JP2004163003A - Control method of air separator - Google Patents

Control method of air separator Download PDF

Info

Publication number
JP2004163003A
JP2004163003A JP2002329413A JP2002329413A JP2004163003A JP 2004163003 A JP2004163003 A JP 2004163003A JP 2002329413 A JP2002329413 A JP 2002329413A JP 2002329413 A JP2002329413 A JP 2002329413A JP 2004163003 A JP2004163003 A JP 2004163003A
Authority
JP
Japan
Prior art keywords
control
argon
concentration
air separation
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002329413A
Other languages
Japanese (ja)
Other versions
JP4279540B2 (en
Inventor
Akira Ishi
瑛 石
Kazunari Arai
一成 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2002329413A priority Critical patent/JP4279540B2/en
Publication of JP2004163003A publication Critical patent/JP2004163003A/en
Application granted granted Critical
Publication of JP4279540B2 publication Critical patent/JP4279540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of an air separator capable of performing the operation with large and frequent increase and decrease amount without using additional equipment such as a gas holder and a back-up device. <P>SOLUTION: This control method of the air separator performs the operation of the air separator on the basis of basic control loop such as the control of flow rates of a raw material air AIR, a crude argon gas RAr, a product oxygen gas GO2, a low-pressure product nitrogen gas GN2, an medium-pressure product nitrogen gas MGN2, a circulated liquid nitrogen RLN2 to an upper tower 9, the liquid air LAIR1, the liquid air LAIR2 for argon condenser and the liquid oxygen LO2, the control of pressures of the lower tower 4 and an upper tower 9, and the control of a liquid level of the lower tower 4 and that of the upper tower 9, and further controls the model prediction control type product concentration. In particular, the concentration of argon in field argon FAr, the concentration of oxygen in crude argon RAr and the concentration in product oxygen, are directly fed back, and the operation is performed under the optimum control on the basis of the predicted values to quickly follow the variation of load and to control the product concentration within an allowable range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸素、窒素、およびアルゴンのいずれかの製品、またはそれらの組み合わせを製品として採取する空気分離装置の制御方法に関するものである。
【0002】
【従来の技術】
従来、酸素、窒素、およびアルゴン等の工業ガスの大量消費産業においては、ガスユーザからの供給設備能力を超える頻繁且つ大幅な需要量変動の対応策として、空気分離装置にガスホルダーや液化ガスを気化するバックアップ装置を備える方法が採用されている。例えば、大幅な増量要求に対しては、ガスホルダーやバックアップ装置から製品ガスを補給し、逆に、需要が減少する場合は、製品ガスを放風するなどして対応している。
【0003】
しかし、ガスホルダー方式は、需要増の際に製品の供給圧力を確保するため、製品供給用の圧縮機の吐出圧力を必要以上に高く設定して運転しなければならないので、動力の無駄が大きく省エネルギーの点に問題がある。
一方、バックアップ装置を用いる方式の場合は、液化ガスを生産し、この液化ガスを貯蔵した貯槽から導出して、気化圧送して供給するものであって、液化ガスを製造する液化装置、貯槽、気化器等が必要となるため、設備投資のコストがかかる。
【0004】
そこで、これらに対して、空気分離装置自体の増減量運転操作により、製品ガスの需要量変動に対応する方法が提案されている。
空気分離装置における増減量運転操作は、蒸留塔の増減量操作と実質的に同じであり、この場合、蒸留塔の上昇ガスの流量の変化には遅れが殆どないのに対し、下降液の流量は時間的な遅れを伴って変化する。
このため、負荷を変化させる場合は下降液量が上昇ガス量より早く変化するように操作することによって、製品濃度の変動を抑えることができる。
これについて、出願人は、ガスホルダーやバックアップ装置などの附加設備を用いずに、急激な増減量運転を可能にする空気分離装置の制御方法を提案した(例えば、特許文献1参照)。
【0005】
しかし、上記方法では、急激な増減量運転操作後、空気分離装置の固有な特性により、空気分離装置が定常状態に達するまでにかなり長い時間がかかるため、増減量運転を短時間で繰り返す場合、製品濃度が安定に至らず、製品濃度が設定したスペック値をオーバーする虞がある。
空気分離装置をできるだけ短時間に安定化させるためには、製品濃度および中間製品濃度に対してフィードバック制御を行うことが有効とされる。よく使われる制御方法としては、▲1▼PID制御や、▲2▼モデル予測制御(Mode1 Predictive Contro1、「MPC」と略称する)等がある。
PID制御は、制御対象の速答性が悪い(むだ時間が長いなど)場合や、制御変数間の相互干渉が強い場合、良好な制御結果を得ることは困難である。また、モデル予測制御においても、時定数が異なる制御ループ間の相互干渉が予測精度を低下させるため、全ループについて望ましい制御性能を得ることは容易ではない。
【0006】
ところで、出願人は、酸素、窒素、およびアルゴンを製品とする空気分離装置を対象に、フィードアルゴン流中のアルゴン濃度と粗アルゴン流中の酸素濃度を、直接制御ループを構成し、応答の遅いループから速いループヘの干渉影響を無視した二つの1入出力制御系によって構成することにより、急激な増減量時に製品濃度の安定化を図る制御方法を提案した(特願2001−143820号公報)。空気分離装置のシミュレータを用いたシミュレーション結果によって、提案した上記制御方法の有効性が確認された。だだし、短時間での繰り返し操業変更(例えは、2時間周期の繰り返し増減量運転)を可能とする制御が要求される場合、この制御方法では対応しきれない場合がある。
【0007】
また、空気分離装置の製品純度制御のために、一般化モデル予測制御(General Model Predictive Control、「GPC」と略記する)方法を用いた例が、すでに、谷 繁幸他による「計測と制御 第39巻 第5号 第343−345頁(2000年)」の文献や、また、D.W.クラーク等による「Automatica 第23巻 第2号 第137−160頁(1987年)」の文献で報告されている。以下その概要を説明する。
【0008】
これらの文献での一般化モデル制御(GPC)理論では、プラントの動特性を以下のようなCARIMA(Controlled Auto−Regressive and Integrated Moving−Averageの略称)モデルによって表現している。
A(z−)y(t)=B(z−)z−u(t−1)+d(t) ・・・(1)
ここで、A(z−)は目標とする設定運転状態、B(z−)は現在の運転状態、u(t−1)は操作量、y(t)は制御量、d(t)はノイズ、Lはむだ時間である。
【0009】
このプラントに対して、次の評価関数(2)を考える。
【数1】

