酸素純度を
下まわっていない)という条件項目が照合一致され、ル
ール3の「then O2量を1step増量する」(すなわち、現
在の酸素発生量に1step増量分ΔO2を加算した値を製品
酸素発生量として、制御出力部を介して計測制御装置に
渡される。
Rule 3: Operation when O 2 purity rises IF O 2 Purity does not return O 2 Purity does not fall THEN O 2 amount is increased by 1 step In this example, oxygen purity is out of the stable region and tends to improve.
This means that at the time of O 2 purity increased, "not if O 2 purity return" of Rule 3 (ie, oxygen purity that does not contain a stable area) "not if O 2 purity descent" and the condition items that (ie, the current oxygen purity Is not lower than the oxygen purity at the time of the previous data collection), and the rule 3 "Increases the amount of then O 2 by 1 step" (that is, increases the amount of oxygen generated by 1 step by Δstep 2) . The added value is passed to the measurement control device via the control output unit as the product oxygen generation amount.

異常が回復したら処理を終了し、その旨をオペレータ
に通知する。尚、異常回復のための操作を実行した後、
その異常が回復したか否かを判定する時間K(操作後の
回復判断までのインターバル時間K)を設定してM分間
のエスキスパートシステム起動周期でK分後,の操
作,判定を行なう。
When the abnormality is recovered, the process is terminated and the operator is notified of that fact. After performing the operation for abnormal recovery,
The time K (interval time K until the recovery judgment after the operation) is set to determine whether or not the abnormality is recovered, and the operation and the determination are performed after K minutes in the esquispart system start cycle of M minutes.

なお、インターバル時間KはMよりも大きく(Mの倍
数)、エキスパートシステム14は異常(安定領域外)で
ある限り、起動周期Mにて起動される。さらに、上記待
機時間Nと同様にインターバル時間Kおよび起動周期M
も運用監視画面4を切り換えることによって、同一のCR
T上から対話形式にてその内容変更が可能である。
The interval time K is larger than M (a multiple of M), and the expert system 14 is started in the start cycle M as long as it is abnormal (outside the stable region). Further, like the waiting time N, the interval time K and the starting cycle M are set.
The same CR by switching the operation monitoring screen 4
The contents can be changed interactively on T.

〔発明の効果〕〔The invention's effect〕

この発明によれば、以下のような効果を期待すること
ができる。
According to this invention, the following effects can be expected.

(i)操作(作業)が標準化されて誤操作が防止される
だけでなく、運転経験の熟練度合に左右されることな
く、製品の発生量調整(増減操作)が可能となる。
(I) Not only the operation (work) is standardized to prevent erroneous operation, but also the product generation amount adjustment (increase / decrease operation) is possible without being influenced by the degree of skill of driving experience.