Figure 2004163003
ここで、Nは最小評価ホライズン、Nは最大評価ホライズン、Nは制御ホライズンである。
【0010】
一般化モデル予測制御(GPC)では、yの予測値に基づいて、この目標関数Jを最小にする操作量uを決める。そのための一般理論は、上記した如くここ数十年間研究され、汎用のソフトパッケージも市販されている。
【0011】
このGPCを空気分離装置に適用した上記谷繁幸他による文献では、操作量uとして、▲1▼原料空気流量 ▲2▼膨張タービン流量 ▲3▼製品酸素抜出流量 ▲4▼液体窒素還流流量(弁開度) ▲5▼粗アルゴン塔差圧 ▲6▼粗アルゴン抜出流量を用い、制御量yを ▲1▼製品酸素濃度 ▲2▼製品窒素濃度 ▲3▼粗アルゴン濃度 ▲4▼製品酸素パージ量 ▲5▼膨張タービン/原料空気量比率 ▲6▼アルゴン収率としている。
この例では、定常操業時に製品純度の安定化に一定の効果が得られているが、操作変数が多いため、制御アルゴリズムが複雑であり、さらに、時定数の異なる多数の制御ループを同一の制御器によって操作量を決めるため、負荷が大幅に変化するときは、各ループ間の相互干渉が逆に悪影響しやすく、制御精度を劣化させる可能性もある。
【0012】
【特許文献1】
特許第3027368号公報
【0013】
【発明が解決しようとする課題】
しかるに、空気分離装置の増減量運転を短時間で繰り返す場合、製品濃度が安定に至る前に次の増減量運転をすると、製品の純度を維持できなくなるので、できるだけ短時間に製品濃度を安定化させる必要があるが、従来のPID制御では、良い制御を得ることは困難である。また、モデル予測制御を適用するにしても、操作変数が多いため、制御演算が複雑となる。すなわち、時定数の異なる多数の制御ループを同一の制御器によって操作量を決めるため、負荷が大幅に変化するときは、十分な制御精度が得られない。さらに、各ループについて全体的に望ましい制御性能を得るのも容易ではない。また、フィードアルゴン流中のアルゴン濃度と粗アルゴン流中の酸素濃度を、直接制御ループを構成し、応答の遅いループから速いループヘの干渉影響を無視した二つの1入出力制御系によって構成することにより、急激な増減量時に製品濃度の安定化を図る制御方法の場合でも、短時間での繰り返し操業変更を可能とする制御が要求される場合、この制御方法では対応しきれない場合があるという諸問題があった。
【0014】
本発明はこのような状況に鑑みてなされたものであり、空気分離装置において、ガスホルダー式やバックアップ設備などの付加設備を用いずに、大幅且つ頻繁な増減量運転操作が可能な制御方法を提供することができるようにするものである。
【0015】
【課題を解決するための手段】
上記課題を解決するため、
請求項1に係わる発明として、原料空気から空気の構成成分を低温精留により分離採取し、酸素、窒素、およびアルゴンの製品を生産する空気分離装置において、全製品の濃度制御ループを直接に用いず、フィードアルゴン中のアルゴン濃度と粗アルゴン中の酸素濃度および製品酸素濃度のみを予測値に基づいて最適化制御を行うことによって、全製品の純度を制御することを特徴とする空気分離装置の制御方法としたものである。
請求項2に係わる発明として、前記予測値に基づいた最適化制御は、濃度制御ループの動特性をむだ時間を有する一次遅れまたは二次遅れ特性として近似した近似モデルに基づいた予測演算とその予測値に基づいた最適化演算によって構成されることを特徴とする請求項1に記載の空気分離装置の制御方法としたものである。
請求項3に係わる発明として、前記空気分離装置は、粗アルゴン塔と脱酸塔の少なくともいずれか一方を備え、3入力3出力以上の濃度制御ループを有し、多変数予測アルゴリズムで、各制御ループの出力予測を同時に行わず、時定数が小さくむだ時間が短い制御ループについては、他の制御ループ動作の予測値への影響を考慮に入れて前記制御ループの出力予測値を求めることを特徴とする請求項1に記載の空気分離装置の制御方法としたものである。
請求項4に係わる発明として、前記空気分離装置は、粗アルゴン塔と脱酸塔の少なくともいずれか一方を備え、3入力3出力以上の濃度制御ループを有し、多変数予測アルゴリズムで、各制御ループの出力予測を同時に行わず、時定数が大きくむだ時間が長い制御ループについては、他の制御ループの整定動作の予測値への影響を外乱として取り扱うことを特徴とする請求項1に記載の空気分離装置の制御方法としたものである。
請求項5に係わる発明として、アルゴンを採取しないプロセスに対して適用されることを特徴とする請求項1乃至4のいずれかに記載の空気分離装置の制御方法としたものである。
請求項6に係わる発明として、前記空気分離装置は、蒸留塔あるいは蒸留セレクションをさらに備え、窒素を製品として分離する工程を有することを特徴とする請求項1乃至4のいずれかに記載の空気分離装置の制御方法としたものである。
請求項7に係わる発明として、前記空気分離装置は、蒸留塔あるいは蒸留セクションをさらに備え、酸素を製品として分離する工程を有することを特徴とする請求項1乃至4のいずれかに記載の空気分離装置の制御方法としたものである。
【0016】
【発明の実施の形態】
本発明は、以下の如く二つの部分から構成される。
(i)空気分離装置の運転にあたって、流量制御、圧力制御、および液面制御等の基本的な制御ループによって行うものであること。
(ii)その上に、さらに次の如き製品濃度制御ループを有するものである。
(イ)濃度安定化制御のため、フィードアルゴン中のアルゴン濃度と粗アルゴン中の酸素濃度および製品酸素濃度を出力とし、酸素流量と粗アルゴン流量および還流液体窒素流量を制御入力とする低次元数学モデルを抽出すること。
(ロ)製品酸素濃度調整の影響を無視し、粗アルゴン中の酸素濃度調整の干渉項を外乱とするモデル予測制御をベースとしたフィードアルゴン中のアルゴン濃度の制御則を有すること。
(ハ)フィードアルゴン中のアルゴン濃度調整および製品酸素濃度の影響を無視するモデル予測型粗アルゴン中の酸素濃度制御則を有すること。
(ニ)フィードアルゴン中のアルゴン濃度調整および粗アルゴン中の酸素濃度調整の影響を無視するモデル予測型製品酸素濃度制御則を有すること。
【0017】
以下、本発明を応用したアルゴン採取プラントの一実施の形態について説明する。図1は、本発明を応用したアルゴン採取プラントの一実施の形態の構成例を示している。同図に示すように、本実施の形態においては、圧縮され、水および炭酸ガスを除去された原料空気AIRは、管路1より制御弁2を通って主熱交換器3に入り、低温流体により冷却され下部塔4の塔底部に供給される。
原料空気AIRはここで蒸留され、塔底部の酸素分に富んだ液体空気と塔頂部の高純度窒素に分離される。
下部塔4の塔頂の管路5から抜き出された高純度窒素の一部は、上部塔9の塔底部の主凝縮器7で液化された後、管路8に導出し、一部は下部塔4に戻し、残りの液体窒素は管路12を介して過冷器13で冷却された後、制御弁14で膨張して上部塔9の塔頂ヘ供給される。
残りの中圧窒素ガスは管路10を介して二つに分けられ、一方は主熱交換器3で加熱されて、中圧製品窒素ガスMGN2としてコールドボックスを制御弁11を経て導出される。
他方の中圧窒素ガスは管路20を介して主熱交換器3で加熱され、さらにタービン熱交換器21で加熱され、タービンブロワ22で加圧された後、冷却器23、タービン熱交換器21で冷却された後、膨張タービン24で膨張し、上部塔9からの廃窒素ガスと合流して管路29を介して主熱交換器3で加熱され、廃窒素ガスRN2となってコールドボックスを制御弁30を経て導出される。
下部塔4の塔底から抜き出された液体空気は過冷器13で冷却された後、液体空気LAIR1とアルゴン凝縮器用液体空気LAIR2の二つに分けられ、一方の液体空気LAIR1は管路15を介して制御弁16で膨張して、上部塔9の中間部に供給される。他方のアルゴン凝縮器用液体空気LAIR2は管路17を介して制御弁18で膨張し、アルゴン凝縮器19で加熱され、上部塔9のフィードアルゴン段の導出管35の位置より上の部分に導入される。
【0018】
上部塔9は塔底に主凝縮器7が配設された塔で、下部塔4から管路12を介して供給された還流液体窒素RLN2と、前記管路15に分岐された液体空気LAIR1と、管路17を介してアルゴン凝縮器19を流通してきたアルゴン凝縮器用液体空気LAIR2が上部塔9に供給され、ここで精留される。
これによって、塔頂部の管路26より低圧製品窒素ガスGN2、管路28から廃窒素ガスRN2、管路31から製品酸素ガスGO2、および管路33から液体酸素LO2等がそれぞれ分離して採取される。
なお、管路26より導出される低圧製品窒素ガスGN2と管路28より導出される廃窒素ガスRN2は、過冷器13および主熱交換機3で常温まで加熱されてコールドボックスを出る。
上部塔9の管路31から導出される製品酸素ガスGO2は、主熱交換器3で常温まで加熱されてコールドボックスを制御弁32を経て導出される。また、上部塔9の塔底から管路33を介して導出される液体酸素LO2は過冷器13で冷却され、弁34を介して液体酸素タンク(図示せず)ヘ送られる。
【0019】
粗アルゴン塔36は塔頂にアルゴン凝縮器19を配設した塔で、上部塔9から管路35を介して供給されたフィードアルゴンガスFArは、該粗アルゴン塔36でアルゴンが富化された粗アルゴンガスRArに分離される。
粗アルゴン塔36の塔頂から管路38で導出される粗アルゴンガスRArの一部は管路40に分岐されて主熱交換器3で加熱された後、コールドボックスを弁43を経て導出する。
残りの粗アルゴンガスRArは、管路39を介して粗アルゴン塔凝縮器19で液化されて、粗アルゴン塔36の塔頂に供給するようにして還流される。粗アルゴン塔36の塔底からのアルゴンを含む酸素富化液体(液体アルゴン)LRArは管路37により上部塔9に還流される。
【0020】
なお、図1中、符号45は原料空気流量調節器、46はアルゴンガス流量調節器、47は製品酸素流量調節器、48は製品窒素ガス流量調節器、49は中圧製品窒素ガス流量調節器、50は上部塔9の圧力調節器、51は上部塔9への還流液体窒素流量調節器、52は下部塔4の液面調節器、53は液体空気流量調節器、54は上部塔9の液面調節器、55はアルゴン凝縮器用液体空気流量調節器、56は液体酸素流量調節器である。
そして、このような空気分離装置は、一般に上部塔9は120〜160kPaの圧力で、また下部塔4は450〜600kPaの圧力で操作されるが、これらの圧力より高い圧力、あるいはより低い圧力で操作することも可能である。
また、負荷変動の場合、空気分離装置全体の物質バランスを取るため、対応した各流量調節器の設定値は最適化されて運転される。
【0021】
次に、本発明が提案する制御方法について説明する。本発明は、制御アルゴリズムを簡単化し、且つ有効にするために、全制御変数に対してフィードバックループを組むのではなく、プラント運転にもっとも重視され、且つ連続的に測定が可能なものとして、フィードアルゴン中のアルゴン濃度、粗アルゴン中の酸素濃度、および製品酸素濃度を制御量として、製品酸素流量、粗アルゴン流量、および還流液体窒素流量を操作量として選択する。
【0022】
また、空気分離装置はむだ時間が長く、各要素が複雑に影響し合っているため、数学的に正確且つ完全に記述することは困難であり、ここでは、プラントの主な動特性のみに注目し、むだ時間を有する一次遅れまた二次遅れ特性としてプラントの動特性を表現し、無視された諸要素の影響は外乱として見なすことによって、数学モデルを簡単な構造にしたものである。
【0023】
そこで、この数学モデル表示による制御対象のモデル構造を図2に示す。図2中の記号および数式は以下のことを示すものである。
・u(t):製品酸素流量
・u(t):粗アルゴン流量
・u(t):還流液体窒素流量
・y(t):フィードアルゴン中のアルゴン濃度
・y(t):粗アルゴン中の酸素濃度
・y(t):製品酸素濃度
・d(t):フィードアルゴン濃度に影響する外乱
・d(t):粗アルゴン中の酸素濃度に影響する外乱
・d(t):製品酸素濃度に影響する外乱
・u12(t)=A12(z−)u(t)
・u13(t)=A13(z−)u(t)
・u21(t)=A21(z−)u(t)
・u23(t)=A23(z−)u(t)
・u31(t)=A31(z−)u(t)
・u32(t)=A32(z−)u(t)
・[B11(z−)/A11(z−)]z−L11:u(t)からy(t)への伝達関数
・[B12(z−)/A12(z−)]z−L12:u(t)からy(t)への伝達関数
・[B13(z−)/A13(z−)]z−L13:u(t)からy(t)への伝達関数
・[B21(z−)/A21(z−)]z−L21:u(t)からy(t)への伝達関数
・[B22(z−)/A22(z−)]z−L22:u(t)からy(t)への伝達関数
・[B23(z−)/A23(z−)]z−L23:u(t)からy(t)への伝達関数
・[B31(z−)/A31(z−)]z−L31:u(t)からy(t)への伝達関数
・[B32(z−)/A32(z−)]z−L32:u(t)からy(t)への伝達関数
・[B33(z−)/A33(z−)]z−L33:u(t)からy(t)への伝達関数
【0024】
次に、ダイナミックシミュレータを用いて各操作量に対するプラントのステップ応答の計算を行い、制御対象(各チャンネルの伝達関数)のモデルを同定した。得られた同定モデルを使って、モデル予測制御を行った。
【0025】
このシミュレーションから、前述の数学モデルは、3入力、3出力系である。この3入力、3出力の数学モデルに基づいて、多変数モデル予測制御アルゴリズムを適用することによって所望の最適制御則を導出することもできるが、各ループの時定数が著しく異なるので、ループ間の相互干渉によって良い制御性能を得ることは一般に困難である。例えば、粗アルゴン流中の酸素濃度制御ループのむだ時間と時定数は、フィールドアルゴン流中のアルゴン濃度制御ループのそれらと比べ、大幅に長く、大きいので、両者を同時に取り扱う場合、後者の整定時間終了後も前者の操作量の干渉を受け、フィードアルゴン流中のアルゴン濃度に制御偏差が生じる。従って、ここでは各ループにおいて干渉項を外乱入力として扱い、各ループごとのシングルループ制御側を設計する。
【0026】
まず、製品酸素流量uを入力、フィードアルゴン流中アルゴン濃度yを出力とするシングルループの制御則を導出する。式(1)は、図2のように表現できるので、このループの出力yは次式(3)のように与えられる。
11(z−)y(t)=B11(z−)z−L11(t)+A11(z−)B12(z−)z−L1212(t)+A11(z−)B13(z−)z−L1313(t)+d(t) ・・・(3)
ただし、
12(t)=A12(z−)u(t)
13(t)=A13(z−)u(t)
は、それぞれ操作量である粗アルゴン流量による干渉と還流液体窒素流量による干渉を表す。
【0027】
ここで、uは整定時間が長いので、uの操作量をyの予測アルゴリズムに取り込むと、かえってyの整定時間を長くし、制御精度を悪くする虞がある。従って、ここではuに関する情報を無視し、この干渉の影響を一般化外乱として見なす。yは以下の式(4)、式(5)のように与えられる。
11(z−)y(t)=B11(z−)z−L11(t)+A11(z−)B12(z−)z−L1212(t)+d’(t)・・・(4)
ここで、d’(t)=A11(z−)B13(z−)z−L1313(t)+d(t)である。
【0028】
y1の最適予測値を求めると、次式(5)のようになる。
【数2】
Figure 2004163003
この予測値に基づいて、評価関数(3)を最小にする制御則は次式(6)のようになる。
=(R +QI)− (w−f) ・・・(6)
【0029】
次に、粗アルゴン流量uから粗アルゴン流中の酸素濃度yのループを考える。図2より、yは次式(7)のように与えられる。
22(z−)y(t)=B22(z−)z−L22(t)+A22(z−)B21(z−)z−L2121(t)+A22(z−)B23(z−)z−L2323(t)+d(t)・・・(7)
ただし、
21(t)=A21(z−)u(t)
23(t)=A23(z−)u(t)
は、それぞれ操作量である製品酸素流量による干渉と還流液体窒素流量による干渉を表す。
【0030】
ここで、uとuの整定時間が長いので、uとuの操作量をyの予測アルゴリズムに取り込むと、かえってyの整定時間を長くし、制御精度を悪くする虞がある。従って、ここではu、uに関する情報を無視し、この干渉の影響を一般化外乱として見なす。すなわち、yは以下の式(8)のように与えられる。
22(z−)y(t)=B22(z−)z−L22(t)+d’(t)・・・(8)
ここで、d’(t)=A22(z−)B21(z−)z−L2121(t)+A22(z−)B23(z−)z−L2323(t)+d(t)である。
【0031】
の最適予測値を求めると、次式(9)のようになる。
【数3】
Figure 2004163003
予測制御アルゴリズムを適用すると、評価関数(3)を最小にする制御則は次式(10)のようになる。
=(R +QI)− (w−f) ・・・(10)
【0032】
最後に、還流液体窒素流量uから製品酸素中の濃度yのループを考える。図2より、yは次式(11)のように与えられる。
33(z−)y(t)=B33(z−)z−L33(t)+A33(z−)B31z−L31(z−)u31(t)+A33(z−)B32(z−)z−L3232(t)+d(t)・・・(11)
ただし、
31(t)=A31(z−)u(t)
32(t)=A32(z−)u(t)
は、それぞれ操作量である製品酸素流量による干渉と粗アルゴン流量による干渉を表す。
ここで、uとuの整定時間が長いので、uとuの操作量をyの予測アルゴリズムに取り込むと、かえってyの整定時間を長くし、制御精度を悪くする虞がある。従って、ここではu、uに関する情報を無視し、この干渉の影響を一般化外乱と見なす。すなわち、yは次式(12)のように与えられる。
33(z−)y(t)=B33(z−)z−L33(t−1)+d’(t)・・・(12)
ここで、d’(t)=A33(z−)B31z−L31(z−)u31(t)+A33(z−)B32(z−)z−L3232(t)+d(t)である。
【0033】
の最適予測値は次式(13)のようになる。
【数4】
Figure 2004163003
予測制御アルゴリズムを適用すると、評価関数(3)を最小にする制御則を次式(14)のように得る。
=(R +QI)− (w−f) ・・・(14)
【0034】
また、本発明の制御方法の有効性を確認するため、3パーセント/秒(%/min)の速度で、幅30%の2時間周期の繰り返し増減量運転を行うダイナミックシミュレーションを実施した。原料空気流量の変化を図3に実線で示す。フィードアルゴン中のアルゴン濃度の変化を図4に実線で示す。粗アルゴン中の酸素濃度の変化を図5に実線で示す。粗アルゴン中の窒素濃度の変化を図6に実線で示す。製品酸素濃度の変化を図7に実線で示す。なお、図中の破線は従来の制御方法による比較例を示している。シミュレーションの結果より、本発明の制御方法によれば、従来の制御方法(特願2001−143820)より、製品酸素濃度、および粗アルゴン中の窒素濃度の上昇が抑えられ、比較的良い制御パフォーマンスが得られることが確認された。
【0035】
【発明の効果】
本発明の空気分離装置の制御方法は、上記した形態で実施され、以下の如き効果を奏する。
すなわち、空気分離装置の運転にあたって、流量、圧力、液面などの基本制御ループをベースとし、さらにモデル予測制御型の製品純度制御を加えたものであり、特に、製品純度の安定度を代表するフィードアルゴン中のアルゴン濃度と粗アルゴン中の酸素濃度を直接フィードバックし、その予測値に基づいた最適制御動作を施すことにより、負荷変動に対して迅速に追従でき、製品濃度を許容範囲内に抑えることができるものである。
【0036】
その上さらに、以下の如き効果を奏する。
(I)流量制御、圧力制御、および液面制御等の基本的な制御のみによる制御方式と比べ、大幅且つ急激な負荷変更操作にも良く追従でき、大幅且つ急激な負荷変動が可能である。
(II)短時間での負荷の繰り返し変動にも良く追従でき、短時間での負荷の繰り返し変化が可能である。
(III)上記(I)および(II)における負荷変化および負荷変更操作時に、装置の運転状態の変動を許容範囲内に抑えることができる。
(IV)予測不可能な外乱要素に対しても製品濃度の変動を良く抑制できる。
(V)省エネ化が期待できる。
(VI)製品酸素のバッファタンク等が不要となるため、設備投資コストを低減することができる。
【図面の簡単な説明】
【図1】空気分離装置の工程系統図。
【図2】制御対象のモデル構造図。
【図3】原料空気流量の変化のグラフ。
【図4】フィードアルゴン中のアルゴン濃度の変化のグラフ。
【図5】粗アルゴン中の酸素濃度の変化のグラフ。
【図6】粗アルゴン中の窒素濃度の変化のグラフ。
【図7】製品酸素濃度の変化のグラフ。
【符号の説明】
1,5,6,8,10,12,15,17,20,25,26,28,29,31,33,35,37,38,39,40・・・管路、2,11,14,16,18,27,30,32,34,43・・・制御弁、3・・・主熱交換機、4・・・下部塔、7・・・主凝縮器、9・・・上部塔、13・・・過冷器、19・・・アルゴン凝縮器、21・・・タービン熱交換機、22・・・タービンブロワ、23・・・冷却器、24・・・膨張タービン、36・・・粗アルゴン塔、45・・・原料空気流量調節器、46・・・粗アルゴンガス流量調節器、47・・・製品酸素ガス流量調節器、48・・・低圧製品窒素ガス流量調節器、49・・・中圧製品窒素ガス流量調節器、50・・・上部塔9の圧力調節器、51・・・上部塔9への還流液体窒素流量調節器、52・・・下部塔4の液面調節器、53・・・液体空気流量調節器、54・・・上部塔9の液面調節器、55・・・アルゴン凝縮器用液体空気流量調節器、56・・・液体酸素流量調節器、AIR・・・原料空気、GO2・・・製品酸素ガス、GN2・・・低圧製品窒素ガス、RN2・・・廃窒素ガス、MGN2・・・中圧製品窒素ガス、LAIR1・・・液体空気、LAIR2・・・アルゴン凝縮器用液体空気、ETN2・・・膨張タービン用窒素ガス、RLN2・・・還流液体窒素、FAr・・・フィードアルゴン、LO2・・・液体酸素、RAr・・・粗アルゴンガス、LRAr・・・微量のアルゴンを含む酸素富化液体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling an air separation device that collects any product of oxygen, nitrogen, and argon, or a combination thereof, as a product.
[0002]
[Prior art]
Conventionally, in industries that consume large amounts of industrial gas such as oxygen, nitrogen, and argon, gas holders and liquefied gas are used in air separation units as a measure to deal with frequent and large fluctuations in demand exceeding the supply facilities of gas users. A method including a backup device that evaporates is employed. For example, in response to a large increase in demand, product gas is supplied from a gas holder or a backup device, and conversely, if demand decreases, product gas is blown off.
[0003]
However, the gas holder system must be operated with the discharge pressure of the product supply compressor set higher than necessary in order to secure the supply pressure of the product when the demand increases, resulting in large waste of power. There is a problem in energy conservation.
On the other hand, in the case of a method using a backup device, a liquefied gas is produced, the liquefied gas is supplied from a storage tank storing the liquefied gas, and is supplied by vaporization and pressure supply. Since a vaporizer and the like are required, capital investment costs are required.
[0004]
Therefore, a method has been proposed for responding to a change in the demand amount of the product gas by increasing or decreasing the amount of operation of the air separation device itself.
The operation of increasing or decreasing the amount of air in the air separation device is substantially the same as the operation of increasing or decreasing the amount of the distillation column. Changes with a time delay.
For this reason, when changing the load, the change in the product concentration can be suppressed by performing an operation such that the descending liquid amount changes faster than the rising gas amount.
In this regard, the applicant has proposed a method of controlling an air separation device that enables a sudden increase / decrease operation without using additional equipment such as a gas holder and a backup device (for example, see Patent Document 1).
[0005]
However, in the above method, after a sudden increase / decrease operation, since the air separation device takes a considerably long time to reach a steady state due to the inherent characteristics of the air separation device, when the increase / decrease operation is repeated in a short time, The product concentration may not be stable, and the product concentration may exceed the set specification value.
In order to stabilize the air separation device as quickly as possible, it is effective to perform feedback control on the product concentration and the intermediate product concentration. Commonly used control methods include (1) PID control and (2) model prediction control (Mode 1 Predictive Control 1, abbreviated as “MPC”).
In the PID control, it is difficult to obtain a good control result when the quick response of the control target is poor (such as a long dead time) or when the mutual interference between the control variables is strong. Also in model predictive control, it is not easy to obtain desirable control performance for all loops because mutual interference between control loops having different time constants reduces prediction accuracy.
[0006]
By the way, the applicant has constructed a direct control loop for the argon concentration in the feed argon flow and the oxygen concentration in the crude argon flow for an air separation device using oxygen, nitrogen, and argon as products, and has a slow response. A control method for stabilizing the product concentration at the time of a sudden increase / decrease by proposing a two-input / output control system ignoring the influence of interference from the loop to the fast loop has been proposed (Japanese Patent Application No. 2001-143820). The effectiveness of the proposed control method was confirmed by simulation results using a simulator of an air separation device. However, when control that enables a repetitive operation change in a short time (for example, a repetitive increase / decrease amount operation in a two-hour cycle) is required, this control method may not be able to cope with the case.
[0007]
Also, an example using a generalized model predictive control (abbreviated as “GPC”) method for controlling the product purity of an air separation device has already been described by Shigeyuki Tani et al. Vol. 5, No. 343-345 (2000) ", and D.I. W. It is reported in a document by Clark et al., "Automatica Vol. 23, No. 2, pp. 137-160 (1987)". The outline will be described below.
[0008]
In the generalized model control (GPC) theory in these documents, the dynamic characteristics of a plant are expressed by the following CARIM (Controlled Auto-Regressive and Integrated Moving-Average) model.
A (z-1) Y (t) = B (z−1) Z-Lu (t-1) + d (t) (1)
Here, A (z−1) Is the target set operation state, B (z−1) Is the current operating state, u (t-1) is the manipulated variable, y (t) is the control variable, d (t) is the noise, and L is the dead time.
[0009]
The following evaluation function (2) is considered for this plant.
[Expression 1]
Figure 2004163003
Where N1Is the minimum rating horizon, N2Is the maximum rating horizon, N3Is the control horizon.
[0010]
In generalized model predictive control (GPC), an operation amount u that minimizes the target function J is determined based on the predicted value of y. The general theory for this has been studied in recent decades as described above, and general-purpose software packages are also commercially available.
[0011]
In the literature by Shigeyuki Tani et al., Who applied this GPC to an air separation device, the manipulated variable u is defined as: (1) raw material air flow rate (2) expansion turbine flow rate (3) product oxygen extraction flow rate (4) liquid nitrogen reflux flow rate ( (Valve opening) ▲ 5 ▼ Crude argon tower differential pressure ▲ 6 ▼ Controlled quantity y using crude argon extraction flow rate ▲ 1 ▼ Product oxygen concentration ▲ 2 ▼ Product nitrogen concentration ▲ 3 ▼ Crude argon concentration ▲ 4 ▼ Product oxygen Purging amount (5) Expansion turbine / raw material air ratio (6) Argon yield.