(ii)省力化、すなわち、従来オペレータが実施してい
た、 製品酸素純度,製品窒素純度,粗アルゴン中酸素濃度
等と、製品酸素の発生量増減可否,製品窒素の発生量増
減可否,粗アルゴン発生量増減可否等の複雑かつ高度な
判断、 これまで細心の注意を払いつつ行なってきた製品酸
素,製品窒素,粗アルゴンの同時増減操作、 などが自動化されるため、大幅な省力化が可能とな
る。
(Ii) Labor saving, that is, product oxygen purity, product nitrogen purity, oxygen concentration in crude argon, etc., which was conventionally performed by an operator, and whether the amount of product oxygen generated can be increased or decreased, whether the amount of product nitrogen generated can be increased or decreased, crude argon A large amount of labor can be saved because complicated and advanced judgments such as whether or not the amount generated can be increased or decreased, and the simultaneous increase and decrease operations of product oxygen, product nitrogen, and crude argon, which have been performed with great care, have been performed. Become.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すブロック図、第2図は
増減操作可否判定テーブルを示す構成図、第3図は製品
酸素発生量の変更を伴う原料空気量を説明するためのグ
ラフ、第4図は原料空気量の変更に見合う還流液調節弁
の弁開度を説明するためのグラフ、第5図は酸素プラン
トの概略を示すブロック図である。 符号説明 1……計算システム1、2……計算制御装置、3……酸
素プラント、4……CRT、5……プリンタ、11……マン
・マシンインタフェース、12……増減操作可否判定テー
ブル、13……定数ファイル、14……エキスパートシステ
ム(増減操作,調整操作)、15……入力処理部、16……
制御出力部。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing an increase / decrease operation propriety determination table, and FIG. 3 is a graph for explaining a raw material air amount accompanying a change in product oxygen generation amount, FIG. 4 is a graph for explaining the valve opening degree of the reflux liquid control valve corresponding to the change of the raw material air amount, and FIG. 5 is a block diagram showing the outline of the oxygen plant. Explanation of symbols 1 ... Calculation system 1, 2 ... Calculation control device, 3 ... Oxygen plant, 4 ... CRT, 5 ... Printer, 11 ... Man-machine interface, 12 ... Increase / decrease operation availability determination table, 13 …… Constant file, 14 …… Expert system (increase / decrease operation, adjustment operation), 15 …… Input processing unit, 16 ……
Control output section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田代 計利 福岡県北九州市八幡東区枝光1丁目1番 1号 新日本製鐵株式會社八幡製鐵所内 (72)発明者 安東 伸彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 寺崎 健 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭62−238977(JP,A) 特公 昭57−42830(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keitoshi Tashiro 1-1-1, Edamitsu, Yawatahigashi-ku, Kitakyushu City, Fukuoka Prefecture Nippon Steel & Co., Ltd. Akisha Yahata Works (72) Inventor Nobuhiko Ando Kawasaki, Kanagawa Prefecture No. 1-1 Tanabe Nitta, Kawasaki-ku, Fuji Electric Co., Ltd. (72) Inventor Ken Terasaki 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (56) Reference Japanese Patent Laid-Open No. 62-238977 (JP, A) JP-B 57-42830 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空気を原料として酸素、窒素等を製品とし
て製造し、需要側へ供給する空気液化分離装置におい
て、需要側から要求される製品の製造量が不規則に変動
するにもかかわらず、それに応じて該液化分離装置を自
動運転するための空気液化分離装置の自動運転方法であ
って、 前記需要側から特定製品の製品量の不規則な増減要求が
あったとき、その要求に応じることが、空気液化分離装
置の運転の現状から可能か否かを判定する増減操作可否
判定テーブルと、 前記空気液化分離装置の運転経験を基礎として、需要側
から要求される製品製造の増減量に関連して原料供給量
が適切であるか否かを前件部(if部)の変数とし、それ
に対処する原料供給関連の操作端の選定、及び設定され
た操作端の操作量を後件部(then部)の変数として設定
された推論規則から成る第1の知識ベースと、 前記空気液化分離装置の運転経験を基礎として、該液化
分離装置の運転中に発生し得る製品の品質異常のデータ
を前件部(if部)の変数とし、それに対処する品質回復
のための調節操作を後件部(then部)の変数として設定
された推論規則から成る第2の知識ベースと、を設けて
おき、 前記増減操作可否判定テーブルにおいて増減操作可と判
定されたとき、次に前記第1の知識ベースを参照するこ
とにより、要求された増減量に関連して原料供給量が適
切であるか否かに対応した最適な操作端及びその操作量
を判定して実行し、 空気液化分離装置の操作中に製品の品質異常が検出され
たときは、その品質異常を示すデータから、前記第2の
知識ベースを参照することにより、その品質異常を回復
させるための調節操作を判定して実行するようにしたこ
とを特徴とする空気液化分離装置の自動運転方法。
1. An air liquefaction separation apparatus that manufactures oxygen, nitrogen, etc. as a product from air as a raw material and supplies the product to the demand side, even though the production amount of the product required from the demand side fluctuates irregularly. A method of automatically operating an air liquefaction separation device for automatically operating the liquefaction separation device in accordance therewith, when the demand side makes an irregular increase / decrease request for the amount of a specific product, the request is met. That is, the increase / decrease operation propriety determination table for determining whether or not it is possible from the current state of operation of the air liquefaction separation device, and based on the operation experience of the air liquefaction separation device, the increase / decrease amount of the product manufacturing required from the demand side Relatedly, whether or not the raw material supply amount is appropriate is used as a variable of the antecedent part (if part), and the selection of the raw material supply-related operating end to deal with it and the set operating amount of the operating end are used as the consequent part. As a variable in (then part) Based on the first knowledge base consisting of defined inference rules and the operating experience of the air liquefaction separation device, the data of abnormal product quality that may occur during the operation of the liquefaction separation device is used as the antecedent part (if part). ) Variable, and a second knowledge base made up of inference rules set as variables in the consequent part (then part), and the adjustment operation for quality recovery corresponding thereto is provided. When it is determined in the table that the increase / decrease operation is possible, the optimum operation corresponding to whether or not the raw material supply amount is appropriate in relation to the requested increase / decrease amount is then referred to by referring to the first knowledge base. When the product quality abnormality is detected during the operation of the air liquefaction separation device by determining the end and the manipulated variable, and by referring to the second knowledge base from the data indicating the quality abnormality. , Its quality abnormal times An automatic operation method of an air liquefaction separation device, characterized in that an adjusting operation for restoring is determined and executed.
JP1336236A 1989-12-27 1989-12-27 Automatic operation method of air liquefaction separation device Expired - Lifetime JP2568284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336236A JP2568284B2 (en) 1989-12-27 1989-12-27 Automatic operation method of air liquefaction separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336236A JP2568284B2 (en) 1989-12-27 1989-12-27 Automatic operation method of air liquefaction separation device