In this example, a certain effect was obtained in the stabilization of product purity during steady operation, but the control algorithm was complicated because there were many manipulated variables, and many control loops with different time constants were controlled by the same control. Since the amount of operation is determined by the device, when the load changes significantly, mutual interference between the loops tends to adversely affect the control, and the control accuracy may be degraded.
[0012]
[Patent Document 1]
Japanese Patent No. 3027368
[0013]
[Problems to be solved by the invention]
However, when the increase / decrease operation of the air separation device is repeated in a short time, if the next increase / decrease operation is performed before the product concentration is stabilized, the purity of the product cannot be maintained. However, it is difficult to obtain good control by the conventional PID control. Further, even when the model predictive control is applied, the control calculation becomes complicated because of many operation variables. That is, since the amount of operation of many control loops having different time constants is determined by the same controller, sufficient control accuracy cannot be obtained when the load changes significantly. Furthermore, it is not easy to obtain the desired overall control performance for each loop. In addition, the argon concentration in the feed argon flow and the oxygen concentration in the crude argon flow are constituted by two 1-input / output control systems that constitute a direct control loop and ignore interference effects from slow response loops to fast loops. Therefore, even in the case of a control method for stabilizing the product concentration at the time of a sudden increase or decrease, if a control that enables a repetitive operation change in a short time is required, this control method may not be able to cope. There were various problems.
[0014]
The present invention has been made in view of such circumstances, and in an air separation device, a control method capable of performing a large and frequent increase / decrease operation operation without using additional equipment such as a gas holder type or a backup equipment. That can be provided.
[0015]
[Means for Solving the Problems]
To solve the above problems,
According to the first aspect of the present invention, in an air separation device that separates and collects air components from raw air by low-temperature rectification and produces products of oxygen, nitrogen, and argon, a concentration control loop of all products is directly used. The air separation device is characterized by controlling the purity of all products by performing optimization control based on predicted values only for the argon concentration in feed argon, the oxygen concentration in crude argon, and the product oxygen concentration. This is the control method.
According to an embodiment of the present invention, the optimization control based on the predicted value includes a prediction operation based on an approximation model that approximates a dynamic characteristic of a concentration control loop as a first-order lag or a second-order lag characteristic having a dead time and its prediction. The method according to claim 1, wherein the control method is configured by an optimization operation based on a value.
According to a third aspect of the present invention, the air separation device includes at least one of a crude argon column and a deoxidization column, has a concentration control loop of three inputs and three outputs or more, and controls each control by a multivariable prediction algorithm. For a control loop in which the output prediction of the loop is not performed at the same time and the time constant is small and the dead time is short, the output prediction value of the control loop is obtained in consideration of the influence of other control loop operations on the prediction value. The method for controlling an air separation device according to claim 1 is provided.
According to a fourth aspect of the present invention, the air separation device includes at least one of a crude argon column and a deoxidation column, has a concentration control loop of three inputs and three outputs or more, and performs each control by a multivariable prediction algorithm. 2. The control loop according to claim 1, wherein the output of the loop is not simultaneously performed, and the effect on the predicted value of the settling operation of another control loop is treated as a disturbance for a control loop having a large time constant and a long dead time. This is a method for controlling the air separation device.
According to a fifth aspect of the present invention, there is provided the method for controlling an air separation device according to any one of the first to fourth aspects, wherein the method is applied to a process that does not collect argon.
The invention according to claim 6, wherein the air separation device further includes a distillation column or a distillation selection, and has a step of separating nitrogen as a product. This is a method for controlling the apparatus.
The invention according to claim 7, wherein the air separation device further includes a distillation column or a distillation section, and has a step of separating oxygen as a product. This is a method for controlling the apparatus.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is composed of two parts as follows.
(I) The operation of the air separation device is performed by a basic control loop such as flow control, pressure control, and liquid level control.
(Ii) It further has a product concentration control loop as described below.
(B) For concentration stabilization control, low-dimensional mathematics using the argon concentration in feed argon, the oxygen concentration in crude argon and the product oxygen concentration as outputs, and the oxygen flow rate, crude argon flow rate, and reflux liquid nitrogen flow rate as control inputs. Extract the model.
(B) A control rule for the argon concentration in the feed argon based on model predictive control in which the influence of the oxygen concentration adjustment of the product is ignored and the interference term of the oxygen concentration adjustment in the crude argon is disturbed.
(C) to have a model prediction type oxygen concentration control rule in crude argon that ignores the influence of argon concentration adjustment and product oxygen concentration in feed argon.
(D) A model predictive product oxygen concentration control law that ignores the effects of adjusting the argon concentration in the feed argon and adjusting the oxygen concentration in the crude argon.
[0017]
Hereinafter, an embodiment of an argon sampling plant to which the present invention is applied will be described. FIG. 1 shows a configuration example of an embodiment of an argon sampling plant to which the present invention is applied. As shown in the figure, in the present embodiment, the compressed raw material air AIR from which water and carbon dioxide gas have been removed enters the main heat exchanger 3 through the control valve 2 through the pipe 1, and the low-temperature fluid And is supplied to the bottom of the lower tower 4.
The feed air AIR is distilled here and separated into oxygen-rich liquid air at the bottom of the column and high-purity nitrogen at the top of the column.
A part of the high-purity nitrogen extracted from the pipe 5 at the top of the lower tower 4 is liquefied in the main condenser 7 at the bottom of the upper tower 9 and then led out to the pipe 8, After returning to the lower tower 4, the remaining liquid nitrogen is cooled by a subcooler 13 via a pipe 12, then expanded by a control valve 14 and supplied to the top of the upper tower 9.
The remaining medium-pressure nitrogen gas is divided into two via a pipe 10, one of which is heated by the main heat exchanger 3, and is led out through a cold box through a control valve 11 as a medium-pressure product nitrogen gas MGN 2.
The other medium-pressure nitrogen gas is heated by the main heat exchanger 3 via the pipe line 20, further heated by the turbine heat exchanger 21, and pressurized by the turbine blower 22, then cooled by the cooler 23, the turbine heat exchanger After being cooled at 21, the gas is expanded by the expansion turbine 24, merges with the waste nitrogen gas from the upper tower 9, is heated by the main heat exchanger 3 via the pipe line 29, becomes the waste nitrogen gas RN2, and becomes a cold box. Through the control valve 30.
The liquid air extracted from the bottom of the lower tower 4 is cooled by the supercooler 13 and then divided into two parts, a liquid air LAIR1 and a liquid air LAIR2 for an argon condenser. And is supplied to the middle portion of the upper tower 9 by the control valve 16. The other argon condenser liquid air LAIR2 is expanded by a control valve 18 via a line 17 and heated by an argon condenser 19, and is introduced into a portion of the upper tower 9 above the position of the outlet pipe 35 of the feed argon stage. You.
[0018]
The upper tower 9 is a tower in which the main condenser 7 is arranged at the bottom of the tower, and the reflux liquid nitrogen RLN2 supplied from the lower tower 4 via the pipe 12 and the liquid air LAIR1 branched to the pipe 15 The liquid air LAIR2 for argon condenser flowing through the argon condenser 19 via the pipe line 17 is supplied to the upper tower 9 where it is rectified.
Thereby, low pressure product nitrogen gas GN2 is separated and collected from the line 26 at the top of the tower, waste nitrogen gas RN2 from the line 28, product oxygen gas GO2 from the line 31, liquid oxygen LO2 from the line 33, and the like. You.
The low-pressure product nitrogen gas GN2 derived from the pipe 26 and the waste nitrogen gas RN2 derived from the pipe 28 are heated to room temperature by the subcooler 13 and the main heat exchanger 3 and exit the cold box.
The product oxygen gas GO2 discharged from the pipe 31 of the upper tower 9 is heated to room temperature by the main heat exchanger 3 and discharged through the cold box through the control valve 32. The liquid oxygen LO 2 led out from the bottom of the upper tower 9 via the pipe line 33 is cooled by the subcooler 13 and sent to a liquid oxygen tank (not shown) via the valve 34.
[0019]
The crude argon column 36 is a column in which an argon condenser 19 is disposed at the top. The feed argon gas FAr supplied from the upper column 9 via the pipe 35 is enriched with argon in the crude argon column 36. It is separated into crude argon gas RAr.
A part of the crude argon gas RAr derived from the top of the crude argon tower 36 through a pipe 38 is branched into a pipe 40 and heated by the main heat exchanger 3, and then the cold box is led through a valve 43. .
The remaining crude argon gas RAr is liquefied in the crude argon tower condenser 19 via the pipe line 39 and is refluxed so as to be supplied to the top of the crude argon tower 36. The oxygen-enriched liquid (liquid argon) LRAr containing argon from the bottom of the crude argon column 36 is refluxed to the upper column 9 via a line 37.
[0020]
In FIG. 1, reference numeral 45 denotes a raw material air flow controller, 46 denotes an argon gas flow controller, 47 denotes a product oxygen flow controller, 48 denotes a product nitrogen gas flow controller, and 49 denotes a medium pressure product nitrogen gas flow controller. , 50 is a pressure regulator of the upper tower 9, 51 is a reflux liquid nitrogen flow regulator to the upper tower 9, 52 is a liquid level regulator of the lower tower 4, 53 is a liquid air flow regulator, and 54 is a liquid air regulator of the upper tower 9. A liquid level controller, 55 is a liquid air flow controller for an argon condenser, and 56 is a liquid oxygen flow controller.
In such an air separation apparatus, the upper column 9 is generally operated at a pressure of 120 to 160 kPa, and the lower column 4 is operated at a pressure of 450 to 600 kPa, but at a pressure higher or lower than these pressures. It is also possible to operate.
In the case of a load change, the set values of the corresponding flow controllers are optimized and operated in order to balance the substances of the entire air separation device.
[0021]
Next, a control method proposed by the present invention will be described. The present invention does not form a feedback loop for all control variables in order to simplify and make the control algorithm effective. The argon concentration in argon, the oxygen concentration in crude argon, and the product oxygen concentration are selected as control amounts, and the product oxygen flow rate, crude argon flow rate, and reflux liquid nitrogen flow rate are selected as manipulated variables.
[0022]
In addition, since the air separation unit has a long dead time and the components are intricately interacting with each other, it is difficult to describe mathematically accurately and completely. Here, attention is paid only to the main dynamic characteristics of the plant. The mathematical model has a simple structure by expressing the dynamic characteristics of the plant as a first-order or second-order delay characteristic having a dead time, and treating the effects of ignored elements as disturbances.
[0023]
FIG. 2 shows a model structure of a control target based on the mathematical model display. The symbols and numerical expressions in FIG. 2 indicate the following.
・ U1(T): Product oxygen flow rate
・ U2(T): Crude argon flow rate
・ U3(T): Reflux liquid nitrogen flow rate
・ Yl(T): Argon concentration in feed argon
・ Y2(T): oxygen concentration in crude argon
・ Y3(T): Product oxygen concentration
・ D1(T): disturbance affecting feed argon concentration
・ D2(T): disturbance affecting oxygen concentration in crude argon
・ D3(T): disturbance affecting product oxygen concentration
・ U12(T) = A121(Z-1) U2(T)
・ U13(T) = A131(Z-1) U3(T)
・ U21(T) = A211(Z-1) U1(T)
・ U23(T) = A231(Z-1) U3(T)
・ U31(T) = A311(Z-1) U1(T)
・ U32(T) = A321(Z-1) U2(T)
・ [B11(Z-1) / A11(Z-1)] Z-L11: U1(T) to y1Transfer function to (t)
・ [B12(Z-1) / A12(Z-1)] Z-L12: U2(T) to y1Transfer function to (t)
・ [B13(Z-1) / A13(Z-1)] Z-L13: U3(T) to y1Transfer function to (t)
・ [B21(Z-1) / A21(Z-1)] Z-L21: U1(T) to y2Transfer function to (t)
・ [B22(Z-1) / A22(Z-1)] Z-L22: U2(T) to y2Transfer function to (t)
・ [B23(Z-1) / A23(Z-1)] Z-L23: U3(T) to y2Transfer function to (t)
・ [B31(Z-1) / A31(Z-1)] Z-L31: U1(T) to y3Transfer function to (t)
・ [B32(Z-1) / A32(Z-1)] Z-L32: U2(T) to y3Transfer function to (t)
・ [B33(Z-1) / A33(Z-1)] Z-L33: U3(T) to y3Transfer function to (t)
[0024]
Next, the step response of the plant with respect to each manipulated variable was calculated using a dynamic simulator, and the model of the control target (the transfer function of each channel) was identified. Using the obtained identification model, model predictive control was performed.
[0025]
From this simulation, the mathematical model described above is a three-input, three-output system. A desired optimal control law can be derived by applying a multivariable model predictive control algorithm based on the three-input, three-output mathematical model. It is generally difficult to obtain good control performance by mutual interference. For example, the dead time and time constant of the oxygen concentration control loop in the crude argon flow are much longer and larger than those of the argon concentration control loop in the field argon flow, so that when both are handled simultaneously, the latter settling time Even after the termination, the former manipulated variable interferes, causing a control deviation in the argon concentration in the feed argon stream. Therefore, here, the interference term is treated as a disturbance input in each loop, and a single loop control side is designed for each loop.
[0026]
First, the product oxygen flow rate u1And the argon concentration y in the feed argon stream1A single-loop control law with the output as is derived. Equation (1) can be expressed as shown in FIG.1Is given by the following equation (3).
A11(Z-1) Y1(T) = B11(Z-1) Z-L11u1(T) + A11(Z-1) B12(Z-1) Z-L12u12(T) + A11(Z-1) B13(Z-1) Z-L13u13(T) + d1(T) ... (3)
However,
u12(T) = A121(Z-1) U2(T)
u13(T) = A131(Z-1) U3(T)