Publications (2)

Publication Number Publication Date
JPH03199881A JPH03199881A (en) 1991-08-30
JP2568284B2 true JP2568284B2 (en) 1996-12-25

Family

ID=18297047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336236A Expired - Lifetime JP2568284B2 (en) 1989-12-27 1989-12-27 Automatic operation method of air liquefaction separation device

Country Status (1)

Country Link
JP (1) JP2568284B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699643B2 (en) * 2001-06-26 2011-06-15 大陽日酸株式会社 Air liquefaction separation method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563371A (en) * 1978-11-08 1980-05-13 Hitachi Ltd Method of controlling flow of air intake for air separator
JPS62238977A (en) * 1986-04-11 1987-10-19 株式会社日立製作所 Method of controlling air separator

Also Published As

Publication number Publication date
JPH03199881A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
EP1727009B1 (en) System for displaying alarms and related information for supporting process operation
JP2568284B2 (en) Automatic operation method of air liquefaction separation device
EP1522808A1 (en) Methods and systems for optimizing argon recovery in an air separation unit
CN108876129A (en) A kind of group plate method and device of slab
JP3451453B2 (en) Air liquefaction separation device and control method thereof
JP2004163003A (en) Control method of air separator
CN109870978A (en) A kind of Cnc ReliabilityintelligeNetwork Network distribution method based on entropy assessment and hesitation fuzzy language item collection
JPH0794954B2 (en) Operating method of air liquefaction separation device
DE2744625B2 (en) Method and device for the automatic control of an air separation plant
JP2022086320A (en) Monitoring method for production process
JP2967422B2 (en) Air liquefaction separation device and control method thereof
Koehler et al. Evolutionary thermodynamic synthesis of zeotropic distillation sequences
JPH03244990A (en) Control of nitrogen concentration in material argon
JP3820008B2 (en) Pressure control method for fluid catalytic cracker
JP2724364B2 (en) Blast furnace operation method
JP3820012B2 (en) Reaction temperature control method for alkylation device
JPS63306861A (en) System for creating and correcting production program
JPH0517830A (en) Method and device for controlling continuous heat treating line for strip
JPH029278B2 (en)
JPH0877247A (en) Method and device for evaluating production efficiency and production line designed by the method
JPS583189B2 (en) Automatic control method for oxygen production in air separation equipment
KR100879867B1 (en) Method for controlling the amount of flowing hydrogen in the Argon unit
JPH07328412A (en) Operation of gas producing equipment
JPS5831605B2 (en) Process monitoring method
KR100226933B1 (en) Oxygen purity control system of air separating apparatus