Represents the interference caused by the crude argon flow rate and the interference caused by the reflux liquid nitrogen flow rate, which are the manipulated variables.
[0027]
Where u3Has a long settling time, so u3The operation amount of y1Incorporating into the prediction algorithm of1May be prolonged, and control accuracy may be degraded. Therefore, here u3And ignore the effect of this interference as a generalized disturbance. y1Is given as in the following equations (4) and (5).
A11(Z-1) Y1(T) = B11(Z-1) Z-L11u1(T) + A11(Z-1) B12(Z-1) Z-L12u12(T) + d1’(T) ... (4)
Where d1’(T) = A11(Z-1) B13(Z-1) Z-L13u13(T) + d1(T).
[0028]
When the optimum predicted value of y1 is obtained, the following expression (5) is obtained.
[Expression 2]
Figure 2004163003
Based on this predicted value, a control law that minimizes the evaluation function (3) is expressed by the following equation (6).
u1= (R1G1 TG1+ Q1I)-1G1 TR1(W1−f1・ ・ ・ ・ ・ ・ (6)
[0029]
Next, the crude argon flow rate u2Oxygen concentration y in the crude argon stream2Consider the loop From FIG. 2, y2Is given by the following equation (7).
A22(Z-1) Y2(T) = B22(Z-1) Z-L22u2(T) + A22(Z-1) B21(Z-1) Z-L21u21(T) + A22(Z-1) B23(Z-1) Z-L23u23(T) + d2(T) ... (7)
However,
u21(T) = A211(Z-1) U1(T)
u23(T) = A231(Z-1) U3(T)
Represents the interference due to the product oxygen flow rate and the interference due to the reflux liquid nitrogen flow rate, respectively.
[0030]
Where u1And u3Because the settling time of1And u3The operation amount of y2Incorporating into the prediction algorithm of2May be prolonged, and control accuracy may be degraded. Therefore, here u1, U3And ignore the effect of this interference as a generalized disturbance. That is, y2Is given as in the following equation (8).
A22(Z-1) Y2(T) = B22(Z-1) Z-L22u2(T) + d2’(T) (8)
Where d2’(T) = A22(Z-1) B21(Z-1) Z-L21u21(T) + A22(Z-1) B23(Z-1) Z-L23u23(T) + d2(T).
[0031]
y2The following equation (9) is obtained when the optimal predicted value of is obtained.
[Equation 3]
Figure 2004163003
When the predictive control algorithm is applied, a control law that minimizes the evaluation function (3) is as shown in the following equation (10).
u2= (R2G2 TG2+ Q2I)-1G2 TR2(W2−f2・ ・ ・ ・ ・ ・ (10)
[0032]
Finally, the reflux liquid nitrogen flow rate u3From product y in oxygen3Consider the loop From FIG. 2, y3Is given by the following equation (11).
A33(Z-1) Y3(T) = B33(Z-1) Z-L33u3(T) + A33(Z-1) B31z-L31(Z-1) U31(T) + A33(Z-1) B32(Z-1) Z-L32u32(T) + d3(T) ... (11)
However,
u31(T) = A311(Z-1) U1(T)
u32(T) = A321(Z-1) U2(T)
Represents the interference due to the product oxygen flow rate and the interference due to the crude argon flow rate, respectively.
Where u1And u2Because the settling time of1And u2The operation amount of y3Incorporating into the prediction algorithm of3May be prolonged, and control accuracy may be degraded. Therefore, here u1, U2And ignore the effect of this interference as a generalized disturbance. That is, y3Is given by the following equation (12).
A33(Z-1) Y3(T) = B33(Z-1) Z-L33u3(T-1) + d3’(T) (12)
Where d3’(T) = A33(Z-1) B31z-L31(Z-1) U31(T) + A33(Z-1) B32(Z-1) Z-L32u32(T) + d3(T).
[0033]
y3Is calculated as in the following equation (13).
[Expression 4]
Figure 2004163003
When the predictive control algorithm is applied, a control law that minimizes the evaluation function (3) is obtained as in the following equation (14).
u3= (R3G3 TG3+ Q3I)-1G3 TR3(W3−f3・ ・ ・ ・ ・ ・ (14)
[0034]
Further, in order to confirm the effectiveness of the control method of the present invention, a dynamic simulation was performed in which a two-hour cycle with a width of 30% was repeatedly increased and decreased at a rate of 3% / sec (% / min). The change in the raw material air flow rate is shown by a solid line in FIG. The change in the argon concentration in the feed argon is shown by a solid line in FIG. The change in the oxygen concentration in the crude argon is shown by the solid line in FIG. The change in the nitrogen concentration in the crude argon is shown by the solid line in FIG. The change in the product oxygen concentration is shown by a solid line in FIG. The broken line in the figure indicates a comparative example using the conventional control method. According to the simulation results, according to the control method of the present invention, the increase in the product oxygen concentration and the nitrogen concentration in the crude argon are suppressed as compared with the conventional control method (Japanese Patent Application No. 2001-143820), and relatively good control performance is obtained. It was confirmed that it could be obtained.
[0035]
【The invention's effect】
The control method of the air separation device of the present invention is implemented in the above-described embodiment, and has the following effects.
In other words, in operation of the air separation device, it is based on a basic control loop such as flow rate, pressure, liquid level, etc., and further includes product purity control of a model predictive control type, and particularly represents stability of product purity. By directly feeding back the argon concentration in the feed argon and the oxygen concentration in the crude argon and performing the optimal control operation based on the predicted value, it can quickly follow the load fluctuation and keep the product concentration within the allowable range. Is what you can do.
[0036]
In addition, the following effects are obtained.
(I) Compared with a control method using only basic controls such as flow control, pressure control, and liquid level control, a large and rapid load change operation can be followed well, and a large and rapid load change can be performed.
(II) It is possible to well follow the repetitive fluctuation of the load in a short time, and the repetitive change of the load in a short time is possible.
(III) At the time of the load change and the load change operation in the above (I) and (II), the fluctuation of the operation state of the device can be suppressed within an allowable range.
(IV) Fluctuations in product concentration can be well suppressed even for unpredictable disturbance elements.
(V) Energy saving can be expected.
(VI) Since a buffer tank or the like for product oxygen is not required, capital investment costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a process system diagram of an air separation device.
FIG. 2 is a model structure diagram of a control target.
FIG. 3 is a graph of a change in a raw material air flow rate.
FIG. 4 is a graph of a change in argon concentration in feed argon.
FIG. 5 is a graph of a change in oxygen concentration in crude argon.
FIG. 6 is a graph showing a change in nitrogen concentration in crude argon.
FIG. 7 is a graph of a change in product oxygen concentration.
[Explanation of symbols]
1, 5, 6, 8, 10, 12, 15, 17, 20, 25, 26, 28, 29, 31, 33, 35, 37, 38, 39, 40 ... conduit, 2, 11, 14 , 16, 18, 27, 30, 32, 34, 43 ... control valve, 3 ... main heat exchanger, 4 ... lower tower, 7 ... main condenser, 9 ... upper tower, 13: Subcooler, 19: Argon condenser, 21: Turbine heat exchanger, 22: Turbine blower, 23: Cooler, 24: Expansion turbine, 36: Crude Argon tower, 45 ... Raw material air flow controller, 46 ... Rough argon gas flow controller, 47 ... Product oxygen gas flow controller, 48 ... Low pressure product nitrogen gas flow controller, 49 ...・ Medium pressure product nitrogen gas flow controller, 50: pressure controller of upper tower 9, 51: reflux liquid nitrogen to upper tower 9 Flow rate controller, 52: Liquid level controller of lower tower 4, 53: Liquid air flow rate controller, 54: Liquid level controller of upper tower 9, 55: Liquid air flow rate for argon condenser Regulator, 56: Liquid oxygen flow rate regulator, AIR: Raw material air, GO2: Product oxygen gas, GN2: Low-pressure product nitrogen gas, RN2: Waste nitrogen gas, MGN2: Medium Pressurized product nitrogen gas, LAIR1: liquid air, LAIR2: liquid air for argon condenser, ETN2: nitrogen gas for expansion turbine, RLN2: reflux liquid nitrogen, FAr: feed argon, LO2 ...・ Liquid oxygen, RAr: Crude argon gas, LRAr: Oxygen-enriched liquid containing a small amount of argon

Claims (7)

原料空気から空気の構成成分を低温精留により分離採取し、酸素、窒素、およびアルゴンの製品を生産する空気分離装置において、全製品の濃度制御ループを直接に用いず、フィードアルゴン中のアルゴン濃度と粗アルゴン中の酸素濃度および製品酸素濃度のみを予測値に基づいて最適化制御を行うことによって、全製品の純度を制御することを特徴とする空気分離装置の制御方法。In an air separation unit that separates and collects air components from raw air by low-temperature rectification and produces oxygen, nitrogen, and argon products, the argon concentration in the feed argon is not directly used without using a concentration control loop for all products. A method for controlling the purity of all products by performing optimization control based on predicted values only for oxygen concentration in crude argon and crude oxygen, based on predicted values. 前記予測値に基づいた最適化制御は、濃度制御ループの動特性をむだ時間を有する一次遅れまたは二次遅れ特性として近似した近似モデルに基づいた予測演算とその予測値に基づいた最適化演算によって構成されることを特徴とする請求項1に記載の空気分離装置の制御方法。The optimization control based on the predicted value is performed by a prediction operation based on an approximation model that approximates a dynamic characteristic of a concentration control loop as a first-order lag or a second-order lag characteristic having a dead time, and an optimization operation based on the predicted value. The method for controlling an air separation device according to claim 1, wherein the method is configured. 前記空気分離装置は、粗アルゴン塔と脱酸塔の少なくともいずれか一方を備え、3入力3出力以上の濃度制御ループを有し、多変数予測アルゴリズムで、各制御ループの出力予測を同時に行わず、時定数が小さくむだ時間が短い制御ループについては、他の制御ループ動作の予測値への影響を考慮に入れて前記制御ループの出力予測値を求めることを特徴とする請求項1に記載の空気分離装置の制御方法。The air separation device includes at least one of a crude argon column and a deoxidation column, has a concentration control loop of 3 inputs and 3 outputs or more, and does not simultaneously perform output prediction of each control loop by a multivariable prediction algorithm. 2. The control loop according to claim 1, wherein, for a control loop having a small time constant and a short dead time, an output predicted value of the control loop is obtained in consideration of an influence of another control loop operation on a predicted value. Control method of air separation device. 前記空気分離装置は、粗アルゴン塔と脱酸塔の少なくともいずれか一方を備え、3入力3出力以上の濃度制御ループを有し、多変数予測アルゴリズムで、各制御ループの出力予測を同時に行わず、時定数が大きくむだ時間が長い制御ループについては、他の制御ループの整定動作の予測値への影響を外乱として取り扱うことを特徴とする請求項1に記載の空気分離装置の制御方法。The air separation device includes at least one of a crude argon column and a deoxidation column, has a concentration control loop of 3 inputs and 3 outputs or more, and does not simultaneously perform output prediction of each control loop by a multivariable prediction algorithm. 2. The control method for an air separation device according to claim 1, wherein, for a control loop having a large time constant and a long dead time, an influence of another control loop on a predicted value of a settling operation is treated as a disturbance. アルゴンを採取しないプロセスに対して適用されることを特徴とする請求項1乃至4のいずれかに記載の空気分離装置の制御方法。5. The method according to claim 1, wherein the method is applied to a process in which argon is not collected. 前記空気分離装置は、蒸留塔あるいは蒸留セレクションをさらに備え、窒素を製品として分離する工程を有することを特徴とする請求項1乃至4のいずれかに記載の空気分離装置の制御方法。The control method for an air separation device according to any one of claims 1 to 4, wherein the air separation device further includes a distillation column or a distillation selection, and has a step of separating nitrogen as a product. 前記空気分離装置は、蒸留塔あるいは蒸留セクションをさらに備え、酸素を製品として分離する工程を有することを特徴とする請求項1乃至4のいずれかに記載の空気分離装置の制御方法。The control method for an air separation device according to any one of claims 1 to 4, wherein the air separation device further includes a distillation column or a distillation section, and has a step of separating oxygen as a product.
JP2002329413A 2002-11-13 2002-11-13 Control method of air separation device Expired - Fee Related JP4279540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329413A JP4279540B2 (en) 2002-11-13 2002-11-13 Control method of air separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329413A JP4279540B2 (en) 2002-11-13 2002-11-13 Control method of air separation device

Publications (2)

Publication Number Publication Date
JP2004163003A true JP2004163003A (en) 2004-06-10
JP4279540B2 JP4279540B2 (en) 2009-06-17

Family

ID=32807420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329413A Expired - Fee Related JP4279540B2 (en) 2002-11-13 2002-11-13 Control method of air separation device

Country Status (1)

Country Link
JP (1) JP4279540B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896860A1 (en) * 2006-01-31 2007-08-03 Air Liquide Air separation method for use in purification installation, involves separating part of purified air in medium pressure column into oxygen and nitrogen enriched liquids, and sending liquid from column to low pressure column
JP2010528245A (en) * 2007-05-11 2010-08-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic distillation apparatus control method
JP2010210104A (en) * 2009-03-06 2010-09-24 Taiyo Nippon Sanso Corp Method and device for manufacturing argon
CN103575064A (en) * 2012-07-23 2014-02-12 中国石油化工股份有限公司 Device and method for oxygen and nitrogen separation through air and rapid increase of pressure nitrogen loads
JP2014180667A (en) * 2013-03-15 2014-09-29 Air Products And Chemicals Inc Onsite ultra high purity chemicals or gas purification
CN104121475A (en) * 2013-04-25 2014-10-29 中国石油化工股份有限公司 Apparatus for rapidly gasifying liquid nitrogen through circulating water bath, and operating method thereof
WO2016004144A1 (en) * 2014-07-02 2016-01-07 Praxair Technology, Inc. Argon condensation system and method
US9291389B2 (en) 2014-05-01 2016-03-22 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
CN106225422A (en) * 2016-07-27 2016-12-14 杭州杭氧股份有限公司 A kind of Automatic load change optimal control method for interior compression strap argon air separation plant
CN106288654A (en) * 2016-07-27 2017-01-04 杭州杭氧股份有限公司 A kind of quick load change optimal control method of oxygen nitrogen rectification external compression air separation plant
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
CN112424550A (en) * 2018-06-22 2021-02-26 乔治洛德方法研究和开发液化空气有限公司 System for controlling argon flow rate at outlet of distillation column

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6900241B2 (en) * 2017-05-31 2021-07-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas production system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896860A1 (en) * 2006-01-31 2007-08-03 Air Liquide Air separation method for use in purification installation, involves separating part of purified air in medium pressure column into oxygen and nitrogen enriched liquids, and sending liquid from column to low pressure column
JP2010528245A (en) * 2007-05-11 2010-08-19 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic distillation apparatus control method
JP2010210104A (en) * 2009-03-06 2010-09-24 Taiyo Nippon Sanso Corp Method and device for manufacturing argon
CN103575064A (en) * 2012-07-23 2014-02-12 中国石油化工股份有限公司 Device and method for oxygen and nitrogen separation through air and rapid increase of pressure nitrogen loads
CN103575064B (en) * 2012-07-23 2015-10-28 中国石油化工股份有限公司 A kind of air separation oxygen nitrogen increases the device and method of pressure nitrogen gas load fast
JP2014180667A (en) * 2013-03-15 2014-09-29 Air Products And Chemicals Inc Onsite ultra high purity chemicals or gas purification
US9216364B2 (en) 2013-03-15 2015-12-22 Air Products And Chemicals, Inc. Onsite ultra high purity chemicals or gas purification
US10317136B2 (en) 2013-03-15 2019-06-11 Versum Materials Us, Llc Onsite ultra high purity chemicals or gas purification
CN104121475A (en) * 2013-04-25 2014-10-29 中国石油化工股份有限公司 Apparatus for rapidly gasifying liquid nitrogen through circulating water bath, and operating method thereof
US9599396B2 (en) 2014-05-01 2017-03-21 Praxair Technology, Inc. System and method for production of crude argon by cryogenic rectification of air
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US9291389B2 (en) 2014-05-01 2016-03-22 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US10190819B2 (en) 2014-07-02 2019-01-29 Praxair Technology, Inc. Argon condensation system and method
US10060673B2 (en) 2014-07-02 2018-08-28 Praxair Technology, Inc. Argon condensation system and method
US10082333B2 (en) 2014-07-02 2018-09-25 Praxair Technology, Inc. Argon condensation system and method
US10247471B2 (en) 2014-07-02 2019-04-02 Praxair Technology, Inc. Argon condensation system and method
WO2016004144A1 (en) * 2014-07-02 2016-01-07 Praxair Technology, Inc. Argon condensation system and method
CN106288654A (en) * 2016-07-27 2017-01-04 杭州杭氧股份有限公司 A kind of quick load change optimal control method of oxygen nitrogen rectification external compression air separation plant
CN106225422A (en) * 2016-07-27 2016-12-14 杭州杭氧股份有限公司 A kind of Automatic load change optimal control method for interior compression strap argon air separation plant
CN112424550A (en) * 2018-06-22 2021-02-26 乔治洛德方法研究和开发液化空气有限公司 System for controlling argon flow rate at outlet of distillation column
CN112424550B (en) * 2018-06-22 2022-11-11 乔治洛德方法研究和开发液化空气有限公司 System for controlling argon flow rate at outlet of distillation column

Also Published As

Publication number Publication date
JP4279540B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
CA2071123C (en) Process and system for controlling a cryogenic air separation unit during rapid changes in production
JP2004163003A (en) Control method of air separator
JP5752731B2 (en) Method and system for optimizing argon recovery in an air separation unit
KR100212873B1 (en) Cryogenic rectification system capacity control method
EP1160528A2 (en) Automatic control system and method for air separation units
Zhang et al. Dynamic control analyses of eco-efficient partially heat-integrated side-stream pressure-swing distillation processes
JP3451453B2 (en) Air liquefaction separation device and control method thereof
JP4803897B2 (en) Control method of air liquefaction separation device
Krishna et al. Control and dynamic optimization of middle vessel batch distillation column for the separation of ethanol/propanol/butanol mixture
JP3027368B1 (en) Air liquefaction separation device and control method thereof
US6622521B2 (en) Adaptive control for air separation unit
CN116324634A (en) Method for operating a process engineering plant, process engineering plant and method for retrofitting a process engineering plant
JP3710252B2 (en) Control method of air liquefaction separation device
US11913720B2 (en) Product gas supply quantity adjustment device and air separation apparatus comprising same
JP4104726B2 (en) Operation method of air liquefaction separator
JPH04359786A (en) Control method of air separator
JP2550205B2 (en) Air separation method and device
JPH0476380A (en) Method and device for air separation suitable for fluctuation of demand
JP4944297B2 (en) Control method and control device for air liquefaction separation device
JP3300898B2 (en) Nitrogen production apparatus and its operation method
RU2087813C1 (en) Method of automatic control of argon cleaning process
JPH03199882A (en) Operation of plant including air liquefying and separating device
JPH0413629B2 (en)
Tonelli et al. The separation units of an ethylene plant under revamping conditions: dynamic analysis and regulation
JPH0114509B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees